Štastný, Ondej

Link to this page

Authority KeyName Variants
orcid::0000-0002-0451-7977
  • Štastný, Ondej (1)
Projects

Author's Bibliography

Comparative study of the MeV ion channeling implantation induced damage in 6H-SiC by the iterative procedure and phenomenological CSIM computer code

Gloginjić, Marko; Erich, Marko; Mravik, Željko; Vrban, Branislav; Čerba, Štefan; Lüley, Jakub; Filová, Vendula; Katovský, Karel; Štastný, Ondej; Burian, Jiri; Petrović, Srđan M.

(2022)

TY  - JOUR
AU  - Gloginjić, Marko
AU  - Erich, Marko
AU  - Mravik, Željko
AU  - Vrban, Branislav
AU  - Čerba, Štefan
AU  - Lüley, Jakub
AU  - Filová, Vendula
AU  - Katovský, Karel
AU  - Štastný, Ondej
AU  - Burian, Jiri
AU  - Petrović, Srđan M.
PY  - 2022
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/10523
AB  - Due to its unique material properties, such as extreme hardness and radiation resistance, silicon carbide has been used as an important construction material for environments with extreme conditions, like those present in nuclear reactors. As such, it is constantly exposed to energetic particles (e.g., neutrons) and consequently subjected to gradual crystal lattice degradation. In this article, the 6H-SiC crystal damage has been simulated by the implantation of 4 MeV C3+ ions in the (0001) axial direction of a single 6H-SiC crystal to the ion fluences of 1.359 1015 cm-2, 6.740 1015 cm-2, and 2.02 1016 cm-2. These implanted samples were subsequently analyzed by Rutherford and elastic backscattering spectrometry in the channeling orientation (RBS/C & EBS/C) by the usage of 1 MeV protons. Obtained spectra were analyzed by channeling simulation phenomenological computer code (CSIM) to obtain quantitative crystal damage depth profiles. The difference between the positions of damage profile maxima obtained by CSIM code and one simulated with stopping and range of ions in matter (SRIM), a Monte Carlo based computer code focused on ion implantation simulation in random crystal direction only, is about 10%. Therefore, due to small profile depth shifts, the usage of the iterative procedure for calculating crystal damage depth profiles is proposed. It was shown that profiles obtained by iterative procedure show very good agreement with the ones obtained with CSIM code. Additionally, with the introduction of channeling to random energy loss ratio the energy to depth profile scale conversion, the agreement with CSIM profiles becomes excellent.
T2  - Nuclear Technology and Radiation Protection
T1  - Comparative study of the MeV ion channeling implantation induced damage in 6H-SiC by the iterative procedure and phenomenological CSIM computer code
VL  - 37
IS  - 2
SP  - 128
EP  - 137
DO  - 10.2298/NTRP2202128G
ER  - 
@article{
author = "Gloginjić, Marko and Erich, Marko and Mravik, Željko and Vrban, Branislav and Čerba, Štefan and Lüley, Jakub and Filová, Vendula and Katovský, Karel and Štastný, Ondej and Burian, Jiri and Petrović, Srđan M.",
year = "2022",
abstract = "Due to its unique material properties, such as extreme hardness and radiation resistance, silicon carbide has been used as an important construction material for environments with extreme conditions, like those present in nuclear reactors. As such, it is constantly exposed to energetic particles (e.g., neutrons) and consequently subjected to gradual crystal lattice degradation. In this article, the 6H-SiC crystal damage has been simulated by the implantation of 4 MeV C3+ ions in the (0001) axial direction of a single 6H-SiC crystal to the ion fluences of 1.359 1015 cm-2, 6.740 1015 cm-2, and 2.02 1016 cm-2. These implanted samples were subsequently analyzed by Rutherford and elastic backscattering spectrometry in the channeling orientation (RBS/C & EBS/C) by the usage of 1 MeV protons. Obtained spectra were analyzed by channeling simulation phenomenological computer code (CSIM) to obtain quantitative crystal damage depth profiles. The difference between the positions of damage profile maxima obtained by CSIM code and one simulated with stopping and range of ions in matter (SRIM), a Monte Carlo based computer code focused on ion implantation simulation in random crystal direction only, is about 10%. Therefore, due to small profile depth shifts, the usage of the iterative procedure for calculating crystal damage depth profiles is proposed. It was shown that profiles obtained by iterative procedure show very good agreement with the ones obtained with CSIM code. Additionally, with the introduction of channeling to random energy loss ratio the energy to depth profile scale conversion, the agreement with CSIM profiles becomes excellent.",
journal = "Nuclear Technology and Radiation Protection",
title = "Comparative study of the MeV ion channeling implantation induced damage in 6H-SiC by the iterative procedure and phenomenological CSIM computer code",
volume = "37",
number = "2",
pages = "128-137",
doi = "10.2298/NTRP2202128G"
}
Gloginjić, M., Erich, M., Mravik, Ž., Vrban, B., Čerba, Š., Lüley, J., Filová, V., Katovský, K., Štastný, O., Burian, J.,& Petrović, S. M.. (2022). Comparative study of the MeV ion channeling implantation induced damage in 6H-SiC by the iterative procedure and phenomenological CSIM computer code. in Nuclear Technology and Radiation Protection, 37(2), 128-137.
https://doi.org/10.2298/NTRP2202128G
Gloginjić M, Erich M, Mravik Ž, Vrban B, Čerba Š, Lüley J, Filová V, Katovský K, Štastný O, Burian J, Petrović SM. Comparative study of the MeV ion channeling implantation induced damage in 6H-SiC by the iterative procedure and phenomenological CSIM computer code. in Nuclear Technology and Radiation Protection. 2022;37(2):128-137.
doi:10.2298/NTRP2202128G .
Gloginjić, Marko, Erich, Marko, Mravik, Željko, Vrban, Branislav, Čerba, Štefan, Lüley, Jakub, Filová, Vendula, Katovský, Karel, Štastný, Ondej, Burian, Jiri, Petrović, Srđan M., "Comparative study of the MeV ion channeling implantation induced damage in 6H-SiC by the iterative procedure and phenomenological CSIM computer code" in Nuclear Technology and Radiation Protection, 37, no. 2 (2022):128-137,
https://doi.org/10.2298/NTRP2202128G . .