Tian, Ya

Link to this page

Authority KeyName Variants
97abdf3c-4907-49f9-ba95-983f62bdf7c5
  • Tian, Ya (1)

Author's Bibliography

High-throughput first-principles calculations as a powerful guiding tool for materials engineering: Case study of the AB2X4 (A = Be, Mg, Ca, Sr, ba; B = Al, Ga, in; X = O, S) spinel compounds

Wang, Y.; Chen, Wenbo; Liu, Feilong; Yang, D. W.; Tian, Ya; Ma, Chong-Geng; Dramićanin, Miroslav; Brik, Mikhail G.

(2019)

TY  - JOUR
AU  - Wang, Y.
AU  - Chen, Wenbo
AU  - Liu, Feilong
AU  - Yang, D. W.
AU  - Tian, Ya
AU  - Ma, Chong-Geng
AU  - Dramićanin, Miroslav
AU  - Brik, Mikhail G.
PY  - 2019
UR  - https://linkinghub.elsevier.com/retrieve/pii/S2211379719305327
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/8091
AB  - Modern methods of theoretical and experimental materials engineering can be greatly facilitated by reliably established guiding trends that set directions for a smart search for new materials with enhanced performance. Those trends can be derived from a thorough analysis of large arrays of the experimental data, obtained both experimentally and theoretically. In the present paper, the structural, elastic, and electronic properties of 30 spinel compounds AB 2 X 4 (A = Be, Mg, Ca, Sr, Ba; B = Al, Ga, In; X = O, S) were investigated using the CRYSTAL14 program. For the first time the lattice constants, bulk moduli, band gaps and density of states for these 30 spinels were systematically calculated and analyzed. Influence of the cation and anion variation on the above-mentioned properties was highlighted. Several relations between lattice constants, bulk modulus and ionic radii, electronegativities of constituting ions were found. Several linear equations are proposed, which provide a convenient way to predict the lattice constants and bulk moduli of isostructural spinels. © 2019
T2  - Results in Physics
T1  - High-throughput first-principles calculations as a powerful guiding tool for materials engineering: Case study of the AB2X4 (A = Be, Mg, Ca, Sr, ba; B = Al, Ga, in; X = O, S) spinel compounds
VL  - 13
SP  - 102180
DO  - 10.1016/j.rinp.2019.102180
ER  - 
@article{
author = "Wang, Y. and Chen, Wenbo and Liu, Feilong and Yang, D. W. and Tian, Ya and Ma, Chong-Geng and Dramićanin, Miroslav and Brik, Mikhail G.",
year = "2019",
abstract = "Modern methods of theoretical and experimental materials engineering can be greatly facilitated by reliably established guiding trends that set directions for a smart search for new materials with enhanced performance. Those trends can be derived from a thorough analysis of large arrays of the experimental data, obtained both experimentally and theoretically. In the present paper, the structural, elastic, and electronic properties of 30 spinel compounds AB 2 X 4 (A = Be, Mg, Ca, Sr, Ba; B = Al, Ga, In; X = O, S) were investigated using the CRYSTAL14 program. For the first time the lattice constants, bulk moduli, band gaps and density of states for these 30 spinels were systematically calculated and analyzed. Influence of the cation and anion variation on the above-mentioned properties was highlighted. Several relations between lattice constants, bulk modulus and ionic radii, electronegativities of constituting ions were found. Several linear equations are proposed, which provide a convenient way to predict the lattice constants and bulk moduli of isostructural spinels. © 2019",
journal = "Results in Physics",
title = "High-throughput first-principles calculations as a powerful guiding tool for materials engineering: Case study of the AB2X4 (A = Be, Mg, Ca, Sr, ba; B = Al, Ga, in; X = O, S) spinel compounds",
volume = "13",
pages = "102180",
doi = "10.1016/j.rinp.2019.102180"
}
Wang, Y., Chen, W., Liu, F., Yang, D. W., Tian, Y., Ma, C., Dramićanin, M.,& Brik, M. G.. (2019). High-throughput first-principles calculations as a powerful guiding tool for materials engineering: Case study of the AB2X4 (A = Be, Mg, Ca, Sr, ba; B = Al, Ga, in; X = O, S) spinel compounds. in Results in Physics, 13, 102180.
https://doi.org/10.1016/j.rinp.2019.102180
Wang Y, Chen W, Liu F, Yang DW, Tian Y, Ma C, Dramićanin M, Brik MG. High-throughput first-principles calculations as a powerful guiding tool for materials engineering: Case study of the AB2X4 (A = Be, Mg, Ca, Sr, ba; B = Al, Ga, in; X = O, S) spinel compounds. in Results in Physics. 2019;13:102180.
doi:10.1016/j.rinp.2019.102180 .
Wang, Y., Chen, Wenbo, Liu, Feilong, Yang, D. W., Tian, Ya, Ma, Chong-Geng, Dramićanin, Miroslav, Brik, Mikhail G., "High-throughput first-principles calculations as a powerful guiding tool for materials engineering: Case study of the AB2X4 (A = Be, Mg, Ca, Sr, ba; B = Al, Ga, in; X = O, S) spinel compounds" in Results in Physics, 13 (2019):102180,
https://doi.org/10.1016/j.rinp.2019.102180 . .
1
20
8
22