Stevanović, Svetlana

Link to this page

Authority KeyName Variants
orcid::0000-0002-9472-0169
  • Stevanović, Svetlana (4)
Projects

Author's Bibliography

Source apportionment of oxidative potential: What we know so far

Stevanović, Svetlana; Jovanović, Maja; Jovašević-Stojanović, Milena; Ristovski, Zoran

(2023)

TY  - JOUR
AU  - Stevanović, Svetlana
AU  - Jovanović, Maja
AU  - Jovašević-Stojanović, Milena
AU  - Ristovski, Zoran
PY  - 2023
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/13097
AB  - In numerous epidemiological studies, exposure to particulate matter (PM) has been associated with negative health outcomes. It has been established so far that the detrimental health effects of particles cannot be explained by a single parameter, such as particle mass, as the complexity of chemical composition and reactivity of particles are not always represented by the mass loadings. The oxidative potential (OP) of aerosol particles represents a promising indicator of their potential toxicity. To develop strategies and regulations at improving the air quality, an increasing number of studies are focused on the application of source apportionment (SA) of PM., while a limited number of SA investigations have been applied to OP. In this review previous research of SA of atmospheric PM OP and proposed guidelines for future studies are summarized. Most of the research studies were carried out in an urban area and focused on PM2.5, while few studies examined other PM fractions. It was noted that the three dominant contributors to OP were biomass burning (9-97%), secondary aerosols (6-67%), and traffic/vehicles (16-88%). The presence of other factors that contributed to the in-crease of OP to a lesser extent depended on the location and season. Further, a considerable discrepancy in the contribution of various OP vs. PM sources was discovered using SA models. Because of this, the use of SA is not equivalent when considering the mass of PM and its toxicity.
T2  - Thermal Science
T1  - Source apportionment of oxidative potential: What we know so far
VL  - 27
IS  - 3 Part B
SP  - 2347
EP  - 2357
DO  - 10.2298/TSCI221107111S
ER  - 
@article{
author = "Stevanović, Svetlana and Jovanović, Maja and Jovašević-Stojanović, Milena and Ristovski, Zoran",
year = "2023",
abstract = "In numerous epidemiological studies, exposure to particulate matter (PM) has been associated with negative health outcomes. It has been established so far that the detrimental health effects of particles cannot be explained by a single parameter, such as particle mass, as the complexity of chemical composition and reactivity of particles are not always represented by the mass loadings. The oxidative potential (OP) of aerosol particles represents a promising indicator of their potential toxicity. To develop strategies and regulations at improving the air quality, an increasing number of studies are focused on the application of source apportionment (SA) of PM., while a limited number of SA investigations have been applied to OP. In this review previous research of SA of atmospheric PM OP and proposed guidelines for future studies are summarized. Most of the research studies were carried out in an urban area and focused on PM2.5, while few studies examined other PM fractions. It was noted that the three dominant contributors to OP were biomass burning (9-97%), secondary aerosols (6-67%), and traffic/vehicles (16-88%). The presence of other factors that contributed to the in-crease of OP to a lesser extent depended on the location and season. Further, a considerable discrepancy in the contribution of various OP vs. PM sources was discovered using SA models. Because of this, the use of SA is not equivalent when considering the mass of PM and its toxicity.",
journal = "Thermal Science",
title = "Source apportionment of oxidative potential: What we know so far",
volume = "27",
number = "3 Part B",
pages = "2347-2357",
doi = "10.2298/TSCI221107111S"
}
Stevanović, S., Jovanović, M., Jovašević-Stojanović, M.,& Ristovski, Z.. (2023). Source apportionment of oxidative potential: What we know so far. in Thermal Science, 27(3 Part B), 2347-2357.
https://doi.org/10.2298/TSCI221107111S
Stevanović S, Jovanović M, Jovašević-Stojanović M, Ristovski Z. Source apportionment of oxidative potential: What we know so far. in Thermal Science. 2023;27(3 Part B):2347-2357.
doi:10.2298/TSCI221107111S .
Stevanović, Svetlana, Jovanović, Maja, Jovašević-Stojanović, Milena, Ristovski, Zoran, "Source apportionment of oxidative potential: What we know so far" in Thermal Science, 27, no. 3 Part B (2023):2347-2357,
https://doi.org/10.2298/TSCI221107111S . .

Source Apportionment of Oxidative Potential – What We Know So Far

Stevanović, Svetlana; Jovanović, Maja; Jovašević-Stojanović, Milena; Ristovski, Zoran

(Belgrade : University of Belgrade, Vinča Institute of Nuclear Sciences, 2021)

TY  - CONF
AU  - Stevanović, Svetlana
AU  - Jovanović, Maja
AU  - Jovašević-Stojanović, Milena
AU  - Ristovski, Zoran
PY  - 2021
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/10991
PB  - Belgrade : University of Belgrade, Vinča Institute of Nuclear Sciences
C3  - WeBIOPATR 2021 : 8th WeBIOPATR Workshop & Conference: Particulate Matter: Research and Management : Abstracts of Keynote Invited Lectures and Contributed Papers; November 29 - December 1, 2021; Belgrade, Serbia
T1  - Source Apportionment of Oxidative Potential – What We Know So Far
SP  - 53
UR  - https://hdl.handle.net/21.15107/rcub_vinar_10991
ER  - 
@conference{
author = "Stevanović, Svetlana and Jovanović, Maja and Jovašević-Stojanović, Milena and Ristovski, Zoran",
year = "2021",
publisher = "Belgrade : University of Belgrade, Vinča Institute of Nuclear Sciences",
journal = "WeBIOPATR 2021 : 8th WeBIOPATR Workshop & Conference: Particulate Matter: Research and Management : Abstracts of Keynote Invited Lectures and Contributed Papers; November 29 - December 1, 2021; Belgrade, Serbia",
title = "Source Apportionment of Oxidative Potential – What We Know So Far",
pages = "53",
url = "https://hdl.handle.net/21.15107/rcub_vinar_10991"
}
Stevanović, S., Jovanović, M., Jovašević-Stojanović, M.,& Ristovski, Z.. (2021). Source Apportionment of Oxidative Potential – What We Know So Far. in WeBIOPATR 2021 : 8th WeBIOPATR Workshop & Conference: Particulate Matter: Research and Management : Abstracts of Keynote Invited Lectures and Contributed Papers; November 29 - December 1, 2021; Belgrade, Serbia
Belgrade : University of Belgrade, Vinča Institute of Nuclear Sciences., 53.
https://hdl.handle.net/21.15107/rcub_vinar_10991
Stevanović S, Jovanović M, Jovašević-Stojanović M, Ristovski Z. Source Apportionment of Oxidative Potential – What We Know So Far. in WeBIOPATR 2021 : 8th WeBIOPATR Workshop & Conference: Particulate Matter: Research and Management : Abstracts of Keynote Invited Lectures and Contributed Papers; November 29 - December 1, 2021; Belgrade, Serbia. 2021;:53.
https://hdl.handle.net/21.15107/rcub_vinar_10991 .
Stevanović, Svetlana, Jovanović, Maja, Jovašević-Stojanović, Milena, Ristovski, Zoran, "Source Apportionment of Oxidative Potential – What We Know So Far" in WeBIOPATR 2021 : 8th WeBIOPATR Workshop & Conference: Particulate Matter: Research and Management : Abstracts of Keynote Invited Lectures and Contributed Papers; November 29 - December 1, 2021; Belgrade, Serbia (2021):53,
https://hdl.handle.net/21.15107/rcub_vinar_10991 .

Comparison of fine particulate matter level, chemical content and oxidative potential derived from two dissimilar urban environments

Jovanović, Maja; Savić, Jasmina; Kovačević, Renata; Tasić, Viša; Todorović, Žaklina; Stevanović, Svetlana; Manojlović, Dragan D.; Jovašević-Stojanović, Milena

(2020)

TY  - JOUR
AU  - Jovanović, Maja
AU  - Savić, Jasmina
AU  - Kovačević, Renata
AU  - Tasić, Viša
AU  - Todorović, Žaklina
AU  - Stevanović, Svetlana
AU  - Manojlović, Dragan D.
AU  - Jovašević-Stojanović, Milena
PY  - 2020
UR  - http://cherry.chem.bg.ac.rs/handle/123456789/3820
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/8750
AB  - Urban airborne particles contain a wide spectrum of components, known to have harmful effects on human health. This study reports a detailed investigation of fine particulate matter (PM2.5), chemical content and oxidative potential derived from two different urban environments. During summer and winter, 20-day campaigns were conducted at Belgrade city center (urban-background site – UB) and Bor (urban-industrial site – UI). Using various analytical techniques, carbonaceous compounds, water-soluble inorganic ions, major and trace elements were determined, while the oxidative potential of PM2.5 was estimated by dichloro-dihydro-fluorescein diacetate (DCFH-DA) assay (OPDCFH values). The mean PM2.5 concentrations in both urban environments were above the recommended daily value, and the dominant PM2.5 mass contributor was organic matter (29–55%). The OC/EC ratio was significantly higher at UB site during winter, which was an indication of a considerable contribution of secondary organic carbon to the overall organic carbon (OC). Water-soluble organic carbon (WSOC) was also higher at UB than at UI site, and it probably came from the same sources as OC. In general, the different partition of secondary organic aerosol (SOA) in warm and cold periods affected the number of organic components. Sulfates and nitrates were the most abundant ions at both sites and they counted approximately 40% (summer) and 50% (winter) of total ions. Further, the concentrations of the most elements, particularly some potentially carcinogenic elements such as As, Cd and Pb were significantly higher at UI, due to the emissions from the copper smelter complex in the vicinity. The mean OPDCFH values were similar during the summer at both sampling sites, whereas a statistically significant difference between sites was noticed in favor of UB environment in winter.
T2  - Science of the Total Environment
T1  - Comparison of fine particulate matter level, chemical content and oxidative potential derived from two dissimilar urban environments
VL  - 708
SP  - 135209
DO  - 10.1016/j.scitotenv.2019.135209
ER  - 
@article{
author = "Jovanović, Maja and Savić, Jasmina and Kovačević, Renata and Tasić, Viša and Todorović, Žaklina and Stevanović, Svetlana and Manojlović, Dragan D. and Jovašević-Stojanović, Milena",
year = "2020",
abstract = "Urban airborne particles contain a wide spectrum of components, known to have harmful effects on human health. This study reports a detailed investigation of fine particulate matter (PM2.5), chemical content and oxidative potential derived from two different urban environments. During summer and winter, 20-day campaigns were conducted at Belgrade city center (urban-background site – UB) and Bor (urban-industrial site – UI). Using various analytical techniques, carbonaceous compounds, water-soluble inorganic ions, major and trace elements were determined, while the oxidative potential of PM2.5 was estimated by dichloro-dihydro-fluorescein diacetate (DCFH-DA) assay (OPDCFH values). The mean PM2.5 concentrations in both urban environments were above the recommended daily value, and the dominant PM2.5 mass contributor was organic matter (29–55%). The OC/EC ratio was significantly higher at UB site during winter, which was an indication of a considerable contribution of secondary organic carbon to the overall organic carbon (OC). Water-soluble organic carbon (WSOC) was also higher at UB than at UI site, and it probably came from the same sources as OC. In general, the different partition of secondary organic aerosol (SOA) in warm and cold periods affected the number of organic components. Sulfates and nitrates were the most abundant ions at both sites and they counted approximately 40% (summer) and 50% (winter) of total ions. Further, the concentrations of the most elements, particularly some potentially carcinogenic elements such as As, Cd and Pb were significantly higher at UI, due to the emissions from the copper smelter complex in the vicinity. The mean OPDCFH values were similar during the summer at both sampling sites, whereas a statistically significant difference between sites was noticed in favor of UB environment in winter.",
journal = "Science of the Total Environment",
title = "Comparison of fine particulate matter level, chemical content and oxidative potential derived from two dissimilar urban environments",
volume = "708",
pages = "135209",
doi = "10.1016/j.scitotenv.2019.135209"
}
Jovanović, M., Savić, J., Kovačević, R., Tasić, V., Todorović, Ž., Stevanović, S., Manojlović, D. D.,& Jovašević-Stojanović, M.. (2020). Comparison of fine particulate matter level, chemical content and oxidative potential derived from two dissimilar urban environments. in Science of the Total Environment, 708, 135209.
https://doi.org/10.1016/j.scitotenv.2019.135209
Jovanović M, Savić J, Kovačević R, Tasić V, Todorović Ž, Stevanović S, Manojlović DD, Jovašević-Stojanović M. Comparison of fine particulate matter level, chemical content and oxidative potential derived from two dissimilar urban environments. in Science of the Total Environment. 2020;708:135209.
doi:10.1016/j.scitotenv.2019.135209 .
Jovanović, Maja, Savić, Jasmina, Kovačević, Renata, Tasić, Viša, Todorović, Žaklina, Stevanović, Svetlana, Manojlović, Dragan D., Jovašević-Stojanović, Milena, "Comparison of fine particulate matter level, chemical content and oxidative potential derived from two dissimilar urban environments" in Science of the Total Environment, 708 (2020):135209,
https://doi.org/10.1016/j.scitotenv.2019.135209 . .
11
1
10

Measurements of Oxidative Potential of Particulate Matter at Belgrade Tunnel; Comparison of BPEAnit, DTT and DCFH Assays

Jovanović, Maja; Savić, Jasmina; Salimi, Farhad; Stevanović, Svetlana; Brown, Reece A.; Jovašević-Stojanović, Milena; Manojlovic, Dragan; Bartonova, Alena; Bottle, Steven; Ristovski, Zoran

(2019)

TY  - JOUR
AU  - Jovanović, Maja
AU  - Savić, Jasmina
AU  - Salimi, Farhad
AU  - Stevanović, Svetlana
AU  - Brown, Reece A.
AU  - Jovašević-Stojanović, Milena
AU  - Manojlovic, Dragan
AU  - Bartonova, Alena
AU  - Bottle, Steven
AU  - Ristovski, Zoran
PY  - 2019
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/8677
AB  - To estimate the oxidative potential (OP) of particulate matter (PM), two commonly used cell-free, molecular probes were applied: dithiothreitol (DTT) and dichloro-dihydro-fluorescein diacetate (DCFH-DA), and their performance was compared with 9,10-bis (phenylethynyl) anthracene-nitroxide (BPEAnit). To the best of our knowledge, this is the first study in which the performance of the DTT and DCFH has been compared with the BPEAnit probe. The average concentrations of PM, organic carbon (OC) and elemental carbon (EC) for fine (PM2.5) and coarse (PM10) particles were determined. The results were 44.8 ± 13.7, 9.8 ± 5.1 and 9.3 ± 4.8 µg·m−3 for PM2.5 and 75.5 ± 25.1, 16.3 ± 8.7 and 11.8 ± 5.3 µg·m−3 for PM10, respectively, for PM, OC and EC. The water-soluble organic carbon (WSOC) fraction accounted for 42 ± 14% and 28 ± 9% of organic carbon in PM2.5 and PM10, respectively. The average volume normalized OP values for the three assays depended on both the sampling periods and the PM fractions. The OPBPEAnit had its peak at 2 p.m.; in the afternoon, it was three times higher compared to the morning and late afternoon values. The DCFH and BPEAnit results were correlated (r = 0.64), while there was no good agreement between the BPEAnit and the DTT (r = 0.14). The total organic content of PM does not necessarily represent oxidative capacity and it shows varying correlation with the OP. With respect to the two PM fractions studied, the OP was mostly associated with smaller particles.
T2  - International Journal of Environmental Research and Public Health
T1  - Measurements of Oxidative Potential of Particulate Matter at Belgrade Tunnel; Comparison of BPEAnit, DTT and DCFH Assays
VL  - 16
IS  - 24
SP  - 4906
DO  - 10.3390/ijerph16244906
ER  - 
@article{
author = "Jovanović, Maja and Savić, Jasmina and Salimi, Farhad and Stevanović, Svetlana and Brown, Reece A. and Jovašević-Stojanović, Milena and Manojlovic, Dragan and Bartonova, Alena and Bottle, Steven and Ristovski, Zoran",
year = "2019",
abstract = "To estimate the oxidative potential (OP) of particulate matter (PM), two commonly used cell-free, molecular probes were applied: dithiothreitol (DTT) and dichloro-dihydro-fluorescein diacetate (DCFH-DA), and their performance was compared with 9,10-bis (phenylethynyl) anthracene-nitroxide (BPEAnit). To the best of our knowledge, this is the first study in which the performance of the DTT and DCFH has been compared with the BPEAnit probe. The average concentrations of PM, organic carbon (OC) and elemental carbon (EC) for fine (PM2.5) and coarse (PM10) particles were determined. The results were 44.8 ± 13.7, 9.8 ± 5.1 and 9.3 ± 4.8 µg·m−3 for PM2.5 and 75.5 ± 25.1, 16.3 ± 8.7 and 11.8 ± 5.3 µg·m−3 for PM10, respectively, for PM, OC and EC. The water-soluble organic carbon (WSOC) fraction accounted for 42 ± 14% and 28 ± 9% of organic carbon in PM2.5 and PM10, respectively. The average volume normalized OP values for the three assays depended on both the sampling periods and the PM fractions. The OPBPEAnit had its peak at 2 p.m.; in the afternoon, it was three times higher compared to the morning and late afternoon values. The DCFH and BPEAnit results were correlated (r = 0.64), while there was no good agreement between the BPEAnit and the DTT (r = 0.14). The total organic content of PM does not necessarily represent oxidative capacity and it shows varying correlation with the OP. With respect to the two PM fractions studied, the OP was mostly associated with smaller particles.",
journal = "International Journal of Environmental Research and Public Health",
title = "Measurements of Oxidative Potential of Particulate Matter at Belgrade Tunnel; Comparison of BPEAnit, DTT and DCFH Assays",
volume = "16",
number = "24",
pages = "4906",
doi = "10.3390/ijerph16244906"
}
Jovanović, M., Savić, J., Salimi, F., Stevanović, S., Brown, R. A., Jovašević-Stojanović, M., Manojlovic, D., Bartonova, A., Bottle, S.,& Ristovski, Z.. (2019). Measurements of Oxidative Potential of Particulate Matter at Belgrade Tunnel; Comparison of BPEAnit, DTT and DCFH Assays. in International Journal of Environmental Research and Public Health, 16(24), 4906.
https://doi.org/10.3390/ijerph16244906
Jovanović M, Savić J, Salimi F, Stevanović S, Brown RA, Jovašević-Stojanović M, Manojlovic D, Bartonova A, Bottle S, Ristovski Z. Measurements of Oxidative Potential of Particulate Matter at Belgrade Tunnel; Comparison of BPEAnit, DTT and DCFH Assays. in International Journal of Environmental Research and Public Health. 2019;16(24):4906.
doi:10.3390/ijerph16244906 .
Jovanović, Maja, Savić, Jasmina, Salimi, Farhad, Stevanović, Svetlana, Brown, Reece A., Jovašević-Stojanović, Milena, Manojlovic, Dragan, Bartonova, Alena, Bottle, Steven, Ristovski, Zoran, "Measurements of Oxidative Potential of Particulate Matter at Belgrade Tunnel; Comparison of BPEAnit, DTT and DCFH Assays" in International Journal of Environmental Research and Public Health, 16, no. 24 (2019):4906,
https://doi.org/10.3390/ijerph16244906 . .
20
14
17