Ren, Jianwei

Link to this page

Authority KeyName Variants
f7e37a9d-eccf-47d5-835b-a4d301abe65a
  • Ren, Jianwei (2)
Projects

Author's Bibliography

Methanol to power through high-efficiency hybrid fuel cell system: Thermodynamic, thermo-economic, and techno-economic (3T) analyses in Northwest China

Wu, Zhen; Zhu, Pengfei; Yao, Jing; Kurko, Sandra V.; Ren, Jianwei; Tan, Peng; Xu, Haoran; Zhang, Zaoxiao; Ni, Meng

(2021)

TY  - JOUR
AU  - Wu, Zhen
AU  - Zhu, Pengfei
AU  - Yao, Jing
AU  - Kurko, Sandra V.
AU  - Ren, Jianwei
AU  - Tan, Peng
AU  - Xu, Haoran
AU  - Zhang, Zaoxiao
AU  - Ni, Meng
PY  - 2021
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/9565
AB  - Advanced efficient energy conversion technology using clean alternative fuel contributes to the alleviation of the energy crisis and environmental deterioration. In this situation, a novel methanol utilization technology for power generation based on hybrid fuel cell system is proposed in this work. The hybrid system consists of a solid oxide fuel cell (SOFC), a gas processing unit (GP) and a proton exchange membrane fuel cell (PEMFC). Thermodynamic analysis of the system shows that the energy conversion efficiency and exergy efficiency are both higher than the previously reported standalone or hybrid energy systems using methanol as fuel, which are 66.2% and 54.2% respectively. Besides, no recirculation ratio of anode off-gas and moderate fuel utilization of about 0.5 are suggested for the SOFC component to balance the power distribution and improve the efficiency. Afterwards, this hybrid fuel cell system is also investigated from thermo-economic and techno-economic perspectives. Take Northwest China as a case, the 1 MWe methanol-fed power plant has a specific electric energy cost of 0.5594 CNY/kWh, much lower than the methanol steam reforming-PEMFC power plant (2.4 CNY/kWh). At the same time, the sensitivity analyses reveal that the cost of the hybrid power system is not sensitive to the market price fluctuation. With financial subsidies for existing renewable power plants, the payback period can be shortened to 1.4 year and the annual return on investment is about 3.58%. These results reveal that this two-stage fuel cell hybrid system is a kind of efficient and economically methanol to power conversion technology, especially for small power scale. © 2021 Elsevier Ltd
T2  - Energy Conversion and Management
T1  - Methanol to power through high-efficiency hybrid fuel cell system: Thermodynamic, thermo-economic, and techno-economic (3T) analyses in Northwest China
VL  - 232
SP  - 113899
DO  - 10.1016/j.enconman.2021.113899
ER  - 
@article{
author = "Wu, Zhen and Zhu, Pengfei and Yao, Jing and Kurko, Sandra V. and Ren, Jianwei and Tan, Peng and Xu, Haoran and Zhang, Zaoxiao and Ni, Meng",
year = "2021",
abstract = "Advanced efficient energy conversion technology using clean alternative fuel contributes to the alleviation of the energy crisis and environmental deterioration. In this situation, a novel methanol utilization technology for power generation based on hybrid fuel cell system is proposed in this work. The hybrid system consists of a solid oxide fuel cell (SOFC), a gas processing unit (GP) and a proton exchange membrane fuel cell (PEMFC). Thermodynamic analysis of the system shows that the energy conversion efficiency and exergy efficiency are both higher than the previously reported standalone or hybrid energy systems using methanol as fuel, which are 66.2% and 54.2% respectively. Besides, no recirculation ratio of anode off-gas and moderate fuel utilization of about 0.5 are suggested for the SOFC component to balance the power distribution and improve the efficiency. Afterwards, this hybrid fuel cell system is also investigated from thermo-economic and techno-economic perspectives. Take Northwest China as a case, the 1 MWe methanol-fed power plant has a specific electric energy cost of 0.5594 CNY/kWh, much lower than the methanol steam reforming-PEMFC power plant (2.4 CNY/kWh). At the same time, the sensitivity analyses reveal that the cost of the hybrid power system is not sensitive to the market price fluctuation. With financial subsidies for existing renewable power plants, the payback period can be shortened to 1.4 year and the annual return on investment is about 3.58%. These results reveal that this two-stage fuel cell hybrid system is a kind of efficient and economically methanol to power conversion technology, especially for small power scale. © 2021 Elsevier Ltd",
journal = "Energy Conversion and Management",
title = "Methanol to power through high-efficiency hybrid fuel cell system: Thermodynamic, thermo-economic, and techno-economic (3T) analyses in Northwest China",
volume = "232",
pages = "113899",
doi = "10.1016/j.enconman.2021.113899"
}
Wu, Z., Zhu, P., Yao, J., Kurko, S. V., Ren, J., Tan, P., Xu, H., Zhang, Z.,& Ni, M.. (2021). Methanol to power through high-efficiency hybrid fuel cell system: Thermodynamic, thermo-economic, and techno-economic (3T) analyses in Northwest China. in Energy Conversion and Management, 232, 113899.
https://doi.org/10.1016/j.enconman.2021.113899
Wu Z, Zhu P, Yao J, Kurko SV, Ren J, Tan P, Xu H, Zhang Z, Ni M. Methanol to power through high-efficiency hybrid fuel cell system: Thermodynamic, thermo-economic, and techno-economic (3T) analyses in Northwest China. in Energy Conversion and Management. 2021;232:113899.
doi:10.1016/j.enconman.2021.113899 .
Wu, Zhen, Zhu, Pengfei, Yao, Jing, Kurko, Sandra V., Ren, Jianwei, Tan, Peng, Xu, Haoran, Zhang, Zaoxiao, Ni, Meng, "Methanol to power through high-efficiency hybrid fuel cell system: Thermodynamic, thermo-economic, and techno-economic (3T) analyses in Northwest China" in Energy Conversion and Management, 232 (2021):113899,
https://doi.org/10.1016/j.enconman.2021.113899 . .
2
1
2

Achieving high-efficiency conversion and poly-generation of cooling, heating, and power based on biomass-fueled SOFC hybrid system: Performance assessment and multi-objective optimization

Zhu, Pengfei; Wu, Zhen; Guo, Leilei; Yao, Jing; Dai, Min; Ren, Jianwei; Kurko, Sandra; Yan, Hongli; Yang, Fusheng; Zhang, Zaoxiao

(2021)

TY  - JOUR
AU  - Zhu, Pengfei
AU  - Wu, Zhen
AU  - Guo, Leilei
AU  - Yao, Jing
AU  - Dai, Min
AU  - Ren, Jianwei
AU  - Kurko, Sandra
AU  - Yan, Hongli
AU  - Yang, Fusheng
AU  - Zhang, Zaoxiao
PY  - 2021
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/9818
AB  - In order to develop clean and efficient energy conversion technology, a novel combined cooling, heating and power (CCHP) system using biomass as fuel is proposed in this work. The proposed CCHP system consists of biomass gasification unit, solid oxide fuel cell (SOFC), engine power generation unit and absorption refrigeration unit. Thermodynamic model of the CCHP system is developed for the parametric and exergy analyses to evaluate the performance. The parametric analysis shows that increasing the steam to biomass ratio or the SOFC fuel utilization factor helps to improve the electrical efficiency, while the increase of air equivalent ratio has a negative effect. The exergy analysis shows that the two units of biomass gasification and engine power generation have the largest exergy destruction ratio, which is 46.9% and 16.8% under the biomass flux of 500 kg·h−1. This is because these two units involve in high-temperature thermochemical reaction process, resulting in relatively large exergy destruction. Besides, the tradeoff between maximum exergy efficiency, CCHP efficiency and minimum total annual cost is conducted by multi-objective optimization. Through optimization, the system could reach the high CCHP efficiency of 75% and net electrical efficiency of 52%, as well as the low total annual cost of 410 k$ simultaneously. This work could provide the basic design idea, and high-efficiency and low-cost operation strategy for the practical application of the proposed novel biomass-fueled CCHP poly-generation system.
T2  - Energy Conversion and Management
T1  - Achieving high-efficiency conversion and poly-generation of cooling, heating, and power based on biomass-fueled SOFC hybrid system: Performance assessment and multi-objective optimization
VL  - 240
SP  - 114245
DO  - 10.1016/j.enconman.2021.114245
ER  - 
@article{
author = "Zhu, Pengfei and Wu, Zhen and Guo, Leilei and Yao, Jing and Dai, Min and Ren, Jianwei and Kurko, Sandra and Yan, Hongli and Yang, Fusheng and Zhang, Zaoxiao",
year = "2021",
abstract = "In order to develop clean and efficient energy conversion technology, a novel combined cooling, heating and power (CCHP) system using biomass as fuel is proposed in this work. The proposed CCHP system consists of biomass gasification unit, solid oxide fuel cell (SOFC), engine power generation unit and absorption refrigeration unit. Thermodynamic model of the CCHP system is developed for the parametric and exergy analyses to evaluate the performance. The parametric analysis shows that increasing the steam to biomass ratio or the SOFC fuel utilization factor helps to improve the electrical efficiency, while the increase of air equivalent ratio has a negative effect. The exergy analysis shows that the two units of biomass gasification and engine power generation have the largest exergy destruction ratio, which is 46.9% and 16.8% under the biomass flux of 500 kg·h−1. This is because these two units involve in high-temperature thermochemical reaction process, resulting in relatively large exergy destruction. Besides, the tradeoff between maximum exergy efficiency, CCHP efficiency and minimum total annual cost is conducted by multi-objective optimization. Through optimization, the system could reach the high CCHP efficiency of 75% and net electrical efficiency of 52%, as well as the low total annual cost of 410 k$ simultaneously. This work could provide the basic design idea, and high-efficiency and low-cost operation strategy for the practical application of the proposed novel biomass-fueled CCHP poly-generation system.",
journal = "Energy Conversion and Management",
title = "Achieving high-efficiency conversion and poly-generation of cooling, heating, and power based on biomass-fueled SOFC hybrid system: Performance assessment and multi-objective optimization",
volume = "240",
pages = "114245",
doi = "10.1016/j.enconman.2021.114245"
}
Zhu, P., Wu, Z., Guo, L., Yao, J., Dai, M., Ren, J., Kurko, S., Yan, H., Yang, F.,& Zhang, Z.. (2021). Achieving high-efficiency conversion and poly-generation of cooling, heating, and power based on biomass-fueled SOFC hybrid system: Performance assessment and multi-objective optimization. in Energy Conversion and Management, 240, 114245.
https://doi.org/10.1016/j.enconman.2021.114245
Zhu P, Wu Z, Guo L, Yao J, Dai M, Ren J, Kurko S, Yan H, Yang F, Zhang Z. Achieving high-efficiency conversion and poly-generation of cooling, heating, and power based on biomass-fueled SOFC hybrid system: Performance assessment and multi-objective optimization. in Energy Conversion and Management. 2021;240:114245.
doi:10.1016/j.enconman.2021.114245 .
Zhu, Pengfei, Wu, Zhen, Guo, Leilei, Yao, Jing, Dai, Min, Ren, Jianwei, Kurko, Sandra, Yan, Hongli, Yang, Fusheng, Zhang, Zaoxiao, "Achieving high-efficiency conversion and poly-generation of cooling, heating, and power based on biomass-fueled SOFC hybrid system: Performance assessment and multi-objective optimization" in Energy Conversion and Management, 240 (2021):114245,
https://doi.org/10.1016/j.enconman.2021.114245 . .
1
5
5
5