Jovanović, Tijana

Link to this page

Authority KeyName Variants
b780effc-2344-4f48-86d5-231988a52e9c
  • Jovanović, Tijana (1)
Projects

Author's Bibliography

Hydrolytic, thermal, and UV stability of urea‐formaldehyde resin/thermally activated montmorillonite nanocomposites

Samaržija-Jovanović, Suzana; Jovanović, Vojislav; Petković, Branka; Jovanović, Tijana; Marković, Gordana; Porobić, Slavica; Papan, Jelena; Marinović-Cincović, Milena

(2020)

TY  - JOUR
AU  - Samaržija-Jovanović, Suzana
AU  - Jovanović, Vojislav
AU  - Petković, Branka
AU  - Jovanović, Tijana
AU  - Marković, Gordana
AU  - Porobić, Slavica
AU  - Papan, Jelena
AU  - Marinović-Cincović, Milena
PY  - 2020
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/9012
AB  - Urea-formaldehyde resin (F/U ratio of 0.8)/thermally activated montmorillonite (UF/Delta TK10) nanocomposite was synthesized. The hydrolytical, thermal, and UV radiation stability of UF/Delta TK10 nanocomposites are determined. UF hybrid nanocomposites have been irradiated with UV light with a wavelength of 254 nm and 366 nm, and after that, their radiation stability was evaluated. The free formaldehyde (FA) percentage in all prepared samples was determined. The sample was characterized by using X-ray diffraction analysis (XRD), nonisothermal thermogravimetric analysis (TGA), differential thermal analysis (DTA), and differential thermal gravimetry (DTG), with infrared (FTIR) spectroscopy. Crosslinked UF/Delta TK10 nanocomposite shows the highest resistance to acid hydrolysis after UV irradiation at a wavelength of 254 nm. The values for T-5% are identical for the unirradiated and UV irradiated (wavelength of 366 nm) UF/Delta TK10 nanocomposite. It can be concluded that this sample is thermally most stable and shows good resistance to UV irradiation.
T2  - Polymer Composites
T1  - Hydrolytic, thermal, and UV stability of urea‐formaldehyde resin/thermally activated montmorillonite nanocomposites
VL  - 41
IS  - 9
SP  - 3575
EP  - 3584
DO  - 10.1002/pc.25644
ER  - 
@article{
author = "Samaržija-Jovanović, Suzana and Jovanović, Vojislav and Petković, Branka and Jovanović, Tijana and Marković, Gordana and Porobić, Slavica and Papan, Jelena and Marinović-Cincović, Milena",
year = "2020",
abstract = "Urea-formaldehyde resin (F/U ratio of 0.8)/thermally activated montmorillonite (UF/Delta TK10) nanocomposite was synthesized. The hydrolytical, thermal, and UV radiation stability of UF/Delta TK10 nanocomposites are determined. UF hybrid nanocomposites have been irradiated with UV light with a wavelength of 254 nm and 366 nm, and after that, their radiation stability was evaluated. The free formaldehyde (FA) percentage in all prepared samples was determined. The sample was characterized by using X-ray diffraction analysis (XRD), nonisothermal thermogravimetric analysis (TGA), differential thermal analysis (DTA), and differential thermal gravimetry (DTG), with infrared (FTIR) spectroscopy. Crosslinked UF/Delta TK10 nanocomposite shows the highest resistance to acid hydrolysis after UV irradiation at a wavelength of 254 nm. The values for T-5% are identical for the unirradiated and UV irradiated (wavelength of 366 nm) UF/Delta TK10 nanocomposite. It can be concluded that this sample is thermally most stable and shows good resistance to UV irradiation.",
journal = "Polymer Composites",
title = "Hydrolytic, thermal, and UV stability of urea‐formaldehyde resin/thermally activated montmorillonite nanocomposites",
volume = "41",
number = "9",
pages = "3575-3584",
doi = "10.1002/pc.25644"
}
Samaržija-Jovanović, S., Jovanović, V., Petković, B., Jovanović, T., Marković, G., Porobić, S., Papan, J.,& Marinović-Cincović, M.. (2020). Hydrolytic, thermal, and UV stability of urea‐formaldehyde resin/thermally activated montmorillonite nanocomposites. in Polymer Composites, 41(9), 3575-3584.
https://doi.org/10.1002/pc.25644
Samaržija-Jovanović S, Jovanović V, Petković B, Jovanović T, Marković G, Porobić S, Papan J, Marinović-Cincović M. Hydrolytic, thermal, and UV stability of urea‐formaldehyde resin/thermally activated montmorillonite nanocomposites. in Polymer Composites. 2020;41(9):3575-3584.
doi:10.1002/pc.25644 .
Samaržija-Jovanović, Suzana, Jovanović, Vojislav, Petković, Branka, Jovanović, Tijana, Marković, Gordana, Porobić, Slavica, Papan, Jelena, Marinović-Cincović, Milena, "Hydrolytic, thermal, and UV stability of urea‐formaldehyde resin/thermally activated montmorillonite nanocomposites" in Polymer Composites, 41, no. 9 (2020):3575-3584,
https://doi.org/10.1002/pc.25644 . .
11
2
9