Fecht, Hans-Jörg

Link to this page

Authority KeyName Variants
535371aa-6ded-4b3d-adb5-129859840fd8
  • Fecht, Hans-Jörg (1)
Projects
No records found.

Author's Bibliography

Graph Theory Approach in Synthetized Diamonds Electrophysical Parameters Defining

Ranđelović, Branislav; Mitić, Vojislav V.; Ribar, Srđan; Čebela, Maria; Mohr, Markus; Fecht, Hans-Jörg; Vlahović, Branislav

(2023)

TY  - CHAP
AU  - Ranđelović, Branislav
AU  - Mitić, Vojislav V.
AU  - Ribar, Srđan
AU  - Čebela, Maria
AU  - Mohr, Markus
AU  - Fecht, Hans-Jörg
AU  - Vlahović, Branislav
PY  - 2023
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/10593
AB  - There is an important novelty in biomaterials by innovative potential based on (ultra)nanocrystalline diamonds, what is almost the new result in scientific world, from the Institute of Functional Nanosystems, from Ulm University. The nanosynthetized diamonds are very new frontier application from the area biomedicine. From the other side, there is evident biocompatibility of the diamond layers, selectively improved by biomimetic 3D patterns structuring. From this point of view, graph theory approach is very inspirable new idea, already applied in some other systems, within material sciences, and electronic ceramics. By graphs, we already confirmed, also the first time in material sciences, that we can easily define the parameters values on the microstructure level between the structure constituencies grains and pores. So, now we originally apply all of this on the synthetized diamond structures. This novelty, graph applications, has the great importance in getting the additional ideas and directions for phenomena analysis of electrical and thermal conductivity grow, while electroconductivity goes down and opposite, better understanding. We already have done some analysis in this field by fractal nature approach, but here we add new methods based on very original graph theory.
T2  - Bioceramics, Biomimetic and Other Compatible Materials Features for Medical Applications
T1  - Graph Theory Approach in Synthetized Diamonds Electrophysical Parameters Defining
SP  - 345
EP  - 358
DO  - 10.1007/978-3-031-17269-4_17
ER  - 
@inbook{
author = "Ranđelović, Branislav and Mitić, Vojislav V. and Ribar, Srđan and Čebela, Maria and Mohr, Markus and Fecht, Hans-Jörg and Vlahović, Branislav",
year = "2023",
abstract = "There is an important novelty in biomaterials by innovative potential based on (ultra)nanocrystalline diamonds, what is almost the new result in scientific world, from the Institute of Functional Nanosystems, from Ulm University. The nanosynthetized diamonds are very new frontier application from the area biomedicine. From the other side, there is evident biocompatibility of the diamond layers, selectively improved by biomimetic 3D patterns structuring. From this point of view, graph theory approach is very inspirable new idea, already applied in some other systems, within material sciences, and electronic ceramics. By graphs, we already confirmed, also the first time in material sciences, that we can easily define the parameters values on the microstructure level between the structure constituencies grains and pores. So, now we originally apply all of this on the synthetized diamond structures. This novelty, graph applications, has the great importance in getting the additional ideas and directions for phenomena analysis of electrical and thermal conductivity grow, while electroconductivity goes down and opposite, better understanding. We already have done some analysis in this field by fractal nature approach, but here we add new methods based on very original graph theory.",
journal = "Bioceramics, Biomimetic and Other Compatible Materials Features for Medical Applications",
booktitle = "Graph Theory Approach in Synthetized Diamonds Electrophysical Parameters Defining",
pages = "345-358",
doi = "10.1007/978-3-031-17269-4_17"
}
Ranđelović, B., Mitić, V. V., Ribar, S., Čebela, M., Mohr, M., Fecht, H.,& Vlahović, B.. (2023). Graph Theory Approach in Synthetized Diamonds Electrophysical Parameters Defining. in Bioceramics, Biomimetic and Other Compatible Materials Features for Medical Applications, 345-358.
https://doi.org/10.1007/978-3-031-17269-4_17
Ranđelović B, Mitić VV, Ribar S, Čebela M, Mohr M, Fecht H, Vlahović B. Graph Theory Approach in Synthetized Diamonds Electrophysical Parameters Defining. in Bioceramics, Biomimetic and Other Compatible Materials Features for Medical Applications. 2023;:345-358.
doi:10.1007/978-3-031-17269-4_17 .
Ranđelović, Branislav, Mitić, Vojislav V., Ribar, Srđan, Čebela, Maria, Mohr, Markus, Fecht, Hans-Jörg, Vlahović, Branislav, "Graph Theory Approach in Synthetized Diamonds Electrophysical Parameters Defining" in Bioceramics, Biomimetic and Other Compatible Materials Features for Medical Applications (2023):345-358,
https://doi.org/10.1007/978-3-031-17269-4_17 . .