Milović, Miloš D.

Link to this page

Authority KeyName Variants
a1ff9f50-3b8f-4d2e-9c74-af840556f152
  • Milović, Miloš D. (1)
Projects

Author's Bibliography

Crystal Structure and Electrical Properties of Ruthenium-Substituted Calcium Copper Titanate

Veselinović, Ljiljana; Mitrić, Miodrag; Mančić, Lidija; Jardim, Paula M.; Škapin, Srečo Davor; Cvjetićanin, Nikola; Milović, Miloš D.; Marković, Smilja

(2022)

TY  - JOUR
AU  - Veselinović, Ljiljana
AU  - Mitrić, Miodrag
AU  - Mančić, Lidija
AU  - Jardim, Paula M.
AU  - Škapin, Srečo Davor
AU  - Cvjetićanin, Nikola
AU  - Milović, Miloš D.
AU  - Marković, Smilja
PY  - 2022
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/12382
AB  - This paper reports a detailed study of crystal structure and dielectric properties of ruthenium-substituted calcium-copper titanates (CaCu3Ti4−xRuxO12, CCTRO). A series of three samples with different stoichiometry was prepared: CaCu3Ti4−xRuxO12, x = 0, 1 and 4, abbreviated as CCTO, CCT3RO and CCRO, respectively. A detailed structural analysis of CCTRO samples was done by the Rietveld refinement of XRPD data. The results show that, regardless of whether Ti4+ or Ru4+ ions are placed in B crystallographic position in AA’3B4O12 (CaCu3Ti4−xRuxO12) unit cell, the crystal structure remains cubic with Im3¯ symmetry. Slight increases in the unit cell parameters, cell volume and interatomic distances indicate that Ru4+ ions with larger ionic radii (0.62 Å) than Ti4+ (0.605 Å) are incorporated in the CaCu3Ti4−xRuxO12 crystal lattice. The structural investigations were confirmed using TEM, HRTEM and ADF/STEM analyses, including EDXS elemental mapping. The effect of Ru atoms share in CaCu3Ti4−xRuxO12 samples on their electrical properties was determined by impedance and dielectric measurements. Results of dielectric measurements indicate that one atom of ruthenium per CaCu3Ti4−xRuxO12 unit cell transforms dielectric CCTO into conductive CCT3RO while preserving cubic crystal structure. Our findings about CCTO and CCT3RO ceramics promote them as ideal tandem to overcome the problem of stress on dielectric-electrode interfaces in capacitors.
T2  - Materials
T1  - Crystal Structure and Electrical Properties of Ruthenium-Substituted Calcium Copper Titanate
VL  - 15
IS  - 23
SP  - 8500
SP  - 8500
DO  - 10.3390/ma15238500
ER  - 
@article{
author = "Veselinović, Ljiljana and Mitrić, Miodrag and Mančić, Lidija and Jardim, Paula M. and Škapin, Srečo Davor and Cvjetićanin, Nikola and Milović, Miloš D. and Marković, Smilja",
year = "2022",
abstract = "This paper reports a detailed study of crystal structure and dielectric properties of ruthenium-substituted calcium-copper titanates (CaCu3Ti4−xRuxO12, CCTRO). A series of three samples with different stoichiometry was prepared: CaCu3Ti4−xRuxO12, x = 0, 1 and 4, abbreviated as CCTO, CCT3RO and CCRO, respectively. A detailed structural analysis of CCTRO samples was done by the Rietveld refinement of XRPD data. The results show that, regardless of whether Ti4+ or Ru4+ ions are placed in B crystallographic position in AA’3B4O12 (CaCu3Ti4−xRuxO12) unit cell, the crystal structure remains cubic with Im3¯ symmetry. Slight increases in the unit cell parameters, cell volume and interatomic distances indicate that Ru4+ ions with larger ionic radii (0.62 Å) than Ti4+ (0.605 Å) are incorporated in the CaCu3Ti4−xRuxO12 crystal lattice. The structural investigations were confirmed using TEM, HRTEM and ADF/STEM analyses, including EDXS elemental mapping. The effect of Ru atoms share in CaCu3Ti4−xRuxO12 samples on their electrical properties was determined by impedance and dielectric measurements. Results of dielectric measurements indicate that one atom of ruthenium per CaCu3Ti4−xRuxO12 unit cell transforms dielectric CCTO into conductive CCT3RO while preserving cubic crystal structure. Our findings about CCTO and CCT3RO ceramics promote them as ideal tandem to overcome the problem of stress on dielectric-electrode interfaces in capacitors.",
journal = "Materials",
title = "Crystal Structure and Electrical Properties of Ruthenium-Substituted Calcium Copper Titanate",
volume = "15",
number = "23",
pages = "8500-8500",
doi = "10.3390/ma15238500"
}
Veselinović, L., Mitrić, M., Mančić, L., Jardim, P. M., Škapin, S. D., Cvjetićanin, N., Milović, M. D.,& Marković, S.. (2022). Crystal Structure and Electrical Properties of Ruthenium-Substituted Calcium Copper Titanate. in Materials, 15(23), 8500.
https://doi.org/10.3390/ma15238500
Veselinović L, Mitrić M, Mančić L, Jardim PM, Škapin SD, Cvjetićanin N, Milović MD, Marković S. Crystal Structure and Electrical Properties of Ruthenium-Substituted Calcium Copper Titanate. in Materials. 2022;15(23):8500.
doi:10.3390/ma15238500 .
Veselinović, Ljiljana, Mitrić, Miodrag, Mančić, Lidija, Jardim, Paula M., Škapin, Srečo Davor, Cvjetićanin, Nikola, Milović, Miloš D., Marković, Smilja, "Crystal Structure and Electrical Properties of Ruthenium-Substituted Calcium Copper Titanate" in Materials, 15, no. 23 (2022):8500,
https://doi.org/10.3390/ma15238500 . .