Vukomanovic, Marija

Link to this page

Authority KeyName Variants
orcid::0000-0001-7034-0471
  • Vukomanovic, Marija (3)
Projects

Author's Bibliography

Properties of quenched LiFePO4/C powder obtained via cellulose matrix-assisted method

Jugović, Dragana; Mitrić, Miodrag; Milović, Miloš; Jokić, Bojan M.; Vukomanovic, Marija; Suvorov, Danilo; Uskoković, Dragan

(2013)

TY  - JOUR
AU  - Jugović, Dragana
AU  - Mitrić, Miodrag
AU  - Milović, Miloš
AU  - Jokić, Bojan M.
AU  - Vukomanovic, Marija
AU  - Suvorov, Danilo
AU  - Uskoković, Dragan
PY  - 2013
UR  - http://vinar.vin.bg.ac.rs/handle/123456789/5670
AB  - In this study, nanocrystalline LiFePO4/C composite powder has been synthesized via a cellulose matrix-assisted method. In an experiment conducted under extreme conditions involving rapid heating, short high-temperature delay, and subsequent quenching, well-ordered 35-nm crystallites have been obtained within 5 min. A quantitative filter paper has served both as a template and carbon source. It degrades pyrolytically through fragmentation reactions and formation of volatiles when exposed to rapid heating, which further has an impact on powder morphology, as revealed by electron microscopy studies. The electrochemical measurements in terms of galvanostatic cycling have shown that the approach presented in this study may enable to reach good rate capability and excellent cycling stability. (C) 2013 Elsevier B.V. All rights reserved.
T2  - Powder Technology
T1  - Properties of quenched LiFePO4/C powder obtained via cellulose matrix-assisted method
VL  - 246
SP  - 539
EP  - 544
DO  - 10.1016/j.powtec.2013.06.021
ER  - 
@article{
author = "Jugović, Dragana and Mitrić, Miodrag and Milović, Miloš and Jokić, Bojan M. and Vukomanovic, Marija and Suvorov, Danilo and Uskoković, Dragan",
year = "2013",
abstract = "In this study, nanocrystalline LiFePO4/C composite powder has been synthesized via a cellulose matrix-assisted method. In an experiment conducted under extreme conditions involving rapid heating, short high-temperature delay, and subsequent quenching, well-ordered 35-nm crystallites have been obtained within 5 min. A quantitative filter paper has served both as a template and carbon source. It degrades pyrolytically through fragmentation reactions and formation of volatiles when exposed to rapid heating, which further has an impact on powder morphology, as revealed by electron microscopy studies. The electrochemical measurements in terms of galvanostatic cycling have shown that the approach presented in this study may enable to reach good rate capability and excellent cycling stability. (C) 2013 Elsevier B.V. All rights reserved.",
journal = "Powder Technology",
title = "Properties of quenched LiFePO4/C powder obtained via cellulose matrix-assisted method",
volume = "246",
pages = "539-544",
doi = "10.1016/j.powtec.2013.06.021"
}
Jugović, D., Mitrić, M., Milović, M., Jokić, B. M., Vukomanovic, M., Suvorov, D.,& Uskoković, D.. (2013). Properties of quenched LiFePO4/C powder obtained via cellulose matrix-assisted method. in Powder Technology, 246, 539-544.
https://doi.org/10.1016/j.powtec.2013.06.021
Jugović D, Mitrić M, Milović M, Jokić BM, Vukomanovic M, Suvorov D, Uskoković D. Properties of quenched LiFePO4/C powder obtained via cellulose matrix-assisted method. in Powder Technology. 2013;246:539-544.
doi:10.1016/j.powtec.2013.06.021 .
Jugović, Dragana, Mitrić, Miodrag, Milović, Miloš, Jokić, Bojan M., Vukomanovic, Marija, Suvorov, Danilo, Uskoković, Dragan, "Properties of quenched LiFePO4/C powder obtained via cellulose matrix-assisted method" in Powder Technology, 246 (2013):539-544,
https://doi.org/10.1016/j.powtec.2013.06.021 . .
6
7
9

Poly(D,L-lactide-co-glycolide)/hydroxyapatite core-shell nanospheres. Part 1: A multifunctional system for controlled drug delivery

Vukomanovic, Marija; Škapin, Srečo Davor; Jančar, Boštjan; Maksin, Tatjana N.; Ignjatović, Nenad L.; Uskokovic, Vuk; Uskoković, Dragan

(2011)

TY  - JOUR
AU  - Vukomanovic, Marija
AU  - Škapin, Srečo Davor
AU  - Jančar, Boštjan
AU  - Maksin, Tatjana N.
AU  - Ignjatović, Nenad L.
AU  - Uskokovic, Vuk
AU  - Uskoković, Dragan
PY  - 2011
UR  - http://vinar.vin.bg.ac.rs/handle/123456789/4188
AB  - Biodegradable poly(D,L-lactide-co-glycolide) (PLGA) and bioactive hydroxyapatite (HAP) are selected for the formation of a multifunctional system with the specific core-shell structure to be applied as a carrier of a drug. As a result, both components of PLGA/HAp core-shells are able to capture one part of the drug. Polymeric shells consisting of small nanospheres up to 20 nm in size act as a matrix in which one part of the drug is dispersed. In the same time, ceramic cores are formed of rod-like hydroxyapatite particles at the surface of which another part of the drug is adsorbed onto the interface between the polymer and the ceramics. The content of the loaded drug, as well as the selected solvent/non-solvent system, have a crucial influence on the resulting PLGA/HAp morphology and, finally, unimodal distribution of core-shells is obtained. The redistribution of the drug between the organic and inorganic parts of the material is expected to provide an interesting contribution to the kinetics of the drug release resulting in non-typical two-step drug release. (C) 2010 Elsevier B.V. All rights reserved.
T2  - Colloids and Surfaces. B: Biointerfaces
T1  - Poly(D,L-lactide-co-glycolide)/hydroxyapatite core-shell nanospheres. Part 1: A multifunctional system for controlled drug delivery
VL  - 82
IS  - 2
SP  - 404
EP  - 413
DO  - 10.1016/j.colsurfb.2010.09.011
ER  - 
@article{
author = "Vukomanovic, Marija and Škapin, Srečo Davor and Jančar, Boštjan and Maksin, Tatjana N. and Ignjatović, Nenad L. and Uskokovic, Vuk and Uskoković, Dragan",
year = "2011",
abstract = "Biodegradable poly(D,L-lactide-co-glycolide) (PLGA) and bioactive hydroxyapatite (HAP) are selected for the formation of a multifunctional system with the specific core-shell structure to be applied as a carrier of a drug. As a result, both components of PLGA/HAp core-shells are able to capture one part of the drug. Polymeric shells consisting of small nanospheres up to 20 nm in size act as a matrix in which one part of the drug is dispersed. In the same time, ceramic cores are formed of rod-like hydroxyapatite particles at the surface of which another part of the drug is adsorbed onto the interface between the polymer and the ceramics. The content of the loaded drug, as well as the selected solvent/non-solvent system, have a crucial influence on the resulting PLGA/HAp morphology and, finally, unimodal distribution of core-shells is obtained. The redistribution of the drug between the organic and inorganic parts of the material is expected to provide an interesting contribution to the kinetics of the drug release resulting in non-typical two-step drug release. (C) 2010 Elsevier B.V. All rights reserved.",
journal = "Colloids and Surfaces. B: Biointerfaces",
title = "Poly(D,L-lactide-co-glycolide)/hydroxyapatite core-shell nanospheres. Part 1: A multifunctional system for controlled drug delivery",
volume = "82",
number = "2",
pages = "404-413",
doi = "10.1016/j.colsurfb.2010.09.011"
}
Vukomanovic, M., Škapin, S. D., Jančar, B., Maksin, T. N., Ignjatović, N. L., Uskokovic, V.,& Uskoković, D.. (2011). Poly(D,L-lactide-co-glycolide)/hydroxyapatite core-shell nanospheres. Part 1: A multifunctional system for controlled drug delivery. in Colloids and Surfaces. B: Biointerfaces, 82(2), 404-413.
https://doi.org/10.1016/j.colsurfb.2010.09.011
Vukomanovic M, Škapin SD, Jančar B, Maksin TN, Ignjatović NL, Uskokovic V, Uskoković D. Poly(D,L-lactide-co-glycolide)/hydroxyapatite core-shell nanospheres. Part 1: A multifunctional system for controlled drug delivery. in Colloids and Surfaces. B: Biointerfaces. 2011;82(2):404-413.
doi:10.1016/j.colsurfb.2010.09.011 .
Vukomanovic, Marija, Škapin, Srečo Davor, Jančar, Boštjan, Maksin, Tatjana N., Ignjatović, Nenad L., Uskokovic, Vuk, Uskoković, Dragan, "Poly(D,L-lactide-co-glycolide)/hydroxyapatite core-shell nanospheres. Part 1: A multifunctional system for controlled drug delivery" in Colloids and Surfaces. B: Biointerfaces, 82, no. 2 (2011):404-413,
https://doi.org/10.1016/j.colsurfb.2010.09.011 . .
6
26
25
27

Influence of ultrasonic processing on the macromolecular properties of poly (D,L-lactide-co-glycolide) alone and in its biocomposite with hydroxyapatite

Vukomanovic, Marija; Mitrić, Miodrag; Škapin, Srečo Davor; Zagar, Ema; Plavec, Janez; Ignjatović, Nenad L.; Uskoković, Dragan

(2010)

TY  - JOUR
AU  - Vukomanovic, Marija
AU  - Mitrić, Miodrag
AU  - Škapin, Srečo Davor
AU  - Zagar, Ema
AU  - Plavec, Janez
AU  - Ignjatović, Nenad L.
AU  - Uskoković, Dragan
PY  - 2010
UR  - http://vinar.vin.bg.ac.rs/handle/123456789/3943
AB  - In this work poly(D,L-lactide-co-glycolide) (PLGA) and a poly(D,L-lactide-co-glycolide)/hydroxyapatite (PLGA/HAp) composite processed in an ultrasonic field at higher (25 degrees C) and lower (8 degrees C) temperatures were studied with respect to the molecular properties of the obtained materials. The processing of the PLGA and the PLGA/HAp composite in an ultrasonic field resulted in a change of molar mass averages of the polymer/polymeric part of these materials, while an amorphous structure and a 50:50 lactide-to-glycolide co-monomer ratio were preserved without the formation of crystalline oligomers. However, mobility of polymeric chains obtained after ultrasonic processing was lower indicating ordering the structure of polymeric chains as a result of processing. Additionally, it was observed that the mobility of the PLGA macromolecules was lower within the composite in comparison with the mobility of the chains within the PLGA alone in the case when both were obtained after ultrasonic processing. This was a consequence of the structure formation through the interactions between the PLGA and the HAp. Based on these results different degradation rate of PLGA in composite can be expected, which is important in the application of this material for the controlled drug delivery of medicaments. (C) 2010 Elsevier B.V. All rights reserved.
T2  - Ultrasonics Sonochemistry
T1  - Influence of ultrasonic processing on the macromolecular properties of poly (D,L-lactide-co-glycolide) alone and in its biocomposite with hydroxyapatite
VL  - 17
IS  - 5
SP  - 902
EP  - 908
DO  - 10.1016/j.ultsonch.2010.01.007
ER  - 
@article{
author = "Vukomanovic, Marija and Mitrić, Miodrag and Škapin, Srečo Davor and Zagar, Ema and Plavec, Janez and Ignjatović, Nenad L. and Uskoković, Dragan",
year = "2010",
abstract = "In this work poly(D,L-lactide-co-glycolide) (PLGA) and a poly(D,L-lactide-co-glycolide)/hydroxyapatite (PLGA/HAp) composite processed in an ultrasonic field at higher (25 degrees C) and lower (8 degrees C) temperatures were studied with respect to the molecular properties of the obtained materials. The processing of the PLGA and the PLGA/HAp composite in an ultrasonic field resulted in a change of molar mass averages of the polymer/polymeric part of these materials, while an amorphous structure and a 50:50 lactide-to-glycolide co-monomer ratio were preserved without the formation of crystalline oligomers. However, mobility of polymeric chains obtained after ultrasonic processing was lower indicating ordering the structure of polymeric chains as a result of processing. Additionally, it was observed that the mobility of the PLGA macromolecules was lower within the composite in comparison with the mobility of the chains within the PLGA alone in the case when both were obtained after ultrasonic processing. This was a consequence of the structure formation through the interactions between the PLGA and the HAp. Based on these results different degradation rate of PLGA in composite can be expected, which is important in the application of this material for the controlled drug delivery of medicaments. (C) 2010 Elsevier B.V. All rights reserved.",
journal = "Ultrasonics Sonochemistry",
title = "Influence of ultrasonic processing on the macromolecular properties of poly (D,L-lactide-co-glycolide) alone and in its biocomposite with hydroxyapatite",
volume = "17",
number = "5",
pages = "902-908",
doi = "10.1016/j.ultsonch.2010.01.007"
}
Vukomanovic, M., Mitrić, M., Škapin, S. D., Zagar, E., Plavec, J., Ignjatović, N. L.,& Uskoković, D.. (2010). Influence of ultrasonic processing on the macromolecular properties of poly (D,L-lactide-co-glycolide) alone and in its biocomposite with hydroxyapatite. in Ultrasonics Sonochemistry, 17(5), 902-908.
https://doi.org/10.1016/j.ultsonch.2010.01.007
Vukomanovic M, Mitrić M, Škapin SD, Zagar E, Plavec J, Ignjatović NL, Uskoković D. Influence of ultrasonic processing on the macromolecular properties of poly (D,L-lactide-co-glycolide) alone and in its biocomposite with hydroxyapatite. in Ultrasonics Sonochemistry. 2010;17(5):902-908.
doi:10.1016/j.ultsonch.2010.01.007 .
Vukomanovic, Marija, Mitrić, Miodrag, Škapin, Srečo Davor, Zagar, Ema, Plavec, Janez, Ignjatović, Nenad L., Uskoković, Dragan, "Influence of ultrasonic processing on the macromolecular properties of poly (D,L-lactide-co-glycolide) alone and in its biocomposite with hydroxyapatite" in Ultrasonics Sonochemistry, 17, no. 5 (2010):902-908,
https://doi.org/10.1016/j.ultsonch.2010.01.007 . .
7
6
7