Ristić, Biljana

Link to this page

Authority KeyName Variants
5a77ac1f-3fed-4203-9615-9adabef84037
  • Ristić, Biljana (1)
Projects

Author's Bibliography

c-Jun N-terminal kinase-dependent apoptotic photocytotoxicity of solvent exchange-prepared curcumin nanoparticles

Paunović, Verica G.; Ristić, Biljana; Marković, Zoran M.; Todorović-Marković, Biljana; Kosić, Milica; Prekodravac, Jovana; Kravić-Stevović, Tamara K.; Martinović, Tamara; Mičušik, Matej; Špitalsky, Zdenko; Trajković, Vladimir S.; Harhaji-Trajković, Ljubica M.

(Springer, 2016)

TY  - JOUR
AU  - Paunović, Verica G.
AU  - Ristić, Biljana
AU  - Marković, Zoran M.
AU  - Todorović-Marković, Biljana
AU  - Kosić, Milica
AU  - Prekodravac, Jovana
AU  - Kravić-Stevović, Tamara K.
AU  - Martinović, Tamara
AU  - Mičušik, Matej
AU  - Špitalsky, Zdenko
AU  - Trajković, Vladimir S.
AU  - Harhaji-Trajković, Ljubica M.
PY  - 2016
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/1084
AB  - Indian spice curcumin is known for its anticancer properties, but the anticancer mechanisms of nanoparticulate curcumin have not been completely elucidated. We here investigated the in vitro anticancer effect of blue light (470 nm, 1 W)-irradiated curcumin nanoparticles prepared by tetrahydrofuran/water solvent exchange, using U251 glioma, B16 melanoma, and H460 lung cancer cells as targets. The size of curcumin nanocrystals was approximately 250 nm, while photoexcitation induced their oxidation and partial agglomeration. Although cell membrane in the absence of light was almost impermeable to curcumin nanoparticles, photoexcitation stimulated their internalization. While irradiation with blue light (1-8 min) or nanocurcumin (1.25-10 mu g/ml) alone was only marginally toxic to tumor cells, photoexcited nanocurcumin displayed a significant cytotoxicity depending both on the irradiation time and nanocurcumin concentration. Photoexcited nanocurcumin induced phosphorylation of cJun N-terminal kinase (JNK), mitochondrial depolarization, caspase-3 activation, and cleavage of poly (ADP-ribose) polymerase, indicating apoptotic cell death. Accordingly, pharmacologial inhibition of JNK and caspase activity rescued cancer cells from photoexcited nanocurcumin. On the other hand, antioxidant treatment did not reduce photocytotoxicity of nanocurcumin, arguing against the involvement of oxidative stress. By demonstrating the ability of photoexcited nanocurcumin to induce oxidative-stress independent, JNK-and caspase-dependent apoptosis, our results support its further investigation in cancer therapy.
PB  - Springer
T2  - Biomedical Microdevices
T1  - c-Jun N-terminal kinase-dependent apoptotic photocytotoxicity of solvent exchange-prepared curcumin nanoparticles
VL  - 18
IS  - 2
DO  - 10.1007/s10544-016-0062-2
ER  - 
@article{
author = "Paunović, Verica G. and Ristić, Biljana and Marković, Zoran M. and Todorović-Marković, Biljana and Kosić, Milica and Prekodravac, Jovana and Kravić-Stevović, Tamara K. and Martinović, Tamara and Mičušik, Matej and Špitalsky, Zdenko and Trajković, Vladimir S. and Harhaji-Trajković, Ljubica M.",
year = "2016",
abstract = "Indian spice curcumin is known for its anticancer properties, but the anticancer mechanisms of nanoparticulate curcumin have not been completely elucidated. We here investigated the in vitro anticancer effect of blue light (470 nm, 1 W)-irradiated curcumin nanoparticles prepared by tetrahydrofuran/water solvent exchange, using U251 glioma, B16 melanoma, and H460 lung cancer cells as targets. The size of curcumin nanocrystals was approximately 250 nm, while photoexcitation induced their oxidation and partial agglomeration. Although cell membrane in the absence of light was almost impermeable to curcumin nanoparticles, photoexcitation stimulated their internalization. While irradiation with blue light (1-8 min) or nanocurcumin (1.25-10 mu g/ml) alone was only marginally toxic to tumor cells, photoexcited nanocurcumin displayed a significant cytotoxicity depending both on the irradiation time and nanocurcumin concentration. Photoexcited nanocurcumin induced phosphorylation of cJun N-terminal kinase (JNK), mitochondrial depolarization, caspase-3 activation, and cleavage of poly (ADP-ribose) polymerase, indicating apoptotic cell death. Accordingly, pharmacologial inhibition of JNK and caspase activity rescued cancer cells from photoexcited nanocurcumin. On the other hand, antioxidant treatment did not reduce photocytotoxicity of nanocurcumin, arguing against the involvement of oxidative stress. By demonstrating the ability of photoexcited nanocurcumin to induce oxidative-stress independent, JNK-and caspase-dependent apoptosis, our results support its further investigation in cancer therapy.",
publisher = "Springer",
journal = "Biomedical Microdevices",
title = "c-Jun N-terminal kinase-dependent apoptotic photocytotoxicity of solvent exchange-prepared curcumin nanoparticles",
volume = "18",
number = "2",
doi = "10.1007/s10544-016-0062-2"
}
Paunović, V. G., Ristić, B., Marković, Z. M., Todorović-Marković, B., Kosić, M., Prekodravac, J., Kravić-Stevović, T. K., Martinović, T., Mičušik, M., Špitalsky, Z., Trajković, V. S.,& Harhaji-Trajković, L. M.. (2016). c-Jun N-terminal kinase-dependent apoptotic photocytotoxicity of solvent exchange-prepared curcumin nanoparticles. in Biomedical Microdevices
Springer., 18(2).
https://doi.org/10.1007/s10544-016-0062-2
Paunović VG, Ristić B, Marković ZM, Todorović-Marković B, Kosić M, Prekodravac J, Kravić-Stevović TK, Martinović T, Mičušik M, Špitalsky Z, Trajković VS, Harhaji-Trajković LM. c-Jun N-terminal kinase-dependent apoptotic photocytotoxicity of solvent exchange-prepared curcumin nanoparticles. in Biomedical Microdevices. 2016;18(2).
doi:10.1007/s10544-016-0062-2 .
Paunović, Verica G., Ristić, Biljana, Marković, Zoran M., Todorović-Marković, Biljana, Kosić, Milica, Prekodravac, Jovana, Kravić-Stevović, Tamara K., Martinović, Tamara, Mičušik, Matej, Špitalsky, Zdenko, Trajković, Vladimir S., Harhaji-Trajković, Ljubica M., "c-Jun N-terminal kinase-dependent apoptotic photocytotoxicity of solvent exchange-prepared curcumin nanoparticles" in Biomedical Microdevices, 18, no. 2 (2016),
https://doi.org/10.1007/s10544-016-0062-2 . .
1
14
10
14