Besu Žižak, Irina

Link to this page

Authority KeyName Variants
874255bc-d72b-46e8-9320-4ba12c372cc6
  • Besu Žižak, Irina (2)
Projects

Author's Bibliography

Self-Heating Flower-like Nanoconstructs with Limited Incorporation of Yttrium in Maghemite: Effect of Chemical Composition on Heating Efficiency, Cytotoxicity and Genotoxicity

Ognjanović, Miloš; Jaćimović, Željko; Kosović-Perutović, Milica; Besu Žižak, Irina; Stanojković, Tatjana; Žižak, Željko; Dojčinović, Biljana; Stanković, Dalibor M.; Antić, Bratislav

(2023)

TY  - JOUR
AU  - Ognjanović, Miloš
AU  - Jaćimović, Željko
AU  - Kosović-Perutović, Milica
AU  - Besu Žižak, Irina
AU  - Stanojković, Tatjana
AU  - Žižak, Željko
AU  - Dojčinović, Biljana
AU  - Stanković, Dalibor M.
AU  - Antić, Bratislav
PY  - 2023
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/10733
AB  - Partial cation substitution can significantly change the physical properties of parent compounds. By controlling the chemical composition and knowing the mutual relationship between composition and physical properties, it is possible to tailor the properties of materials to those that are superior for desired technological application. Using the polyol synthesis procedure, a series of yttrium-substituted iron oxide nanoconstructs, γ-Fe2−xYxO3 (YIONs), was prepared. It was found that Y3+ could substitute Fe3+ in the crystal structures of maghemite (γ-Fe2O3) up to a limited concentration of ~1.5% (γ-Fe1.969Y0.031O3). Analysis of TEM micrographs showed that crystallites or particles were aggregated in flower-like structures with diameters from 53.7 ± 6.2 nm to 97.3 ± 37.0 nm, depending on yttrium concentration. To be investigated for potential applications as magnetic hyperthermia agents, YIONs were tested twice: their heating efficiency was tested and their toxicity was investigated. The Specific Absorption Rate (SAR) values were in the range of 32.6 W/g to 513 W/g and significantly decreased with increased yttrium concentration in the samples. Intrinsic loss power (ILP) for γ-Fe2O3 and γ-Fe1.995Y0.005O3 were ~8–9 nH·m2/Kg, which pointed to their excellent heating efficiency. IC50 values of investigated samples against cancer (HeLa) and normal (MRC-5) cells decreased with increased yttrium concentration and were higher than ~300 μg/mL. The samples of γ-Fe2−xYxO3 did not show a genotoxic effect. The results of toxicity studies show that YIONs are suitable for further in vitro/in vivo studies toward to their potential medical applications, while results of heat generation point to their potential use in magnetic hyperthermia cancer treatment or use as self-heating systems for other technological applications such as catalysis.
T2  - Nanomaterials
T1  - Self-Heating Flower-like Nanoconstructs with Limited Incorporation of Yttrium in Maghemite: Effect of Chemical Composition on Heating Efficiency, Cytotoxicity and Genotoxicity
VL  - 13
IS  - 5
SP  - 870
DO  - 10.3390/nano13050870
ER  - 
@article{
author = "Ognjanović, Miloš and Jaćimović, Željko and Kosović-Perutović, Milica and Besu Žižak, Irina and Stanojković, Tatjana and Žižak, Željko and Dojčinović, Biljana and Stanković, Dalibor M. and Antić, Bratislav",
year = "2023",
abstract = "Partial cation substitution can significantly change the physical properties of parent compounds. By controlling the chemical composition and knowing the mutual relationship between composition and physical properties, it is possible to tailor the properties of materials to those that are superior for desired technological application. Using the polyol synthesis procedure, a series of yttrium-substituted iron oxide nanoconstructs, γ-Fe2−xYxO3 (YIONs), was prepared. It was found that Y3+ could substitute Fe3+ in the crystal structures of maghemite (γ-Fe2O3) up to a limited concentration of ~1.5% (γ-Fe1.969Y0.031O3). Analysis of TEM micrographs showed that crystallites or particles were aggregated in flower-like structures with diameters from 53.7 ± 6.2 nm to 97.3 ± 37.0 nm, depending on yttrium concentration. To be investigated for potential applications as magnetic hyperthermia agents, YIONs were tested twice: their heating efficiency was tested and their toxicity was investigated. The Specific Absorption Rate (SAR) values were in the range of 32.6 W/g to 513 W/g and significantly decreased with increased yttrium concentration in the samples. Intrinsic loss power (ILP) for γ-Fe2O3 and γ-Fe1.995Y0.005O3 were ~8–9 nH·m2/Kg, which pointed to their excellent heating efficiency. IC50 values of investigated samples against cancer (HeLa) and normal (MRC-5) cells decreased with increased yttrium concentration and were higher than ~300 μg/mL. The samples of γ-Fe2−xYxO3 did not show a genotoxic effect. The results of toxicity studies show that YIONs are suitable for further in vitro/in vivo studies toward to their potential medical applications, while results of heat generation point to their potential use in magnetic hyperthermia cancer treatment or use as self-heating systems for other technological applications such as catalysis.",
journal = "Nanomaterials",
title = "Self-Heating Flower-like Nanoconstructs with Limited Incorporation of Yttrium in Maghemite: Effect of Chemical Composition on Heating Efficiency, Cytotoxicity and Genotoxicity",
volume = "13",
number = "5",
pages = "870",
doi = "10.3390/nano13050870"
}
Ognjanović, M., Jaćimović, Ž., Kosović-Perutović, M., Besu Žižak, I., Stanojković, T., Žižak, Ž., Dojčinović, B., Stanković, D. M.,& Antić, B.. (2023). Self-Heating Flower-like Nanoconstructs with Limited Incorporation of Yttrium in Maghemite: Effect of Chemical Composition on Heating Efficiency, Cytotoxicity and Genotoxicity. in Nanomaterials, 13(5), 870.
https://doi.org/10.3390/nano13050870
Ognjanović M, Jaćimović Ž, Kosović-Perutović M, Besu Žižak I, Stanojković T, Žižak Ž, Dojčinović B, Stanković DM, Antić B. Self-Heating Flower-like Nanoconstructs with Limited Incorporation of Yttrium in Maghemite: Effect of Chemical Composition on Heating Efficiency, Cytotoxicity and Genotoxicity. in Nanomaterials. 2023;13(5):870.
doi:10.3390/nano13050870 .
Ognjanović, Miloš, Jaćimović, Željko, Kosović-Perutović, Milica, Besu Žižak, Irina, Stanojković, Tatjana, Žižak, Željko, Dojčinović, Biljana, Stanković, Dalibor M., Antić, Bratislav, "Self-Heating Flower-like Nanoconstructs with Limited Incorporation of Yttrium in Maghemite: Effect of Chemical Composition on Heating Efficiency, Cytotoxicity and Genotoxicity" in Nanomaterials, 13, no. 5 (2023):870,
https://doi.org/10.3390/nano13050870 . .

A new endodontic mixture based on calcium aluminate cement obtained by hydrothermal synthesis

Čolović, Božana M.; Janković, Ognjenka; Živković, Slavoljub; Žižak, Željko; Besu Žižak, Irina; Jokanović, Vukoman R.

(2019)

TY  - JOUR
AU  - Čolović, Božana M.
AU  - Janković, Ognjenka
AU  - Živković, Slavoljub
AU  - Žižak, Željko
AU  - Besu Žižak, Irina
AU  - Jokanović, Vukoman R.
PY  - 2019
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/8488
AB  - The synthesis of a new endodontic mixture based on calcium aluminate cement is reported. Physico-chemical and mechanical properties of the mixture were investigated before and after various hydration periods. Phase analysis of the mixture was performed using X-ray diffraction (XRD), while morphological analysis was performed by scanning electron microscopy (SEM) equipped with EDS which revealed elemental composition of the mixture sample. Investigations of mechanical properties showed that this new endodontic mixture possessed good mechanical properties (compressive strength after 28 days aging was 94 MPa) and relatively short setting time (2 h). Additionally, cytotoxicity of the mixture was investigated by MTT assay, while genotoxicity was investigated by Comet assay, using MRC-5 cell line. The obtained results make this material very promising for potential application in dental practice. © 2019 Elsevier Ltd and Techna Group S.r.l.
T2  - Ceramics International
T1  - A new endodontic mixture based on calcium aluminate cement obtained by hydrothermal synthesis
VL  - 45
IS  - 7
SP  - 9211
EP  - 9218
DO  - 10.1016/j.ceramint.2019.01.266
ER  - 
@article{
author = "Čolović, Božana M. and Janković, Ognjenka and Živković, Slavoljub and Žižak, Željko and Besu Žižak, Irina and Jokanović, Vukoman R.",
year = "2019",
abstract = "The synthesis of a new endodontic mixture based on calcium aluminate cement is reported. Physico-chemical and mechanical properties of the mixture were investigated before and after various hydration periods. Phase analysis of the mixture was performed using X-ray diffraction (XRD), while morphological analysis was performed by scanning electron microscopy (SEM) equipped with EDS which revealed elemental composition of the mixture sample. Investigations of mechanical properties showed that this new endodontic mixture possessed good mechanical properties (compressive strength after 28 days aging was 94 MPa) and relatively short setting time (2 h). Additionally, cytotoxicity of the mixture was investigated by MTT assay, while genotoxicity was investigated by Comet assay, using MRC-5 cell line. The obtained results make this material very promising for potential application in dental practice. © 2019 Elsevier Ltd and Techna Group S.r.l.",
journal = "Ceramics International",
title = "A new endodontic mixture based on calcium aluminate cement obtained by hydrothermal synthesis",
volume = "45",
number = "7",
pages = "9211-9218",
doi = "10.1016/j.ceramint.2019.01.266"
}
Čolović, B. M., Janković, O., Živković, S., Žižak, Ž., Besu Žižak, I.,& Jokanović, V. R.. (2019). A new endodontic mixture based on calcium aluminate cement obtained by hydrothermal synthesis. in Ceramics International, 45(7), 9211-9218.
https://doi.org/10.1016/j.ceramint.2019.01.266
Čolović BM, Janković O, Živković S, Žižak Ž, Besu Žižak I, Jokanović VR. A new endodontic mixture based on calcium aluminate cement obtained by hydrothermal synthesis. in Ceramics International. 2019;45(7):9211-9218.
doi:10.1016/j.ceramint.2019.01.266 .
Čolović, Božana M., Janković, Ognjenka, Živković, Slavoljub, Žižak, Željko, Besu Žižak, Irina, Jokanović, Vukoman R., "A new endodontic mixture based on calcium aluminate cement obtained by hydrothermal synthesis" in Ceramics International, 45, no. 7 (2019):9211-9218,
https://doi.org/10.1016/j.ceramint.2019.01.266 . .
6
2
3