Kurko, Sandra V.

Link to this page

Authority KeyName Variants
orcid::0000-0002-2771-771X
  • Kurko, Sandra V. (40)
  • Kurko, Sandra (9)
  • Kumrić, Sandra V. (4)
Projects
Synthesis, processing and characterization of nanostructured materials for application in the field of energy, mechanical engineering, environmental protection and biomedicine Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200017 (University of Belgrade, Institute of Nuclear Sciences 'Vinča', Belgrade-Vinča)
China Education Association for International Exchange [202006] Fundamental Research Funds for the Central Universities [xzd012020062]
Investigation of intermetallics and semiconductors and possible application in renewable energy sources Optoelectronics nanodimension systems - the rout towards applications
Physics and Chemistry with Ion Beams Nanostructured multifunctional materials and nanocomposites
Istraživanja lokalnih struktura i klastera u čvrstom stanju Strukturne, dinamičke i spektroskopske karakteristike intermetalika i poluprovodnika
Ministry of Education, Science and Technological Development of the Republic of Serbia National Key Research and Development Program of China [2018YFE0202000]
National Natural Science Foundation of China [52176203, 52050027] National Natural Science Foundation of China (NSFC) [21736008]
Natural Science Foundation of Shaanxi Province [2020JM-014] NSFC [52050027]
Serbia-Slovenia bilateral research project [BIRS/16/17051] Slovenian Research Agency [P10125]
Acciones Integradas program of Spanish MICINN [IB2010SE-00191], Spanish MICINN [MAT2011-22780] China-Central Eastern European Countries Higher Education Institutions Consortium [202006]
China Education Association for Inter-national Exchange [202006] COST Action [MP 1103]
Croatian Science Foundation [PKP-2016-06-4480] Danube Rectors’ Conference Initiative fund and the Slovenian Research Agency through the research core funding [No. P2-041]
Environmental Protection and Energy Efficiency Fund of the Republic of Croatia Fundamental Research Funds for the Central Universities [XJ2017023]
Fundamental Research Funds for the Central Universities [xzd012020062] Hong Kong SAR [PolyU 152064/18E]
Hong Kong SAR [PolyU 152214/17E] Hong Kong Scholar [XJ2017023]

Author's Bibliography

Improvement of MoS2 electrocatalytic activity for hydrogen evolution reaction by ion irradiation

Rmuš Mravik, Jelena; Milanović, Igor; Milošević Govedarović, Sanja; Mraković, Ana; Korneeva, Ekaterina; Stojković Simatović, Ivana; Kurko, Sandra

(2023)

TY  - JOUR
AU  - Rmuš Mravik, Jelena
AU  - Milanović, Igor
AU  - Milošević Govedarović, Sanja
AU  - Mraković, Ana
AU  - Korneeva, Ekaterina
AU  - Stojković Simatović, Ivana
AU  - Kurko, Sandra
PY  - 2023
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/11187
AB  - Molybdenum disulfide (MoS2) is considered promising noble metal-free catalysts for the hydrogen evolution reaction (HER). Whereas the bulk MoS2 does not exhibit significant activity, the catalytic properties of various nanostructures are noticeable. Therefore we synthesized flower-like molybdenum disulfide with the simple, one-step hydrothermal method. To enhance the catalytic activity of the material, low-energy ion irradiation is employed. As-prepared MoS2 is irradiated with hydrogen and carbon ions of various energies (20–40 keV) and fluences (1014-1017 ion/cm2). Our results show that irradiation has beneficial influence on MoS2 catalytic activity toward hydrogen evolution reaction. By producing morphological changes and defects in the structure, ion irradiation also impacts the conductivity of the material, which shows predominant effect on hydrogen evolution. The increase of current density at an overpotential of 300 mV with hydrogen ion irradiation is even 6 times higher than for as-synthesized catalyst.
T2  - International Journal of Hydrogen Energy
T1  - Improvement of MoS2 electrocatalytic activity for hydrogen evolution reaction by ion irradiation
VL  - 48
IS  - 98
SP  - 38676
EP  - 38685
DO  - 10.1016/j.ijhydene.2023.06.178
ER  - 
@article{
author = "Rmuš Mravik, Jelena and Milanović, Igor and Milošević Govedarović, Sanja and Mraković, Ana and Korneeva, Ekaterina and Stojković Simatović, Ivana and Kurko, Sandra",
year = "2023",
abstract = "Molybdenum disulfide (MoS2) is considered promising noble metal-free catalysts for the hydrogen evolution reaction (HER). Whereas the bulk MoS2 does not exhibit significant activity, the catalytic properties of various nanostructures are noticeable. Therefore we synthesized flower-like molybdenum disulfide with the simple, one-step hydrothermal method. To enhance the catalytic activity of the material, low-energy ion irradiation is employed. As-prepared MoS2 is irradiated with hydrogen and carbon ions of various energies (20–40 keV) and fluences (1014-1017 ion/cm2). Our results show that irradiation has beneficial influence on MoS2 catalytic activity toward hydrogen evolution reaction. By producing morphological changes and defects in the structure, ion irradiation also impacts the conductivity of the material, which shows predominant effect on hydrogen evolution. The increase of current density at an overpotential of 300 mV with hydrogen ion irradiation is even 6 times higher than for as-synthesized catalyst.",
journal = "International Journal of Hydrogen Energy",
title = "Improvement of MoS2 electrocatalytic activity for hydrogen evolution reaction by ion irradiation",
volume = "48",
number = "98",
pages = "38676-38685",
doi = "10.1016/j.ijhydene.2023.06.178"
}
Rmuš Mravik, J., Milanović, I., Milošević Govedarović, S., Mraković, A., Korneeva, E., Stojković Simatović, I.,& Kurko, S.. (2023). Improvement of MoS2 electrocatalytic activity for hydrogen evolution reaction by ion irradiation. in International Journal of Hydrogen Energy, 48(98), 38676-38685.
https://doi.org/10.1016/j.ijhydene.2023.06.178
Rmuš Mravik J, Milanović I, Milošević Govedarović S, Mraković A, Korneeva E, Stojković Simatović I, Kurko S. Improvement of MoS2 electrocatalytic activity for hydrogen evolution reaction by ion irradiation. in International Journal of Hydrogen Energy. 2023;48(98):38676-38685.
doi:10.1016/j.ijhydene.2023.06.178 .
Rmuš Mravik, Jelena, Milanović, Igor, Milošević Govedarović, Sanja, Mraković, Ana, Korneeva, Ekaterina, Stojković Simatović, Ivana, Kurko, Sandra, "Improvement of MoS2 electrocatalytic activity for hydrogen evolution reaction by ion irradiation" in International Journal of Hydrogen Energy, 48, no. 98 (2023):38676-38685,
https://doi.org/10.1016/j.ijhydene.2023.06.178 . .
2

Modification of MoS2/GO composites with ball milling and thermal treatment for catalytic application

Rmuš Mravik, Jelena; Rajić, Vladimir; Belec, Blaž; Mravik, Željko; Jovanović, Zoran; Stojković Simatović, Ivana; Kurko, Sandra

(Belgrade : Materials Research Society of Serbia, 2023)

TY  - CONF
AU  - Rmuš Mravik, Jelena
AU  - Rajić, Vladimir
AU  - Belec, Blaž
AU  - Mravik, Željko
AU  - Jovanović, Zoran
AU  - Stojković Simatović, Ivana
AU  - Kurko, Sandra
PY  - 2023
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/11657
AB  - Hydrogen production can be outlined as an important aspect of the modern economy. In order to be more clean and renewable, green hydrogen is most desirable, where expensive catalysts for water electrolysis are usually used. As alternative, transition metal dichalcogenides represent potentially good material, with room for further improvement. Molybdenum disulfide is a stable material with a reasonable amount of it available. The properties of the material can be easily tuned in order to increase its charge transport and create more active sites. The incorporation of defects and additives can be beneficial for the catalytic activity of MoS2. Graphene oxide (GO) is carbon nanomaterial, with a large surface area and when reduced, it could be used as a conductive additive. Furthermore, ball milling is a known low-cost, simple and scalable method to introduce defects in the structure. Therefore, combining these two approaches should result in a material with enhanced catalytic activity for hydrogen evolution reaction. The molybdenum disulfide was prepared by easy one-step hydrothermal synthesis. The graphene oxide was first obtained by modified Hummers’ method and after that reduced by thermal treatment at 200 °C. Thus prepared constituents are combined in different mass ratios and composites were obtained by milling with a high-energy ball mill. The various milling parameters were optimized. The prepared composites were analyzed as catalysts for hydrogen evolution reaction in an acidic solution.
PB  - Belgrade : Materials Research Society of Serbia
C3  - YUCOMAT 2023 : 24th Annual Conference YUCOMAT 2023 : programme and the book of abstracts; September 4-8, 2023; Herceg Novi, Montenegro
T1  - Modification of MoS2/GO composites with ball milling and thermal treatment for catalytic application
SP  - 156
UR  - https://hdl.handle.net/21.15107/rcub_vinar_11657
ER  - 
@conference{
author = "Rmuš Mravik, Jelena and Rajić, Vladimir and Belec, Blaž and Mravik, Željko and Jovanović, Zoran and Stojković Simatović, Ivana and Kurko, Sandra",
year = "2023",
abstract = "Hydrogen production can be outlined as an important aspect of the modern economy. In order to be more clean and renewable, green hydrogen is most desirable, where expensive catalysts for water electrolysis are usually used. As alternative, transition metal dichalcogenides represent potentially good material, with room for further improvement. Molybdenum disulfide is a stable material with a reasonable amount of it available. The properties of the material can be easily tuned in order to increase its charge transport and create more active sites. The incorporation of defects and additives can be beneficial for the catalytic activity of MoS2. Graphene oxide (GO) is carbon nanomaterial, with a large surface area and when reduced, it could be used as a conductive additive. Furthermore, ball milling is a known low-cost, simple and scalable method to introduce defects in the structure. Therefore, combining these two approaches should result in a material with enhanced catalytic activity for hydrogen evolution reaction. The molybdenum disulfide was prepared by easy one-step hydrothermal synthesis. The graphene oxide was first obtained by modified Hummers’ method and after that reduced by thermal treatment at 200 °C. Thus prepared constituents are combined in different mass ratios and composites were obtained by milling with a high-energy ball mill. The various milling parameters were optimized. The prepared composites were analyzed as catalysts for hydrogen evolution reaction in an acidic solution.",
publisher = "Belgrade : Materials Research Society of Serbia",
journal = "YUCOMAT 2023 : 24th Annual Conference YUCOMAT 2023 : programme and the book of abstracts; September 4-8, 2023; Herceg Novi, Montenegro",
title = "Modification of MoS2/GO composites with ball milling and thermal treatment for catalytic application",
pages = "156",
url = "https://hdl.handle.net/21.15107/rcub_vinar_11657"
}
Rmuš Mravik, J., Rajić, V., Belec, B., Mravik, Ž., Jovanović, Z., Stojković Simatović, I.,& Kurko, S.. (2023). Modification of MoS2/GO composites with ball milling and thermal treatment for catalytic application. in YUCOMAT 2023 : 24th Annual Conference YUCOMAT 2023 : programme and the book of abstracts; September 4-8, 2023; Herceg Novi, Montenegro
Belgrade : Materials Research Society of Serbia., 156.
https://hdl.handle.net/21.15107/rcub_vinar_11657
Rmuš Mravik J, Rajić V, Belec B, Mravik Ž, Jovanović Z, Stojković Simatović I, Kurko S. Modification of MoS2/GO composites with ball milling and thermal treatment for catalytic application. in YUCOMAT 2023 : 24th Annual Conference YUCOMAT 2023 : programme and the book of abstracts; September 4-8, 2023; Herceg Novi, Montenegro. 2023;:156.
https://hdl.handle.net/21.15107/rcub_vinar_11657 .
Rmuš Mravik, Jelena, Rajić, Vladimir, Belec, Blaž, Mravik, Željko, Jovanović, Zoran, Stojković Simatović, Ivana, Kurko, Sandra, "Modification of MoS2/GO composites with ball milling and thermal treatment for catalytic application" in YUCOMAT 2023 : 24th Annual Conference YUCOMAT 2023 : programme and the book of abstracts; September 4-8, 2023; Herceg Novi, Montenegro (2023):156,
https://hdl.handle.net/21.15107/rcub_vinar_11657 .

The influence of defects on hydrogen sorption from Mg–V thin films

Pantić, Tijana; Paskaš Mamula, Bojana; Soderžnik, Žagar K.; Kurko, Sandra; Milanović, Igor; Novaković, Nikola; Šturm, S.; Drev, Sandra; Grbović-Novaković, Jasmina; Milošević Govedarović, Sanja S.

(2023)

TY  - JOUR
AU  - Pantić, Tijana
AU  - Paskaš Mamula, Bojana
AU  - Soderžnik, Žagar K.
AU  - Kurko, Sandra
AU  - Milanović, Igor
AU  - Novaković, Nikola
AU  - Šturm, S.
AU  - Drev, Sandra
AU  - Grbović-Novaković, Jasmina
AU  - Milošević Govedarović, Sanja S.
PY  - 2023
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/11029
AB  - In this paper hydrogen sorption properties of Mg–V multilayer thin films are studied. Thin films are synthesized by means of RF magnetron sputtering. Further modification of material is done using low energy H ion irradiation. The hydrogen sorption properties and kinetics are assessed using TOF-ERDA, in situ optical microscopy coupled with TDS, and TEM analysis. The results of TOF-ERDA indicate full hydrogenation of samples, although the presence of oxygen throughout the film is observed. It corresponds to the formation of MgO, also confirmed by EELS results with hydride plasmon peak hindered by MgO peak. Hydrogenation causes severe damage to the surface of the film and fragmentation of the V layer. TDS and optical analysis indicate lower desorption temperatures for thinner films. The desorption onset does not depend on defects concentration. The kinetic analysis further shows that the apparent activation energy for the thinner film is two times lower.
T2  - International Journal of Hydrogen Energy
T1  - The influence of defects on hydrogen sorption from Mg–V thin films
VL  - InPress
DO  - 10.1016/j.ijhydene.2023.04.079
ER  - 
@article{
author = "Pantić, Tijana and Paskaš Mamula, Bojana and Soderžnik, Žagar K. and Kurko, Sandra and Milanović, Igor and Novaković, Nikola and Šturm, S. and Drev, Sandra and Grbović-Novaković, Jasmina and Milošević Govedarović, Sanja S.",
year = "2023",
abstract = "In this paper hydrogen sorption properties of Mg–V multilayer thin films are studied. Thin films are synthesized by means of RF magnetron sputtering. Further modification of material is done using low energy H ion irradiation. The hydrogen sorption properties and kinetics are assessed using TOF-ERDA, in situ optical microscopy coupled with TDS, and TEM analysis. The results of TOF-ERDA indicate full hydrogenation of samples, although the presence of oxygen throughout the film is observed. It corresponds to the formation of MgO, also confirmed by EELS results with hydride plasmon peak hindered by MgO peak. Hydrogenation causes severe damage to the surface of the film and fragmentation of the V layer. TDS and optical analysis indicate lower desorption temperatures for thinner films. The desorption onset does not depend on defects concentration. The kinetic analysis further shows that the apparent activation energy for the thinner film is two times lower.",
journal = "International Journal of Hydrogen Energy",
title = "The influence of defects on hydrogen sorption from Mg–V thin films",
volume = "InPress",
doi = "10.1016/j.ijhydene.2023.04.079"
}
Pantić, T., Paskaš Mamula, B., Soderžnik, Ž. K., Kurko, S., Milanović, I., Novaković, N., Šturm, S., Drev, S., Grbović-Novaković, J.,& Milošević Govedarović, S. S.. (2023). The influence of defects on hydrogen sorption from Mg–V thin films. in International Journal of Hydrogen Energy, InPress.
https://doi.org/10.1016/j.ijhydene.2023.04.079
Pantić T, Paskaš Mamula B, Soderžnik ŽK, Kurko S, Milanović I, Novaković N, Šturm S, Drev S, Grbović-Novaković J, Milošević Govedarović SS. The influence of defects on hydrogen sorption from Mg–V thin films. in International Journal of Hydrogen Energy. 2023;InPress.
doi:10.1016/j.ijhydene.2023.04.079 .
Pantić, Tijana, Paskaš Mamula, Bojana, Soderžnik, Žagar K., Kurko, Sandra, Milanović, Igor, Novaković, Nikola, Šturm, S., Drev, Sandra, Grbović-Novaković, Jasmina, Milošević Govedarović, Sanja S., "The influence of defects on hydrogen sorption from Mg–V thin films" in International Journal of Hydrogen Energy, InPress (2023),
https://doi.org/10.1016/j.ijhydene.2023.04.079 . .

Composites of transition metal dichalcogenides and topological insulators as catalytic materials for HER

Rmuš, Jelena; Belec, Blaž; Milanović, Igor; Fanetti, Mattia; Gardonio, Sandra; Valant, Matjaž; Kurko, Sandra

(2023)

TY  - JOUR
AU  - Rmuš, Jelena
AU  - Belec, Blaž
AU  - Milanović, Igor
AU  - Fanetti, Mattia
AU  - Gardonio, Sandra
AU  - Valant, Matjaž
AU  - Kurko, Sandra
PY  - 2023
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/11096
AB  - To produce materials with enhanced catalytic activity toward hydrogen evolution reaction we combined MoS2 as transition metal dichalcogenide and Bi2Se3 as topological insulator. The composites were produced by three methods: mechanical milling, high power sonication and spin-coating. MoS2 and Bi2Se3 as precursors in composites preparation were synthesized by hydrothermal method. The structure and morphology of various composites were correlated with their electrochemical properties obtained by impedance spectroscopy, linear sweep and cyclic voltammetry. Mechanical milling provided composites with the most pronounced activity improvement as a result of the largest damage and amount of introduced defects into the materials structure. The potential required to achieve the current density of 10 mA/cm2 in these samples is lowered up to 50 mV compared to as-synthesized material. Bi2Se3 in composite materials promotes the electron transfer to MoS2 which leads to the decrease of charge transfer resistance by 25 Ω.
T2  - Journal of Energy Storage
T1  - Composites of transition metal dichalcogenides and topological insulators as catalytic materials for HER
VL  - 68
SP  - 107719
DO  - 10.1016/j.est.2023.107719
ER  - 
@article{
author = "Rmuš, Jelena and Belec, Blaž and Milanović, Igor and Fanetti, Mattia and Gardonio, Sandra and Valant, Matjaž and Kurko, Sandra",
year = "2023",
abstract = "To produce materials with enhanced catalytic activity toward hydrogen evolution reaction we combined MoS2 as transition metal dichalcogenide and Bi2Se3 as topological insulator. The composites were produced by three methods: mechanical milling, high power sonication and spin-coating. MoS2 and Bi2Se3 as precursors in composites preparation were synthesized by hydrothermal method. The structure and morphology of various composites were correlated with their electrochemical properties obtained by impedance spectroscopy, linear sweep and cyclic voltammetry. Mechanical milling provided composites with the most pronounced activity improvement as a result of the largest damage and amount of introduced defects into the materials structure. The potential required to achieve the current density of 10 mA/cm2 in these samples is lowered up to 50 mV compared to as-synthesized material. Bi2Se3 in composite materials promotes the electron transfer to MoS2 which leads to the decrease of charge transfer resistance by 25 Ω.",
journal = "Journal of Energy Storage",
title = "Composites of transition metal dichalcogenides and topological insulators as catalytic materials for HER",
volume = "68",
pages = "107719",
doi = "10.1016/j.est.2023.107719"
}
Rmuš, J., Belec, B., Milanović, I., Fanetti, M., Gardonio, S., Valant, M.,& Kurko, S.. (2023). Composites of transition metal dichalcogenides and topological insulators as catalytic materials for HER. in Journal of Energy Storage, 68, 107719.
https://doi.org/10.1016/j.est.2023.107719
Rmuš J, Belec B, Milanović I, Fanetti M, Gardonio S, Valant M, Kurko S. Composites of transition metal dichalcogenides and topological insulators as catalytic materials for HER. in Journal of Energy Storage. 2023;68:107719.
doi:10.1016/j.est.2023.107719 .
Rmuš, Jelena, Belec, Blaž, Milanović, Igor, Fanetti, Mattia, Gardonio, Sandra, Valant, Matjaž, Kurko, Sandra, "Composites of transition metal dichalcogenides and topological insulators as catalytic materials for HER" in Journal of Energy Storage, 68 (2023):107719,
https://doi.org/10.1016/j.est.2023.107719 . .
2
2
2

Effect of metalic and metal-oxide catalysts on LiAlH4 decomposition

Babić, Bojana; Prvulović, Milica; Rmuš, Jelena; Mitrović Rajić, Anđela; Milošević Govedarović, Sanja; Milanović, Igor; Kurko, Sandra

(Split : University of Split, 2022)

TY  - CONF
AU  - Babić, Bojana
AU  - Prvulović, Milica
AU  - Rmuš, Jelena
AU  - Mitrović Rajić, Anđela
AU  - Milošević Govedarović, Sanja
AU  - Milanović, Igor
AU  - Kurko, Sandra
PY  - 2022
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/12765
AB  - Metal and complex light hydrides are the best fitted materials for hydrogen storage within the concept of hydrogen based economy [1]. They meet the basic application requirements: low-cost, safety and they are environmentally friendly. Beside their benefits, as relatively stable compounds, these materials exhibit also some undesirable properties like sluggish kinetics and high temperature of hydrogen desorption. LiAlH4 has emerged as a potential material for solid-state hydrogen storage because of its high hydrogen gravimetric capacity (10.5 wt%). It decomposes in three steps, according to the reactions [2]: 3LiAlH4 → Li3AlH6 + 2Al + H2                             (R1) Li3AlH6 → 3LiH + Al + 3/2H2               (R2) 3LiH+3Al → 3LiAl + 3/2H2                              (R3) The temperature of the first reaction is between 150-175°C, of the second between 180-220°C and the third between 400420°C. The first two reactions (R1 and R2) are very important from the hydrogen storage point of view: (i) both take place at a reasonable low temperatures and (ii) overall sum of theirs gravimetric hydrogen capacity is 7.8 wt.%, so the reactions (R1) and (R2) are accessible for practical hydrogen storage. However, the slow dehydrogenation kinetics and irreversibility under moderate condition hinder its imminent application.  Particle refinement and catalyst or additive introduction by mechanical milling led to the significant improvement of LiAlH4 hydrogen storage properties [2].  However, during the milling process, the temperature in the milling chamber can significantly increase reaching the temperature of R1 or even R2 leading to the degradation of hydride, change in the hydrogen desorption mechanism (figure 1) and decrease in the hydrogen storage capacity of material [3]. So, in this work the impact of metallic (V, Mn an Cr) and metal oxide (Fe2O3 and Nb2O5) additives on the LiAlH4 hydrogen desorption properties with the emphasis on the hydride degradation process during milling and a consequent hydrogen desorption reaction mechanism was studied. The aim was to improve the hydrogen desorption kinetics without hydrogen capacity deterioration.
PB  - Split : University of Split
C3  - mESC-IS 2022 : 6th International Symposium on Materials for Energy Storage and Conversion : Book of abstracts
T1  - Effect of metalic and metal-oxide catalysts on LiAlH4 decomposition
SP  - 23
EP  - 23
UR  - https://hdl.handle.net/21.15107/rcub_vinar_12765
ER  - 
@conference{
author = "Babić, Bojana and Prvulović, Milica and Rmuš, Jelena and Mitrović Rajić, Anđela and Milošević Govedarović, Sanja and Milanović, Igor and Kurko, Sandra",
year = "2022",
abstract = "Metal and complex light hydrides are the best fitted materials for hydrogen storage within the concept of hydrogen based economy [1]. They meet the basic application requirements: low-cost, safety and they are environmentally friendly. Beside their benefits, as relatively stable compounds, these materials exhibit also some undesirable properties like sluggish kinetics and high temperature of hydrogen desorption. LiAlH4 has emerged as a potential material for solid-state hydrogen storage because of its high hydrogen gravimetric capacity (10.5 wt%). It decomposes in three steps, according to the reactions [2]: 3LiAlH4 → Li3AlH6 + 2Al + H2                             (R1) Li3AlH6 → 3LiH + Al + 3/2H2               (R2) 3LiH+3Al → 3LiAl + 3/2H2                              (R3) The temperature of the first reaction is between 150-175°C, of the second between 180-220°C and the third between 400420°C. The first two reactions (R1 and R2) are very important from the hydrogen storage point of view: (i) both take place at a reasonable low temperatures and (ii) overall sum of theirs gravimetric hydrogen capacity is 7.8 wt.%, so the reactions (R1) and (R2) are accessible for practical hydrogen storage. However, the slow dehydrogenation kinetics and irreversibility under moderate condition hinder its imminent application.  Particle refinement and catalyst or additive introduction by mechanical milling led to the significant improvement of LiAlH4 hydrogen storage properties [2].  However, during the milling process, the temperature in the milling chamber can significantly increase reaching the temperature of R1 or even R2 leading to the degradation of hydride, change in the hydrogen desorption mechanism (figure 1) and decrease in the hydrogen storage capacity of material [3]. So, in this work the impact of metallic (V, Mn an Cr) and metal oxide (Fe2O3 and Nb2O5) additives on the LiAlH4 hydrogen desorption properties with the emphasis on the hydride degradation process during milling and a consequent hydrogen desorption reaction mechanism was studied. The aim was to improve the hydrogen desorption kinetics without hydrogen capacity deterioration.",
publisher = "Split : University of Split",
journal = "mESC-IS 2022 : 6th International Symposium on Materials for Energy Storage and Conversion : Book of abstracts",
title = "Effect of metalic and metal-oxide catalysts on LiAlH4 decomposition",
pages = "23-23",
url = "https://hdl.handle.net/21.15107/rcub_vinar_12765"
}
Babić, B., Prvulović, M., Rmuš, J., Mitrović Rajić, A., Milošević Govedarović, S., Milanović, I.,& Kurko, S.. (2022). Effect of metalic and metal-oxide catalysts on LiAlH4 decomposition. in mESC-IS 2022 : 6th International Symposium on Materials for Energy Storage and Conversion : Book of abstracts
Split : University of Split., 23-23.
https://hdl.handle.net/21.15107/rcub_vinar_12765
Babić B, Prvulović M, Rmuš J, Mitrović Rajić A, Milošević Govedarović S, Milanović I, Kurko S. Effect of metalic and metal-oxide catalysts on LiAlH4 decomposition. in mESC-IS 2022 : 6th International Symposium on Materials for Energy Storage and Conversion : Book of abstracts. 2022;:23-23.
https://hdl.handle.net/21.15107/rcub_vinar_12765 .
Babić, Bojana, Prvulović, Milica, Rmuš, Jelena, Mitrović Rajić, Anđela, Milošević Govedarović, Sanja, Milanović, Igor, Kurko, Sandra, "Effect of metalic and metal-oxide catalysts on LiAlH4 decomposition" in mESC-IS 2022 : 6th International Symposium on Materials for Energy Storage and Conversion : Book of abstracts (2022):23-23,
https://hdl.handle.net/21.15107/rcub_vinar_12765 .

Study of milling time impact on hydrogen desorption from LiAlH4-Fe2O3 composites

Milanović, Igor; Milošević Govedarović, Sanja S.; Lukić, Miodrag; Jovanović, Zoran; Rmuš, Jelena; Mitrović-Rajić, Anđela; Grbović-Novaković, Jasmina; Kurko, Sandra V.

(2022)

TY  - JOUR
AU  - Milanović, Igor
AU  - Milošević Govedarović, Sanja S.
AU  - Lukić, Miodrag
AU  - Jovanović, Zoran
AU  - Rmuš, Jelena
AU  - Mitrović-Rajić, Anđela
AU  - Grbović-Novaković, Jasmina
AU  - Kurko, Sandra V.
PY  - 2022
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/10504
AB  - LiAlH4 was modified by mechanical milling and with the addition of 5 wt.% Fe2O3 in order to improve its hydrogen desorption properties. The composite was milled for 1, 3, 5, 7 or 15min, and depending on the milling time, various phenomena took place. Up to a milling time of 5min, the particle size of the composite decreases. Further milling leads to the particles agglomeration reaching the size of the starting material after 15min. Moreover, the mechanical milling process leads to the transformation of AlH - 4 to AlH 3 - 6 structure as a result of partial hydrogen desorption. Hydrogen desorption during the milling is the most pronounced in the sample milled for 15min, so this sample has only one hydrogen desorption peak in the temperature-programmed desorption measurements.Mechanical milling with the addition of Fe2O3 for up to 15min improves LiAlH4 hydrogen desorption properties as hydrogen desorption temperature and apparent activation energies decrease.
T2  - Processing and Application of Ceramics
T1  - Study of milling time impact on hydrogen desorption from LiAlH4-Fe2O3 composites
VL  - 16
IS  - 3
SP  - 259
EP  - 266
DO  - 10.2298/PAC2203259M
ER  - 
@article{
author = "Milanović, Igor and Milošević Govedarović, Sanja S. and Lukić, Miodrag and Jovanović, Zoran and Rmuš, Jelena and Mitrović-Rajić, Anđela and Grbović-Novaković, Jasmina and Kurko, Sandra V.",
year = "2022",
abstract = "LiAlH4 was modified by mechanical milling and with the addition of 5 wt.% Fe2O3 in order to improve its hydrogen desorption properties. The composite was milled for 1, 3, 5, 7 or 15min, and depending on the milling time, various phenomena took place. Up to a milling time of 5min, the particle size of the composite decreases. Further milling leads to the particles agglomeration reaching the size of the starting material after 15min. Moreover, the mechanical milling process leads to the transformation of AlH - 4 to AlH 3 - 6 structure as a result of partial hydrogen desorption. Hydrogen desorption during the milling is the most pronounced in the sample milled for 15min, so this sample has only one hydrogen desorption peak in the temperature-programmed desorption measurements.Mechanical milling with the addition of Fe2O3 for up to 15min improves LiAlH4 hydrogen desorption properties as hydrogen desorption temperature and apparent activation energies decrease.",
journal = "Processing and Application of Ceramics",
title = "Study of milling time impact on hydrogen desorption from LiAlH4-Fe2O3 composites",
volume = "16",
number = "3",
pages = "259-266",
doi = "10.2298/PAC2203259M"
}
Milanović, I., Milošević Govedarović, S. S., Lukić, M., Jovanović, Z., Rmuš, J., Mitrović-Rajić, A., Grbović-Novaković, J.,& Kurko, S. V.. (2022). Study of milling time impact on hydrogen desorption from LiAlH4-Fe2O3 composites. in Processing and Application of Ceramics, 16(3), 259-266.
https://doi.org/10.2298/PAC2203259M
Milanović I, Milošević Govedarović SS, Lukić M, Jovanović Z, Rmuš J, Mitrović-Rajić A, Grbović-Novaković J, Kurko SV. Study of milling time impact on hydrogen desorption from LiAlH4-Fe2O3 composites. in Processing and Application of Ceramics. 2022;16(3):259-266.
doi:10.2298/PAC2203259M .
Milanović, Igor, Milošević Govedarović, Sanja S., Lukić, Miodrag, Jovanović, Zoran, Rmuš, Jelena, Mitrović-Rajić, Anđela, Grbović-Novaković, Jasmina, Kurko, Sandra V., "Study of milling time impact on hydrogen desorption from LiAlH4-Fe2O3 composites" in Processing and Application of Ceramics, 16, no. 3 (2022):259-266,
https://doi.org/10.2298/PAC2203259M . .
1
1

Improving of hydrogen desorption kinetics of MgH2 by NaNH2 addition: Interplay between microstructure and chemical reaction

Milanović, Igor; Milošević Govedarović, Sanja S.; Kurko, Sandra V.; Medić-Ilić, Mirjana; Rajnović, Dragan; Cvetković, Slobodan M.; Grbović-Novaković, Jasmina

(2022)

TY  - JOUR
AU  - Milanović, Igor
AU  - Milošević Govedarović, Sanja S.
AU  - Kurko, Sandra V.
AU  - Medić-Ilić, Mirjana
AU  - Rajnović, Dragan
AU  - Cvetković, Slobodan M.
AU  - Grbović-Novaković, Jasmina
PY  - 2022
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/10398
AB  - MgH2 based composites combined with NaNH2 were synthesized by mechanical milling for three different milling times ranging from 15 to 60 minutes. Microstructure and particle size of the samples were analyzed by SEM microscopy while desorption properties were followed by Thermal Desorption Spectroscopy (TDS). The kinetic properties of NaNH2-MgH2 composites were investigated by isoconversional kinetic method as implemented in code developed by our group. Composites show hydrogen desorption peaks shifted to lower temperatures in comparison to mechanically modified and as received MgH2. All NaNH2-MgH2 composites show enhanced kinetics with lowered apparent activation energy (Ea) in comparison to milled MgH2. The mechanism of desorption changes from Avrami–Erofeev n = 3 for as received MgH2 to Avrami–Erofeev n = 4 for composite materials. The change from 3 to 4 can be due to the modification of the nucleation process or a change in the dimensionality of the growth. Those high values of n disregard a diffusion control as a rate limiting step. It has been shown that there is a synergistic effect on the enhanced hydrogen storage performance of chemical reaction and structural changes caused by ball milling. This can be used as a starting point for synthesis of innovative hydrogen storage materials.
T2  - International Journal of Hydrogen Energy
T1  - Improving of hydrogen desorption kinetics of MgH2 by NaNH2 addition: Interplay between microstructure and chemical reaction
VL  - 47
IS  - 69
SP  - 29858
EP  - 29865
DO  - 10.1016/j.ijhydene.2022.06.302
ER  - 
@article{
author = "Milanović, Igor and Milošević Govedarović, Sanja S. and Kurko, Sandra V. and Medić-Ilić, Mirjana and Rajnović, Dragan and Cvetković, Slobodan M. and Grbović-Novaković, Jasmina",
year = "2022",
abstract = "MgH2 based composites combined with NaNH2 were synthesized by mechanical milling for three different milling times ranging from 15 to 60 minutes. Microstructure and particle size of the samples were analyzed by SEM microscopy while desorption properties were followed by Thermal Desorption Spectroscopy (TDS). The kinetic properties of NaNH2-MgH2 composites were investigated by isoconversional kinetic method as implemented in code developed by our group. Composites show hydrogen desorption peaks shifted to lower temperatures in comparison to mechanically modified and as received MgH2. All NaNH2-MgH2 composites show enhanced kinetics with lowered apparent activation energy (Ea) in comparison to milled MgH2. The mechanism of desorption changes from Avrami–Erofeev n = 3 for as received MgH2 to Avrami–Erofeev n = 4 for composite materials. The change from 3 to 4 can be due to the modification of the nucleation process or a change in the dimensionality of the growth. Those high values of n disregard a diffusion control as a rate limiting step. It has been shown that there is a synergistic effect on the enhanced hydrogen storage performance of chemical reaction and structural changes caused by ball milling. This can be used as a starting point for synthesis of innovative hydrogen storage materials.",
journal = "International Journal of Hydrogen Energy",
title = "Improving of hydrogen desorption kinetics of MgH2 by NaNH2 addition: Interplay between microstructure and chemical reaction",
volume = "47",
number = "69",
pages = "29858-29865",
doi = "10.1016/j.ijhydene.2022.06.302"
}
Milanović, I., Milošević Govedarović, S. S., Kurko, S. V., Medić-Ilić, M., Rajnović, D., Cvetković, S. M.,& Grbović-Novaković, J.. (2022). Improving of hydrogen desorption kinetics of MgH2 by NaNH2 addition: Interplay between microstructure and chemical reaction. in International Journal of Hydrogen Energy, 47(69), 29858-29865.
https://doi.org/10.1016/j.ijhydene.2022.06.302
Milanović I, Milošević Govedarović SS, Kurko SV, Medić-Ilić M, Rajnović D, Cvetković SM, Grbović-Novaković J. Improving of hydrogen desorption kinetics of MgH2 by NaNH2 addition: Interplay between microstructure and chemical reaction. in International Journal of Hydrogen Energy. 2022;47(69):29858-29865.
doi:10.1016/j.ijhydene.2022.06.302 .
Milanović, Igor, Milošević Govedarović, Sanja S., Kurko, Sandra V., Medić-Ilić, Mirjana, Rajnović, Dragan, Cvetković, Slobodan M., Grbović-Novaković, Jasmina, "Improving of hydrogen desorption kinetics of MgH2 by NaNH2 addition: Interplay between microstructure and chemical reaction" in International Journal of Hydrogen Energy, 47, no. 69 (2022):29858-29865,
https://doi.org/10.1016/j.ijhydene.2022.06.302 . .
2
2

A multi-function desalination system based on hydrolysis reaction of hydride and fuel cell water recovery

Yao, Jing; Guo, Leilei; Zhu, Pengfei; Yang, Fusheng; Yan, Hongli; Kurko, Sandra V.; Yartys, Volodymyr A.; Zhang, Zaoxiao; Wu, Zhen

(2021)

TY  - JOUR
AU  - Yao, Jing
AU  - Guo, Leilei
AU  - Zhu, Pengfei
AU  - Yang, Fusheng
AU  - Yan, Hongli
AU  - Kurko, Sandra V.
AU  - Yartys, Volodymyr A.
AU  - Zhang, Zaoxiao
AU  - Wu, Zhen
PY  - 2021
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/9945
AB  - Desalination is an important method to take full advantage of the sea water to produce fresh water. However, the systems or devices reported previously still have the limitations in the energy supply and portability when used in some specific application scenarios, such as island and remote coastal area. In this paper, a multi-function desalination system is proposed, which could provide fresh water, electrical energy, and even the cold energy based on the hydrolysis reaction of hydride and fuel cell water recovery. Besides, the system could be modified to increase the flexibility of the system operation to satisfy the various energy demands under different conditions. A lumped parameter model of the proposed system is developed to evaluate the system performance. The results show that the fuel cell helps to increase the absolute humidity of the wet air by 15.5% and to increase the water production by condensing the wet air by 1.8 times compared with simple water harvest from the ambient environment. The modified system demonstrates more stable performance of the water production than the original desalination system, which means that the modified system is less affected by the parameter variation. The maximum water production of the kW level system could achieve 11.10 kg/h. Comparing with the previous reports, the unit power consumption of the modified system could reach the lowest level (about 880 Wh/kg), showing the promising water production performance of the system developed in this work.
T2  - Energy Conversion and Management
T1  - A multi-function desalination system based on hydrolysis reaction of hydride and fuel cell water recovery
VL  - 247
SP  - 114728
DO  - 10.1016/j.enconman.2021.114728
ER  - 
@article{
author = "Yao, Jing and Guo, Leilei and Zhu, Pengfei and Yang, Fusheng and Yan, Hongli and Kurko, Sandra V. and Yartys, Volodymyr A. and Zhang, Zaoxiao and Wu, Zhen",
year = "2021",
abstract = "Desalination is an important method to take full advantage of the sea water to produce fresh water. However, the systems or devices reported previously still have the limitations in the energy supply and portability when used in some specific application scenarios, such as island and remote coastal area. In this paper, a multi-function desalination system is proposed, which could provide fresh water, electrical energy, and even the cold energy based on the hydrolysis reaction of hydride and fuel cell water recovery. Besides, the system could be modified to increase the flexibility of the system operation to satisfy the various energy demands under different conditions. A lumped parameter model of the proposed system is developed to evaluate the system performance. The results show that the fuel cell helps to increase the absolute humidity of the wet air by 15.5% and to increase the water production by condensing the wet air by 1.8 times compared with simple water harvest from the ambient environment. The modified system demonstrates more stable performance of the water production than the original desalination system, which means that the modified system is less affected by the parameter variation. The maximum water production of the kW level system could achieve 11.10 kg/h. Comparing with the previous reports, the unit power consumption of the modified system could reach the lowest level (about 880 Wh/kg), showing the promising water production performance of the system developed in this work.",
journal = "Energy Conversion and Management",
title = "A multi-function desalination system based on hydrolysis reaction of hydride and fuel cell water recovery",
volume = "247",
pages = "114728",
doi = "10.1016/j.enconman.2021.114728"
}
Yao, J., Guo, L., Zhu, P., Yang, F., Yan, H., Kurko, S. V., Yartys, V. A., Zhang, Z.,& Wu, Z.. (2021). A multi-function desalination system based on hydrolysis reaction of hydride and fuel cell water recovery. in Energy Conversion and Management, 247, 114728.
https://doi.org/10.1016/j.enconman.2021.114728
Yao J, Guo L, Zhu P, Yang F, Yan H, Kurko SV, Yartys VA, Zhang Z, Wu Z. A multi-function desalination system based on hydrolysis reaction of hydride and fuel cell water recovery. in Energy Conversion and Management. 2021;247:114728.
doi:10.1016/j.enconman.2021.114728 .
Yao, Jing, Guo, Leilei, Zhu, Pengfei, Yang, Fusheng, Yan, Hongli, Kurko, Sandra V., Yartys, Volodymyr A., Zhang, Zaoxiao, Wu, Zhen, "A multi-function desalination system based on hydrolysis reaction of hydride and fuel cell water recovery" in Energy Conversion and Management, 247 (2021):114728,
https://doi.org/10.1016/j.enconman.2021.114728 . .
6
5

Multi-physics field modeling of biomass gasification syngas fueled solid oxide fuel cell

Zhu, Pengfei; Wu, Zhen; Yao, Jing; Guo, Leilei; Yan, Hongli; Nyamsi, Serge Nyallang; Kurko, Sandra V.; Yang, Fusheng; Zhang, Zaoxiao

(2021)

TY  - JOUR
AU  - Zhu, Pengfei
AU  - Wu, Zhen
AU  - Yao, Jing
AU  - Guo, Leilei
AU  - Yan, Hongli
AU  - Nyamsi, Serge Nyallang
AU  - Kurko, Sandra V.
AU  - Yang, Fusheng
AU  - Zhang, Zaoxiao
PY  - 2021
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/9931
AB  - In order to uncover the inner working mechanism and performance of solid oxide fuel cell (SOFC) with biomass gasification syngas as fuel, a two dimensional SOFC multi-physical field model is established. This study makes up for the deficiency that the previous studies of coupling biomass gasification unit and SOFC stack mostly stay at the system level. The results show that the SOFC fueled by the syngas produced from gasification of biomass with steam as the agent has the best performance. The peak power density could achieve approximately 10240 W m−2. With the improvement of operating temperature, the peak power density of SOFC will be increased. At the temperature of 1123 K, the peak power density could achieve about 15128 W m−2. The average reaction rate of water gas shift (WGS) reaction is −29.73 mol m−3 s−1 when the operating temperature is 1123 K. This indicates that the WGS reaction will proceed in reverse direction at high temperatures, thereby reducing the hydrogen concentration. In addition, increase in the anode flux and decrease in the cell length lead to the increase of SOFC current density. In general, this work could provide guidance for the optimization and practical application of SOFC using biomass syngas as fuel.
T2  - Journal of Power Sources
T1  - Multi-physics field modeling of biomass gasification syngas fueled solid oxide fuel cell
VL  - 512
SP  - 230470
DO  - 10.1016/j.jpowsour.2021.230470
ER  - 
@article{
author = "Zhu, Pengfei and Wu, Zhen and Yao, Jing and Guo, Leilei and Yan, Hongli and Nyamsi, Serge Nyallang and Kurko, Sandra V. and Yang, Fusheng and Zhang, Zaoxiao",
year = "2021",
abstract = "In order to uncover the inner working mechanism and performance of solid oxide fuel cell (SOFC) with biomass gasification syngas as fuel, a two dimensional SOFC multi-physical field model is established. This study makes up for the deficiency that the previous studies of coupling biomass gasification unit and SOFC stack mostly stay at the system level. The results show that the SOFC fueled by the syngas produced from gasification of biomass with steam as the agent has the best performance. The peak power density could achieve approximately 10240 W m−2. With the improvement of operating temperature, the peak power density of SOFC will be increased. At the temperature of 1123 K, the peak power density could achieve about 15128 W m−2. The average reaction rate of water gas shift (WGS) reaction is −29.73 mol m−3 s−1 when the operating temperature is 1123 K. This indicates that the WGS reaction will proceed in reverse direction at high temperatures, thereby reducing the hydrogen concentration. In addition, increase in the anode flux and decrease in the cell length lead to the increase of SOFC current density. In general, this work could provide guidance for the optimization and practical application of SOFC using biomass syngas as fuel.",
journal = "Journal of Power Sources",
title = "Multi-physics field modeling of biomass gasification syngas fueled solid oxide fuel cell",
volume = "512",
pages = "230470",
doi = "10.1016/j.jpowsour.2021.230470"
}
Zhu, P., Wu, Z., Yao, J., Guo, L., Yan, H., Nyamsi, S. N., Kurko, S. V., Yang, F.,& Zhang, Z.. (2021). Multi-physics field modeling of biomass gasification syngas fueled solid oxide fuel cell. in Journal of Power Sources, 512, 230470.
https://doi.org/10.1016/j.jpowsour.2021.230470
Zhu P, Wu Z, Yao J, Guo L, Yan H, Nyamsi SN, Kurko SV, Yang F, Zhang Z. Multi-physics field modeling of biomass gasification syngas fueled solid oxide fuel cell. in Journal of Power Sources. 2021;512:230470.
doi:10.1016/j.jpowsour.2021.230470 .
Zhu, Pengfei, Wu, Zhen, Yao, Jing, Guo, Leilei, Yan, Hongli, Nyamsi, Serge Nyallang, Kurko, Sandra V., Yang, Fusheng, Zhang, Zaoxiao, "Multi-physics field modeling of biomass gasification syngas fueled solid oxide fuel cell" in Journal of Power Sources, 512 (2021):230470,
https://doi.org/10.1016/j.jpowsour.2021.230470 . .
24
21

Mechanochemical modification of LiAlH4 with Fe2O3 - A combined DFT and experimental study

Dragojlović, Milijana; Milanović, Igor; Gradišek, Anton; Kurko, Sandra V.; Mitrić, Miodrag; Umićević, Ana; Radaković, Jana; Batalović, Katarina

(2021)

TY  - JOUR
AU  - Dragojlović, Milijana
AU  - Milanović, Igor
AU  - Gradišek, Anton
AU  - Kurko, Sandra V.
AU  - Mitrić, Miodrag
AU  - Umićević, Ana
AU  - Radaković, Jana
AU  - Batalović, Katarina
PY  - 2021
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/9087
AB  - LiAlH4 is a promising material for hydrogen storage, having the theoretical gravimetric density of 10.6 wt% H2. In order to decrease the temperature where hydrogen is released, we investigated the catalytic influence of Fe2O3 on LiAlH4 dehydrogenation, as a model case for understanding the effects transition oxide additives have in the catalysis process. Quick mechanochemical synthesis of LiAlH4 + 5 wt% Fe2O3 led to the significant decrease of the hydrogen desorption temperature, and desorption of over 7 wt%H2 in the temperature range 143–154 °C. Density functional theory (DFT)-based calculations with Tran-Blaha modified Becke-Johnson functional (TBmBJ) address the electronic structure of LiAlH4 and Li3AlH6. 57Fe Mössbauer study shows the change in the oxidational state of iron during hydrogen desorption, while the 1H NMR study reveals the presence of paramagnetic species that affect relaxation. The electron transfer from hydrides is discussed as the proposed mechanism of destabilization of LiAlH4 + 5 wt% Fe2O3. © 2021 Hydrogen Energy Publications LLC
T2  - International Journal of Hydrogen Energy
T1  - Mechanochemical modification of LiAlH4 with Fe2O3 - A combined DFT and experimental study
VL  - 46
IS  - 24
SP  - 13070
EP  - 13081
DO  - 10.1016/j.ijhydene.2021.01.086
ER  - 
@article{
author = "Dragojlović, Milijana and Milanović, Igor and Gradišek, Anton and Kurko, Sandra V. and Mitrić, Miodrag and Umićević, Ana and Radaković, Jana and Batalović, Katarina",
year = "2021",
abstract = "LiAlH4 is a promising material for hydrogen storage, having the theoretical gravimetric density of 10.6 wt% H2. In order to decrease the temperature where hydrogen is released, we investigated the catalytic influence of Fe2O3 on LiAlH4 dehydrogenation, as a model case for understanding the effects transition oxide additives have in the catalysis process. Quick mechanochemical synthesis of LiAlH4 + 5 wt% Fe2O3 led to the significant decrease of the hydrogen desorption temperature, and desorption of over 7 wt%H2 in the temperature range 143–154 °C. Density functional theory (DFT)-based calculations with Tran-Blaha modified Becke-Johnson functional (TBmBJ) address the electronic structure of LiAlH4 and Li3AlH6. 57Fe Mössbauer study shows the change in the oxidational state of iron during hydrogen desorption, while the 1H NMR study reveals the presence of paramagnetic species that affect relaxation. The electron transfer from hydrides is discussed as the proposed mechanism of destabilization of LiAlH4 + 5 wt% Fe2O3. © 2021 Hydrogen Energy Publications LLC",
journal = "International Journal of Hydrogen Energy",
title = "Mechanochemical modification of LiAlH4 with Fe2O3 - A combined DFT and experimental study",
volume = "46",
number = "24",
pages = "13070-13081",
doi = "10.1016/j.ijhydene.2021.01.086"
}
Dragojlović, M., Milanović, I., Gradišek, A., Kurko, S. V., Mitrić, M., Umićević, A., Radaković, J.,& Batalović, K.. (2021). Mechanochemical modification of LiAlH4 with Fe2O3 - A combined DFT and experimental study. in International Journal of Hydrogen Energy, 46(24), 13070-13081.
https://doi.org/10.1016/j.ijhydene.2021.01.086
Dragojlović M, Milanović I, Gradišek A, Kurko SV, Mitrić M, Umićević A, Radaković J, Batalović K. Mechanochemical modification of LiAlH4 with Fe2O3 - A combined DFT and experimental study. in International Journal of Hydrogen Energy. 2021;46(24):13070-13081.
doi:10.1016/j.ijhydene.2021.01.086 .
Dragojlović, Milijana, Milanović, Igor, Gradišek, Anton, Kurko, Sandra V., Mitrić, Miodrag, Umićević, Ana, Radaković, Jana, Batalović, Katarina, "Mechanochemical modification of LiAlH4 with Fe2O3 - A combined DFT and experimental study" in International Journal of Hydrogen Energy, 46, no. 24 (2021):13070-13081,
https://doi.org/10.1016/j.ijhydene.2021.01.086 . .
7
1
7

Mechanochemical modification of LiAlH4 with Fe2O3 - A combined DFT and experimental study

Dragojlović, Milijana; Milanović, Igor; Gradišek, Anton; Kurko, Sandra V.; Mitrić, Miodrag; Umićević, Ana; Radaković, Jana; Batalović, Katarina

(2021)

TY  - JOUR
AU  - Dragojlović, Milijana
AU  - Milanović, Igor
AU  - Gradišek, Anton
AU  - Kurko, Sandra V.
AU  - Mitrić, Miodrag
AU  - Umićević, Ana
AU  - Radaković, Jana
AU  - Batalović, Katarina
PY  - 2021
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/9091
AB  - LiAlH4 is a promising material for hydrogen storage, having the theoretical gravimetric density of 10.6 wt% H2. In order to decrease the temperature where hydrogen is released, we investigated the catalytic influence of Fe2O3 on LiAlH4 dehydrogenation, as a model case for understanding the effects transition oxide additives have in the catalysis process. Quick mechanochemical synthesis of LiAlH4 + 5 wt% Fe2O3 led to the significant decrease of the hydrogen desorption temperature, and desorption of over 7 wt%H2 in the temperature range 143–154 °C. Density functional theory (DFT)-based calculations with Tran-Blaha modified Becke-Johnson functional (TBmBJ) address the electronic structure of LiAlH4 and Li3AlH6. 57Fe Mössbauer study shows the change in the oxidational state of iron during hydrogen desorption, while the 1H NMR study reveals the presence of paramagnetic species that affect relaxation. The electron transfer from hydrides is discussed as the proposed mechanism of destabilization of LiAlH4 + 5 wt% Fe2O3. © 2021 Hydrogen Energy Publications LLC
T2  - International Journal of Hydrogen Energy
T1  - Mechanochemical modification of LiAlH4 with Fe2O3 - A combined DFT and experimental study
VL  - 46
IS  - 24
SP  - 13070
EP  - 13081
DO  - 10.1016/j.ijhydene.2021.01.086
ER  - 
@article{
author = "Dragojlović, Milijana and Milanović, Igor and Gradišek, Anton and Kurko, Sandra V. and Mitrić, Miodrag and Umićević, Ana and Radaković, Jana and Batalović, Katarina",
year = "2021",
abstract = "LiAlH4 is a promising material for hydrogen storage, having the theoretical gravimetric density of 10.6 wt% H2. In order to decrease the temperature where hydrogen is released, we investigated the catalytic influence of Fe2O3 on LiAlH4 dehydrogenation, as a model case for understanding the effects transition oxide additives have in the catalysis process. Quick mechanochemical synthesis of LiAlH4 + 5 wt% Fe2O3 led to the significant decrease of the hydrogen desorption temperature, and desorption of over 7 wt%H2 in the temperature range 143–154 °C. Density functional theory (DFT)-based calculations with Tran-Blaha modified Becke-Johnson functional (TBmBJ) address the electronic structure of LiAlH4 and Li3AlH6. 57Fe Mössbauer study shows the change in the oxidational state of iron during hydrogen desorption, while the 1H NMR study reveals the presence of paramagnetic species that affect relaxation. The electron transfer from hydrides is discussed as the proposed mechanism of destabilization of LiAlH4 + 5 wt% Fe2O3. © 2021 Hydrogen Energy Publications LLC",
journal = "International Journal of Hydrogen Energy",
title = "Mechanochemical modification of LiAlH4 with Fe2O3 - A combined DFT and experimental study",
volume = "46",
number = "24",
pages = "13070-13081",
doi = "10.1016/j.ijhydene.2021.01.086"
}
Dragojlović, M., Milanović, I., Gradišek, A., Kurko, S. V., Mitrić, M., Umićević, A., Radaković, J.,& Batalović, K.. (2021). Mechanochemical modification of LiAlH4 with Fe2O3 - A combined DFT and experimental study. in International Journal of Hydrogen Energy, 46(24), 13070-13081.
https://doi.org/10.1016/j.ijhydene.2021.01.086
Dragojlović M, Milanović I, Gradišek A, Kurko SV, Mitrić M, Umićević A, Radaković J, Batalović K. Mechanochemical modification of LiAlH4 with Fe2O3 - A combined DFT and experimental study. in International Journal of Hydrogen Energy. 2021;46(24):13070-13081.
doi:10.1016/j.ijhydene.2021.01.086 .
Dragojlović, Milijana, Milanović, Igor, Gradišek, Anton, Kurko, Sandra V., Mitrić, Miodrag, Umićević, Ana, Radaković, Jana, Batalović, Katarina, "Mechanochemical modification of LiAlH4 with Fe2O3 - A combined DFT and experimental study" in International Journal of Hydrogen Energy, 46, no. 24 (2021):13070-13081,
https://doi.org/10.1016/j.ijhydene.2021.01.086 . .
7
1
7

Mechanochemical activation of LiAlH4-Fe2O3 composites-a method to enhance kinetics of hydrogen desorption

Kurko, Sandra; Milošević Govedarović, Sanja; Rmuš, Jelena; Batalović, Katarina; Pantić, Tijana; Prvulović, Milica; Milanović, Igor

(Zagreb : "Ruđer Bošković" Institute, 2021)

TY  - CONF
AU  - Kurko, Sandra
AU  - Milošević Govedarović, Sanja
AU  - Rmuš, Jelena
AU  - Batalović, Katarina
AU  - Pantić, Tijana
AU  - Prvulović, Milica
AU  - Milanović, Igor
PY  - 2021
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/11245
AB  - Mechanical milling of pure lithium alanate (LiAlH4) was done with addition of 5 weigh percent of Fe2O3 using different milling time ranging from 1 to 15 minutes [1]. Mechanical milling of composites causes destabilization of LiAlH4 structure as it observed by XRD measurements. Particle size distribution results reveals that composite particle size decrease with milling time up to 3 minutes, and then increase almost to the original size, for 15 min sample. Mechanical mailing cause phase transformation from AlH4- to AlH63-. As a consequence of structural and chemical changes, desorption properties of composites are change kinetic of desorption is improved in comparison to unmilled LiAlH4. The shifting of hydrogen desorption temperature to lower temperatures is observed together with change from multi-step desorption to one-step hydrogen desorption is also observed. This caused decrease in activation energy of composites from Ea = 665 kJ/mol for unmilled LiAlH4, Ea = 279 kJ/mol for 3 min milled composite.
PB  - Zagreb : "Ruđer Bošković" Institute
C3  - Solid-State Science & Research 2021 : Book of Abstracts and Program
T1  - Mechanochemical activation of LiAlH4-Fe2O3 composites-a method to enhance kinetics of hydrogen desorption
SP  - 49
EP  - 49
UR  - https://hdl.handle.net/21.15107/rcub_vinar_11245
ER  - 
@conference{
author = "Kurko, Sandra and Milošević Govedarović, Sanja and Rmuš, Jelena and Batalović, Katarina and Pantić, Tijana and Prvulović, Milica and Milanović, Igor",
year = "2021",
abstract = "Mechanical milling of pure lithium alanate (LiAlH4) was done with addition of 5 weigh percent of Fe2O3 using different milling time ranging from 1 to 15 minutes [1]. Mechanical milling of composites causes destabilization of LiAlH4 structure as it observed by XRD measurements. Particle size distribution results reveals that composite particle size decrease with milling time up to 3 minutes, and then increase almost to the original size, for 15 min sample. Mechanical mailing cause phase transformation from AlH4- to AlH63-. As a consequence of structural and chemical changes, desorption properties of composites are change kinetic of desorption is improved in comparison to unmilled LiAlH4. The shifting of hydrogen desorption temperature to lower temperatures is observed together with change from multi-step desorption to one-step hydrogen desorption is also observed. This caused decrease in activation energy of composites from Ea = 665 kJ/mol for unmilled LiAlH4, Ea = 279 kJ/mol for 3 min milled composite.",
publisher = "Zagreb : "Ruđer Bošković" Institute",
journal = "Solid-State Science & Research 2021 : Book of Abstracts and Program",
title = "Mechanochemical activation of LiAlH4-Fe2O3 composites-a method to enhance kinetics of hydrogen desorption",
pages = "49-49",
url = "https://hdl.handle.net/21.15107/rcub_vinar_11245"
}
Kurko, S., Milošević Govedarović, S., Rmuš, J., Batalović, K., Pantić, T., Prvulović, M.,& Milanović, I.. (2021). Mechanochemical activation of LiAlH4-Fe2O3 composites-a method to enhance kinetics of hydrogen desorption. in Solid-State Science & Research 2021 : Book of Abstracts and Program
Zagreb : "Ruđer Bošković" Institute., 49-49.
https://hdl.handle.net/21.15107/rcub_vinar_11245
Kurko S, Milošević Govedarović S, Rmuš J, Batalović K, Pantić T, Prvulović M, Milanović I. Mechanochemical activation of LiAlH4-Fe2O3 composites-a method to enhance kinetics of hydrogen desorption. in Solid-State Science & Research 2021 : Book of Abstracts and Program. 2021;:49-49.
https://hdl.handle.net/21.15107/rcub_vinar_11245 .
Kurko, Sandra, Milošević Govedarović, Sanja, Rmuš, Jelena, Batalović, Katarina, Pantić, Tijana, Prvulović, Milica, Milanović, Igor, "Mechanochemical activation of LiAlH4-Fe2O3 composites-a method to enhance kinetics of hydrogen desorption" in Solid-State Science & Research 2021 : Book of Abstracts and Program (2021):49-49,
https://hdl.handle.net/21.15107/rcub_vinar_11245 .

Methanol to power through high-efficiency hybrid fuel cell system: Thermodynamic, thermo-economic, and techno-economic (3T) analyses in Northwest China

Wu, Zhen; Zhu, Pengfei; Yao, Jing; Kurko, Sandra V.; Ren, Jianwei; Tan, Peng; Xu, Haoran; Zhang, Zaoxiao; Ni, Meng

(2021)

TY  - JOUR
AU  - Wu, Zhen
AU  - Zhu, Pengfei
AU  - Yao, Jing
AU  - Kurko, Sandra V.
AU  - Ren, Jianwei
AU  - Tan, Peng
AU  - Xu, Haoran
AU  - Zhang, Zaoxiao
AU  - Ni, Meng
PY  - 2021
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/9565
AB  - Advanced efficient energy conversion technology using clean alternative fuel contributes to the alleviation of the energy crisis and environmental deterioration. In this situation, a novel methanol utilization technology for power generation based on hybrid fuel cell system is proposed in this work. The hybrid system consists of a solid oxide fuel cell (SOFC), a gas processing unit (GP) and a proton exchange membrane fuel cell (PEMFC). Thermodynamic analysis of the system shows that the energy conversion efficiency and exergy efficiency are both higher than the previously reported standalone or hybrid energy systems using methanol as fuel, which are 66.2% and 54.2% respectively. Besides, no recirculation ratio of anode off-gas and moderate fuel utilization of about 0.5 are suggested for the SOFC component to balance the power distribution and improve the efficiency. Afterwards, this hybrid fuel cell system is also investigated from thermo-economic and techno-economic perspectives. Take Northwest China as a case, the 1 MWe methanol-fed power plant has a specific electric energy cost of 0.5594 CNY/kWh, much lower than the methanol steam reforming-PEMFC power plant (2.4 CNY/kWh). At the same time, the sensitivity analyses reveal that the cost of the hybrid power system is not sensitive to the market price fluctuation. With financial subsidies for existing renewable power plants, the payback period can be shortened to 1.4 year and the annual return on investment is about 3.58%. These results reveal that this two-stage fuel cell hybrid system is a kind of efficient and economically methanol to power conversion technology, especially for small power scale. © 2021 Elsevier Ltd
T2  - Energy Conversion and Management
T1  - Methanol to power through high-efficiency hybrid fuel cell system: Thermodynamic, thermo-economic, and techno-economic (3T) analyses in Northwest China
VL  - 232
SP  - 113899
DO  - 10.1016/j.enconman.2021.113899
ER  - 
@article{
author = "Wu, Zhen and Zhu, Pengfei and Yao, Jing and Kurko, Sandra V. and Ren, Jianwei and Tan, Peng and Xu, Haoran and Zhang, Zaoxiao and Ni, Meng",
year = "2021",
abstract = "Advanced efficient energy conversion technology using clean alternative fuel contributes to the alleviation of the energy crisis and environmental deterioration. In this situation, a novel methanol utilization technology for power generation based on hybrid fuel cell system is proposed in this work. The hybrid system consists of a solid oxide fuel cell (SOFC), a gas processing unit (GP) and a proton exchange membrane fuel cell (PEMFC). Thermodynamic analysis of the system shows that the energy conversion efficiency and exergy efficiency are both higher than the previously reported standalone or hybrid energy systems using methanol as fuel, which are 66.2% and 54.2% respectively. Besides, no recirculation ratio of anode off-gas and moderate fuel utilization of about 0.5 are suggested for the SOFC component to balance the power distribution and improve the efficiency. Afterwards, this hybrid fuel cell system is also investigated from thermo-economic and techno-economic perspectives. Take Northwest China as a case, the 1 MWe methanol-fed power plant has a specific electric energy cost of 0.5594 CNY/kWh, much lower than the methanol steam reforming-PEMFC power plant (2.4 CNY/kWh). At the same time, the sensitivity analyses reveal that the cost of the hybrid power system is not sensitive to the market price fluctuation. With financial subsidies for existing renewable power plants, the payback period can be shortened to 1.4 year and the annual return on investment is about 3.58%. These results reveal that this two-stage fuel cell hybrid system is a kind of efficient and economically methanol to power conversion technology, especially for small power scale. © 2021 Elsevier Ltd",
journal = "Energy Conversion and Management",
title = "Methanol to power through high-efficiency hybrid fuel cell system: Thermodynamic, thermo-economic, and techno-economic (3T) analyses in Northwest China",
volume = "232",
pages = "113899",
doi = "10.1016/j.enconman.2021.113899"
}
Wu, Z., Zhu, P., Yao, J., Kurko, S. V., Ren, J., Tan, P., Xu, H., Zhang, Z.,& Ni, M.. (2021). Methanol to power through high-efficiency hybrid fuel cell system: Thermodynamic, thermo-economic, and techno-economic (3T) analyses in Northwest China. in Energy Conversion and Management, 232, 113899.
https://doi.org/10.1016/j.enconman.2021.113899
Wu Z, Zhu P, Yao J, Kurko SV, Ren J, Tan P, Xu H, Zhang Z, Ni M. Methanol to power through high-efficiency hybrid fuel cell system: Thermodynamic, thermo-economic, and techno-economic (3T) analyses in Northwest China. in Energy Conversion and Management. 2021;232:113899.
doi:10.1016/j.enconman.2021.113899 .
Wu, Zhen, Zhu, Pengfei, Yao, Jing, Kurko, Sandra V., Ren, Jianwei, Tan, Peng, Xu, Haoran, Zhang, Zaoxiao, Ni, Meng, "Methanol to power through high-efficiency hybrid fuel cell system: Thermodynamic, thermo-economic, and techno-economic (3T) analyses in Northwest China" in Energy Conversion and Management, 232 (2021):113899,
https://doi.org/10.1016/j.enconman.2021.113899 . .
19
2
14

Study of MW-scale biogas-fed SOFC-WGS-TSA-PEMFC hybrid power technology as distributed energy system: Thermodynamic, exergetic and thermo-economic evaluation

Wu, Zhen; Yao, Jing; Zhu, Pengfei; Yang, Fusheng; Meng, Xiangyu; Kurko, Sandra V.; Zhang, Zaoxiao

(2021)

TY  - JOUR
AU  - Wu, Zhen
AU  - Yao, Jing
AU  - Zhu, Pengfei
AU  - Yang, Fusheng
AU  - Meng, Xiangyu
AU  - Kurko, Sandra V.
AU  - Zhang, Zaoxiao
PY  - 2021
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/9074
AB  - Advanced biogas power generation technology has been attracting attentions, which contributes to the waste disposal and the mitigation of greenhouse gas emissions. This work proposes and models a novel biogas-fed hybrid power generation system consisting of solid oxide fuel cell, water gas shift reaction, thermal swing adsorption and proton exchange membrane fuel cell (SOFC-WGS-TSA-PEMFC). The thermodynamic, exergetic, and thermo-economic analyses of this hybrid system for power generation were conducted to comprehensively evaluate its performance. It was found that the novel biogas-fed hybrid system has a gross energy conversion efficiency of 68.63% and exergy efficiency of 65.36%, indicating high efficiency for this kind of hybrid power technology. The market sensitivity analysis showed that the hybrid system also has a low sensitivity to market price fluctuation. Under the current subsidy level for the distributed biogas power plant, the levelized cost of energy can be lowered to 0.02942 $/kWh for a 1 MW scale system. Accordingly, the payback period and annual return on investment can reach 1.4 year and about 20%, respectively. These results reveal that the proposed hybrid system is promising and economically feasible as a distributed power plant, especially for the small power scale (no more than 2 MW).
T2  - International Journal of Hydrogen Energy
T1  - Study of MW-scale biogas-fed SOFC-WGS-TSA-PEMFC hybrid power technology as distributed energy system: Thermodynamic, exergetic and thermo-economic evaluation
VL  - 46
IS  - 19
SP  - 11183
EP  - 11198
DO  - 10.1016/j.ijhydene.2020.02.111
ER  - 
@article{
author = "Wu, Zhen and Yao, Jing and Zhu, Pengfei and Yang, Fusheng and Meng, Xiangyu and Kurko, Sandra V. and Zhang, Zaoxiao",
year = "2021",
abstract = "Advanced biogas power generation technology has been attracting attentions, which contributes to the waste disposal and the mitigation of greenhouse gas emissions. This work proposes and models a novel biogas-fed hybrid power generation system consisting of solid oxide fuel cell, water gas shift reaction, thermal swing adsorption and proton exchange membrane fuel cell (SOFC-WGS-TSA-PEMFC). The thermodynamic, exergetic, and thermo-economic analyses of this hybrid system for power generation were conducted to comprehensively evaluate its performance. It was found that the novel biogas-fed hybrid system has a gross energy conversion efficiency of 68.63% and exergy efficiency of 65.36%, indicating high efficiency for this kind of hybrid power technology. The market sensitivity analysis showed that the hybrid system also has a low sensitivity to market price fluctuation. Under the current subsidy level for the distributed biogas power plant, the levelized cost of energy can be lowered to 0.02942 $/kWh for a 1 MW scale system. Accordingly, the payback period and annual return on investment can reach 1.4 year and about 20%, respectively. These results reveal that the proposed hybrid system is promising and economically feasible as a distributed power plant, especially for the small power scale (no more than 2 MW).",
journal = "International Journal of Hydrogen Energy",
title = "Study of MW-scale biogas-fed SOFC-WGS-TSA-PEMFC hybrid power technology as distributed energy system: Thermodynamic, exergetic and thermo-economic evaluation",
volume = "46",
number = "19",
pages = "11183-11198",
doi = "10.1016/j.ijhydene.2020.02.111"
}
Wu, Z., Yao, J., Zhu, P., Yang, F., Meng, X., Kurko, S. V.,& Zhang, Z.. (2021). Study of MW-scale biogas-fed SOFC-WGS-TSA-PEMFC hybrid power technology as distributed energy system: Thermodynamic, exergetic and thermo-economic evaluation. in International Journal of Hydrogen Energy, 46(19), 11183-11198.
https://doi.org/10.1016/j.ijhydene.2020.02.111
Wu Z, Yao J, Zhu P, Yang F, Meng X, Kurko SV, Zhang Z. Study of MW-scale biogas-fed SOFC-WGS-TSA-PEMFC hybrid power technology as distributed energy system: Thermodynamic, exergetic and thermo-economic evaluation. in International Journal of Hydrogen Energy. 2021;46(19):11183-11198.
doi:10.1016/j.ijhydene.2020.02.111 .
Wu, Zhen, Yao, Jing, Zhu, Pengfei, Yang, Fusheng, Meng, Xiangyu, Kurko, Sandra V., Zhang, Zaoxiao, "Study of MW-scale biogas-fed SOFC-WGS-TSA-PEMFC hybrid power technology as distributed energy system: Thermodynamic, exergetic and thermo-economic evaluation" in International Journal of Hydrogen Energy, 46, no. 19 (2021):11183-11198,
https://doi.org/10.1016/j.ijhydene.2020.02.111 . .
19
5
21

Achieving high-efficiency conversion and poly-generation of cooling, heating, and power based on biomass-fueled SOFC hybrid system: Performance assessment and multi-objective optimization

Zhu, Pengfei; Wu, Zhen; Guo, Leilei; Yao, Jing; Dai, Min; Ren, Jianwei; Kurko, Sandra V.; Yan, Hongli; Yang, Fusheng; Zhang, Zaoxiao

(2021)

TY  - JOUR
AU  - Zhu, Pengfei
AU  - Wu, Zhen
AU  - Guo, Leilei
AU  - Yao, Jing
AU  - Dai, Min
AU  - Ren, Jianwei
AU  - Kurko, Sandra V.
AU  - Yan, Hongli
AU  - Yang, Fusheng
AU  - Zhang, Zaoxiao
PY  - 2021
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/9818
AB  - In order to develop clean and efficient energy conversion technology, a novel combined cooling, heating and power (CCHP) system using biomass as fuel is proposed in this work. The proposed CCHP system consists of biomass gasification unit, solid oxide fuel cell (SOFC), engine power generation unit and absorption refrigeration unit. Thermodynamic model of the CCHP system is developed for the parametric and exergy analyses to evaluate the performance. The parametric analysis shows that increasing the steam to biomass ratio or the SOFC fuel utilization factor helps to improve the electrical efficiency, while the increase of air equivalent ratio has a negative effect. The exergy analysis shows that the two units of biomass gasification and engine power generation have the largest exergy destruction ratio, which is 46.9% and 16.8% under the biomass flux of 500 kg·h−1. This is because these two units involve in high-temperature thermochemical reaction process, resulting in relatively large exergy destruction. Besides, the tradeoff between maximum exergy efficiency, CCHP efficiency and minimum total annual cost is conducted by multi-objective optimization. Through optimization, the system could reach the high CCHP efficiency of 75% and net electrical efficiency of 52%, as well as the low total annual cost of 410 k$ simultaneously. This work could provide the basic design idea, and high-efficiency and low-cost operation strategy for the practical application of the proposed novel biomass-fueled CCHP poly-generation system.
T2  - Energy Conversion and Management
T1  - Achieving high-efficiency conversion and poly-generation of cooling, heating, and power based on biomass-fueled SOFC hybrid system: Performance assessment and multi-objective optimization
VL  - 240
SP  - 114245
DO  - 10.1016/j.enconman.2021.114245
ER  - 
@article{
author = "Zhu, Pengfei and Wu, Zhen and Guo, Leilei and Yao, Jing and Dai, Min and Ren, Jianwei and Kurko, Sandra V. and Yan, Hongli and Yang, Fusheng and Zhang, Zaoxiao",
year = "2021",
abstract = "In order to develop clean and efficient energy conversion technology, a novel combined cooling, heating and power (CCHP) system using biomass as fuel is proposed in this work. The proposed CCHP system consists of biomass gasification unit, solid oxide fuel cell (SOFC), engine power generation unit and absorption refrigeration unit. Thermodynamic model of the CCHP system is developed for the parametric and exergy analyses to evaluate the performance. The parametric analysis shows that increasing the steam to biomass ratio or the SOFC fuel utilization factor helps to improve the electrical efficiency, while the increase of air equivalent ratio has a negative effect. The exergy analysis shows that the two units of biomass gasification and engine power generation have the largest exergy destruction ratio, which is 46.9% and 16.8% under the biomass flux of 500 kg·h−1. This is because these two units involve in high-temperature thermochemical reaction process, resulting in relatively large exergy destruction. Besides, the tradeoff between maximum exergy efficiency, CCHP efficiency and minimum total annual cost is conducted by multi-objective optimization. Through optimization, the system could reach the high CCHP efficiency of 75% and net electrical efficiency of 52%, as well as the low total annual cost of 410 k$ simultaneously. This work could provide the basic design idea, and high-efficiency and low-cost operation strategy for the practical application of the proposed novel biomass-fueled CCHP poly-generation system.",
journal = "Energy Conversion and Management",
title = "Achieving high-efficiency conversion and poly-generation of cooling, heating, and power based on biomass-fueled SOFC hybrid system: Performance assessment and multi-objective optimization",
volume = "240",
pages = "114245",
doi = "10.1016/j.enconman.2021.114245"
}
Zhu, P., Wu, Z., Guo, L., Yao, J., Dai, M., Ren, J., Kurko, S. V., Yan, H., Yang, F.,& Zhang, Z.. (2021). Achieving high-efficiency conversion and poly-generation of cooling, heating, and power based on biomass-fueled SOFC hybrid system: Performance assessment and multi-objective optimization. in Energy Conversion and Management, 240, 114245.
https://doi.org/10.1016/j.enconman.2021.114245
Zhu P, Wu Z, Guo L, Yao J, Dai M, Ren J, Kurko SV, Yan H, Yang F, Zhang Z. Achieving high-efficiency conversion and poly-generation of cooling, heating, and power based on biomass-fueled SOFC hybrid system: Performance assessment and multi-objective optimization. in Energy Conversion and Management. 2021;240:114245.
doi:10.1016/j.enconman.2021.114245 .
Zhu, Pengfei, Wu, Zhen, Guo, Leilei, Yao, Jing, Dai, Min, Ren, Jianwei, Kurko, Sandra V., Yan, Hongli, Yang, Fusheng, Zhang, Zaoxiao, "Achieving high-efficiency conversion and poly-generation of cooling, heating, and power based on biomass-fueled SOFC hybrid system: Performance assessment and multi-objective optimization" in Energy Conversion and Management, 240 (2021):114245,
https://doi.org/10.1016/j.enconman.2021.114245 . .
1
52
8
45

Preface: The 3rd International Symposium on Materials for Energy Storage and Conversion (mESC-IS2018)

Novaković, Nikola; Kurko, Sandra V.; Grbović-Novaković, Jasmina

(2020)

TY  - JOUR
AU  - Novaković, Nikola
AU  - Kurko, Sandra V.
AU  - Grbović-Novaković, Jasmina
PY  - 2020
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/8798
T2  - International Journal of Hydrogen Energy
T1  - Preface: The 3rd International Symposium on Materials for Energy Storage and Conversion (mESC-IS2018)
VL  - 45
IS  - 14
SP  - 7873
DO  - 10.1016/j.ijhydene.2019.12.047
ER  - 
@article{
author = "Novaković, Nikola and Kurko, Sandra V. and Grbović-Novaković, Jasmina",
year = "2020",
journal = "International Journal of Hydrogen Energy",
title = "Preface: The 3rd International Symposium on Materials for Energy Storage and Conversion (mESC-IS2018)",
volume = "45",
number = "14",
pages = "7873",
doi = "10.1016/j.ijhydene.2019.12.047"
}
Novaković, N., Kurko, S. V.,& Grbović-Novaković, J.. (2020). Preface: The 3rd International Symposium on Materials for Energy Storage and Conversion (mESC-IS2018). in International Journal of Hydrogen Energy, 45(14), 7873.
https://doi.org/10.1016/j.ijhydene.2019.12.047
Novaković N, Kurko SV, Grbović-Novaković J. Preface: The 3rd International Symposium on Materials for Energy Storage and Conversion (mESC-IS2018). in International Journal of Hydrogen Energy. 2020;45(14):7873.
doi:10.1016/j.ijhydene.2019.12.047 .
Novaković, Nikola, Kurko, Sandra V., Grbović-Novaković, Jasmina, "Preface: The 3rd International Symposium on Materials for Energy Storage and Conversion (mESC-IS2018)" in International Journal of Hydrogen Energy, 45, no. 14 (2020):7873,
https://doi.org/10.1016/j.ijhydene.2019.12.047 . .

The influence of mechanical milling parameters on hydrogen desorption from Mgh2-Wo3 composites

Pantić, Tijana; Milanović, Igor; Lukić, Miodrag; Grbović-Novaković, Jasmina; Kurko, Sandra V.; Biliškov, Nikola; Milošević Govedarović, Sanja S.

(2020)

TY  - JOUR
AU  - Pantić, Tijana
AU  - Milanović, Igor
AU  - Lukić, Miodrag
AU  - Grbović-Novaković, Jasmina
AU  - Kurko, Sandra V.
AU  - Biliškov, Nikola
AU  - Milošević Govedarović, Sanja S.
PY  - 2020
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/8568
AB  - The influence of different milling conditions obtained using two high-energy mills on hydrogen desorption from MgH2-WO3 composites was investigated. The morphology, particle and crystallite size were studied as a function of milling speed, vial's volume, and ball-to-powder ratio. The vial's fill level, the number, and type of milling balls and additive's content kept constant. Changes in morphology and microstructure were correlated to desorption properties of materials. Higher milling speed reduced particle size but, there is no significant crystallite size reduction. On the other hand, additive distribution is similar regardless of the energy input. It has been noticed that different energy input on milling blend, which is the result of combined effects of above-mentioned factors, reflects on desorption temperature but not on the kinetics of desorption. In fact, desorption mechanism changes from 2D to 3D growth with constant nucleation rate, despite obtained changes in microstructure or chemical composition of the material. © 2019 Hydrogen Energy Publications LLC
T2  - International Journal of Hydrogen Energy
T1  - The influence of mechanical milling parameters on hydrogen desorption from Mgh2-Wo3 composites
VL  - 45
IS  - 14
SP  - 7901
EP  - 7911
DO  - 10.1016/j.ijhydene.2019.07.167
ER  - 
@article{
author = "Pantić, Tijana and Milanović, Igor and Lukić, Miodrag and Grbović-Novaković, Jasmina and Kurko, Sandra V. and Biliškov, Nikola and Milošević Govedarović, Sanja S.",
year = "2020",
abstract = "The influence of different milling conditions obtained using two high-energy mills on hydrogen desorption from MgH2-WO3 composites was investigated. The morphology, particle and crystallite size were studied as a function of milling speed, vial's volume, and ball-to-powder ratio. The vial's fill level, the number, and type of milling balls and additive's content kept constant. Changes in morphology and microstructure were correlated to desorption properties of materials. Higher milling speed reduced particle size but, there is no significant crystallite size reduction. On the other hand, additive distribution is similar regardless of the energy input. It has been noticed that different energy input on milling blend, which is the result of combined effects of above-mentioned factors, reflects on desorption temperature but not on the kinetics of desorption. In fact, desorption mechanism changes from 2D to 3D growth with constant nucleation rate, despite obtained changes in microstructure or chemical composition of the material. © 2019 Hydrogen Energy Publications LLC",
journal = "International Journal of Hydrogen Energy",
title = "The influence of mechanical milling parameters on hydrogen desorption from Mgh2-Wo3 composites",
volume = "45",
number = "14",
pages = "7901-7911",
doi = "10.1016/j.ijhydene.2019.07.167"
}
Pantić, T., Milanović, I., Lukić, M., Grbović-Novaković, J., Kurko, S. V., Biliškov, N.,& Milošević Govedarović, S. S.. (2020). The influence of mechanical milling parameters on hydrogen desorption from Mgh2-Wo3 composites. in International Journal of Hydrogen Energy, 45(14), 7901-7911.
https://doi.org/10.1016/j.ijhydene.2019.07.167
Pantić T, Milanović I, Lukić M, Grbović-Novaković J, Kurko SV, Biliškov N, Milošević Govedarović SS. The influence of mechanical milling parameters on hydrogen desorption from Mgh2-Wo3 composites. in International Journal of Hydrogen Energy. 2020;45(14):7901-7911.
doi:10.1016/j.ijhydene.2019.07.167 .
Pantić, Tijana, Milanović, Igor, Lukić, Miodrag, Grbović-Novaković, Jasmina, Kurko, Sandra V., Biliškov, Nikola, Milošević Govedarović, Sanja S., "The influence of mechanical milling parameters on hydrogen desorption from Mgh2-Wo3 composites" in International Journal of Hydrogen Energy, 45, no. 14 (2020):7901-7911,
https://doi.org/10.1016/j.ijhydene.2019.07.167 . .
10
2
10

DFT study of boron doped MgH2: Bonding mechanism, hydrogen diffusion and desorption

Kurko, Sandra V.; Paskaš Mamula, Bojana; Rmuš, Jelena; Grbović-Novaković, Jasmina; Novaković, Nikola

(2020)

TY  - JOUR
AU  - Kurko, Sandra V.
AU  - Paskaš Mamula, Bojana
AU  - Rmuš, Jelena
AU  - Grbović-Novaković, Jasmina
AU  - Novaković, Nikola
PY  - 2020
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/8560
AB  - The impact of boron doping on MgH2 bonding mechanism, hydrogen diffusion and desorption was calculated using density functional theory (DFT). Atomic interactions in doped and non-doped system and its influence on hydrogen and vacancy diffusion were studied in bulk hydride. Slab calculations were performed to study hydrogen desorption energies from (110) boron doped surface and its dependence on the surface configuration and depth position. To study kinetics of hydrogen diffusion in boron vicinity and hydrogen molecule desorption activation energies from boron doped and non-doped (110) MgH2 surface Nudged Elastic Band (NEB) method was used. Results showed that boron forms stronger, covalent bonds with hydrogen causing the destabilization in its first and second coordination. This leads to lower hydrogen desorption energies and improved hydrogen diffusion, while the impact on the energy barriers for H2 desorption from hydride (110) surface is less pronounced. © 2019 Hydrogen Energy Publications LLC
T2  - International Journal of Hydrogen Energy
T1  - DFT study of boron doped MgH2: Bonding mechanism, hydrogen diffusion and desorption
VL  - 45
IS  - 14
SP  - 7947
EP  - 7957
DO  - 10.1016/j.ijhydene.2019.05.015
ER  - 
@article{
author = "Kurko, Sandra V. and Paskaš Mamula, Bojana and Rmuš, Jelena and Grbović-Novaković, Jasmina and Novaković, Nikola",
year = "2020",
abstract = "The impact of boron doping on MgH2 bonding mechanism, hydrogen diffusion and desorption was calculated using density functional theory (DFT). Atomic interactions in doped and non-doped system and its influence on hydrogen and vacancy diffusion were studied in bulk hydride. Slab calculations were performed to study hydrogen desorption energies from (110) boron doped surface and its dependence on the surface configuration and depth position. To study kinetics of hydrogen diffusion in boron vicinity and hydrogen molecule desorption activation energies from boron doped and non-doped (110) MgH2 surface Nudged Elastic Band (NEB) method was used. Results showed that boron forms stronger, covalent bonds with hydrogen causing the destabilization in its first and second coordination. This leads to lower hydrogen desorption energies and improved hydrogen diffusion, while the impact on the energy barriers for H2 desorption from hydride (110) surface is less pronounced. © 2019 Hydrogen Energy Publications LLC",
journal = "International Journal of Hydrogen Energy",
title = "DFT study of boron doped MgH2: Bonding mechanism, hydrogen diffusion and desorption",
volume = "45",
number = "14",
pages = "7947-7957",
doi = "10.1016/j.ijhydene.2019.05.015"
}
Kurko, S. V., Paskaš Mamula, B., Rmuš, J., Grbović-Novaković, J.,& Novaković, N.. (2020). DFT study of boron doped MgH2: Bonding mechanism, hydrogen diffusion and desorption. in International Journal of Hydrogen Energy, 45(14), 7947-7957.
https://doi.org/10.1016/j.ijhydene.2019.05.015
Kurko SV, Paskaš Mamula B, Rmuš J, Grbović-Novaković J, Novaković N. DFT study of boron doped MgH2: Bonding mechanism, hydrogen diffusion and desorption. in International Journal of Hydrogen Energy. 2020;45(14):7947-7957.
doi:10.1016/j.ijhydene.2019.05.015 .
Kurko, Sandra V., Paskaš Mamula, Bojana, Rmuš, Jelena, Grbović-Novaković, Jasmina, Novaković, Nikola, "DFT study of boron doped MgH2: Bonding mechanism, hydrogen diffusion and desorption" in International Journal of Hydrogen Energy, 45, no. 14 (2020):7947-7957,
https://doi.org/10.1016/j.ijhydene.2019.05.015 . .
20
10
17

Study of an autothermal-equilibrium metal hydride reactor by reaction heat recovery as hydrogen source for the application of fuel cell power system

Yao, Jing; Zhu, Pengfei; Qian, Chenhui; Hamidullah, Usamah; Kurko, Sandra V.; Yang, Fusheng; Zhang, Zaoxiao; Wu, Zhen

(2020)

TY  - JOUR
AU  - Yao, Jing
AU  - Zhu, Pengfei
AU  - Qian, Chenhui
AU  - Hamidullah, Usamah
AU  - Kurko, Sandra V.
AU  - Yang, Fusheng
AU  - Zhang, Zaoxiao
AU  - Wu, Zhen
PY  - 2020
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/8952
AB  - This paper proposes a novel autothermal-equilibrium metal hydride reactor as the hydrogen source for the fuel cell power system, which employs phase change material (PCM) to recycle the hydrogen storage heat. A three-dimensional model of the metal hydride reactor coupled with a salt hydrate PCM for heat recovery is developed. Based on the model, the effects of key operating and design parameters on the reactor are investigated for performance optimization, including operating pressure, melting temperature, latent heat and thermal conductivity of PCM. Through the parametric analysis, it is found that increasing the operating pressure is beneficial to accelerate the absorption reaction. The average reaction fraction at 2400 s is increased by 24% with the pressure increasing from 6 to 10 bar. The moderate melting temperature and the thermal conductivity of the PCM that is comparable to that of metal hydride bed contribute to the improvement of hydrogen storage efficiency. Using this kind of hydrogen source reactor in a fuel cell power system, stable hydrogen storage efficiency of approximately 60% in the experiment is presented. In addition, no obvious performance deterioration of the power system occurs after ten cycles.
T2  - Energy Conversion and Management
T1  - Study of an autothermal-equilibrium metal hydride reactor by reaction heat recovery as hydrogen source for the application of fuel cell power system
VL  - 213
SP  - 112864
DO  - 10.1016/j.enconman.2020.112864
ER  - 
@article{
author = "Yao, Jing and Zhu, Pengfei and Qian, Chenhui and Hamidullah, Usamah and Kurko, Sandra V. and Yang, Fusheng and Zhang, Zaoxiao and Wu, Zhen",
year = "2020",
abstract = "This paper proposes a novel autothermal-equilibrium metal hydride reactor as the hydrogen source for the fuel cell power system, which employs phase change material (PCM) to recycle the hydrogen storage heat. A three-dimensional model of the metal hydride reactor coupled with a salt hydrate PCM for heat recovery is developed. Based on the model, the effects of key operating and design parameters on the reactor are investigated for performance optimization, including operating pressure, melting temperature, latent heat and thermal conductivity of PCM. Through the parametric analysis, it is found that increasing the operating pressure is beneficial to accelerate the absorption reaction. The average reaction fraction at 2400 s is increased by 24% with the pressure increasing from 6 to 10 bar. The moderate melting temperature and the thermal conductivity of the PCM that is comparable to that of metal hydride bed contribute to the improvement of hydrogen storage efficiency. Using this kind of hydrogen source reactor in a fuel cell power system, stable hydrogen storage efficiency of approximately 60% in the experiment is presented. In addition, no obvious performance deterioration of the power system occurs after ten cycles.",
journal = "Energy Conversion and Management",
title = "Study of an autothermal-equilibrium metal hydride reactor by reaction heat recovery as hydrogen source for the application of fuel cell power system",
volume = "213",
pages = "112864",
doi = "10.1016/j.enconman.2020.112864"
}
Yao, J., Zhu, P., Qian, C., Hamidullah, U., Kurko, S. V., Yang, F., Zhang, Z.,& Wu, Z.. (2020). Study of an autothermal-equilibrium metal hydride reactor by reaction heat recovery as hydrogen source for the application of fuel cell power system. in Energy Conversion and Management, 213, 112864.
https://doi.org/10.1016/j.enconman.2020.112864
Yao J, Zhu P, Qian C, Hamidullah U, Kurko SV, Yang F, Zhang Z, Wu Z. Study of an autothermal-equilibrium metal hydride reactor by reaction heat recovery as hydrogen source for the application of fuel cell power system. in Energy Conversion and Management. 2020;213:112864.
doi:10.1016/j.enconman.2020.112864 .
Yao, Jing, Zhu, Pengfei, Qian, Chenhui, Hamidullah, Usamah, Kurko, Sandra V., Yang, Fusheng, Zhang, Zaoxiao, Wu, Zhen, "Study of an autothermal-equilibrium metal hydride reactor by reaction heat recovery as hydrogen source for the application of fuel cell power system" in Energy Conversion and Management, 213 (2020):112864,
https://doi.org/10.1016/j.enconman.2020.112864 . .
27
9
23

A continuous hydrogen absorption/desorption model for metal hydride reactor coupled with PCM as heat management and its application in the fuel cell power system

Yao, Jing; Zhu, Pengfei; Guo, Leilei; Duan, Lian; Zhang, Zaoxiao; Kurko, Sandra V.; Wu, Zhen

(2020)

TY  - JOUR
AU  - Yao, Jing
AU  - Zhu, Pengfei
AU  - Guo, Leilei
AU  - Duan, Lian
AU  - Zhang, Zaoxiao
AU  - Kurko, Sandra V.
AU  - Wu, Zhen
PY  - 2020
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/9041
AB  - In this work, the model of metal hydride reactor coupled with phase change material (PCM) as heat management is modified to describe the heat and mass transfer behaviors of the continuous hydrogen absorption/desorption processes better. Through the experimental validation, the modified model is proven to be more accurate than the traditional model. Based on the proposed model, the performance of the metal hydride reactor is further optimized by the parametric analysis, property and configuration modification. The results show that the metal hydride reactor achieves a hydrogen storage efficiency of 47% at the phase change temperature of 42 °C, which is higher than at 35 and 49 °C. By adding expanded graphite into PCM, the hydrogen storage efficiency can increase up to about 72%, which is higher than the previously reported efficiency of 69%. This is because of the enhanced heat transfer between metal hydride and PCM. Accordingly, the hydrogen absorption time is significantly shortened to no more than 5 min. In addition, it is suggested to operate the reactor in the hydrogen desorption pressure of 2–8 bar and the temperature of 32–58 °C for the improved performance, when this kind of reactor is applied in the fuel cell power system as hydrogen source.
T2  - International Journal of Hydrogen Energy
T1  - A continuous hydrogen absorption/desorption model for metal hydride reactor coupled with PCM as heat management and its application in the fuel cell power system
VL  - 45
IS  - 52
SP  - 28087
EP  - 28099
DO  - 10.1016/j.ijhydene.2020.05.089
ER  - 
@article{
author = "Yao, Jing and Zhu, Pengfei and Guo, Leilei and Duan, Lian and Zhang, Zaoxiao and Kurko, Sandra V. and Wu, Zhen",
year = "2020",
abstract = "In this work, the model of metal hydride reactor coupled with phase change material (PCM) as heat management is modified to describe the heat and mass transfer behaviors of the continuous hydrogen absorption/desorption processes better. Through the experimental validation, the modified model is proven to be more accurate than the traditional model. Based on the proposed model, the performance of the metal hydride reactor is further optimized by the parametric analysis, property and configuration modification. The results show that the metal hydride reactor achieves a hydrogen storage efficiency of 47% at the phase change temperature of 42 °C, which is higher than at 35 and 49 °C. By adding expanded graphite into PCM, the hydrogen storage efficiency can increase up to about 72%, which is higher than the previously reported efficiency of 69%. This is because of the enhanced heat transfer between metal hydride and PCM. Accordingly, the hydrogen absorption time is significantly shortened to no more than 5 min. In addition, it is suggested to operate the reactor in the hydrogen desorption pressure of 2–8 bar and the temperature of 32–58 °C for the improved performance, when this kind of reactor is applied in the fuel cell power system as hydrogen source.",
journal = "International Journal of Hydrogen Energy",
title = "A continuous hydrogen absorption/desorption model for metal hydride reactor coupled with PCM as heat management and its application in the fuel cell power system",
volume = "45",
number = "52",
pages = "28087-28099",
doi = "10.1016/j.ijhydene.2020.05.089"
}
Yao, J., Zhu, P., Guo, L., Duan, L., Zhang, Z., Kurko, S. V.,& Wu, Z.. (2020). A continuous hydrogen absorption/desorption model for metal hydride reactor coupled with PCM as heat management and its application in the fuel cell power system. in International Journal of Hydrogen Energy, 45(52), 28087-28099.
https://doi.org/10.1016/j.ijhydene.2020.05.089
Yao J, Zhu P, Guo L, Duan L, Zhang Z, Kurko SV, Wu Z. A continuous hydrogen absorption/desorption model for metal hydride reactor coupled with PCM as heat management and its application in the fuel cell power system. in International Journal of Hydrogen Energy. 2020;45(52):28087-28099.
doi:10.1016/j.ijhydene.2020.05.089 .
Yao, Jing, Zhu, Pengfei, Guo, Leilei, Duan, Lian, Zhang, Zaoxiao, Kurko, Sandra V., Wu, Zhen, "A continuous hydrogen absorption/desorption model for metal hydride reactor coupled with PCM as heat management and its application in the fuel cell power system" in International Journal of Hydrogen Energy, 45, no. 52 (2020):28087-28099,
https://doi.org/10.1016/j.ijhydene.2020.05.089 . .
37
4
29

Survey of electronic properties and local structures around Fe in selected multinary chalcogenides

Radisavljević, Ivana; Novaković, Nikola; Mahnke, Heinz-Eberhard; Andrić, Velibor; Kurko, Sandra V.; Milivojević, Dušan; Romčević, Nebojša Ž.; Ivanović, Nenad

(2019)

TY  - JOUR
AU  - Radisavljević, Ivana
AU  - Novaković, Nikola
AU  - Mahnke, Heinz-Eberhard
AU  - Andrić, Velibor
AU  - Kurko, Sandra V.
AU  - Milivojević, Dušan
AU  - Romčević, Nebojša Ž.
AU  - Ivanović, Nenad
PY  - 2019
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/8004
AB  - Paper presents detailed studies of local and electronic structure around Fe in Cd0.97Fe0.03Te, Cd0.98Fe0.02Te0.97Se0.03 and Cd0.99Fe0.01Te0.91S0.09 multinary chalcogenides by means of X–ray absorption fine structure (XAFS), X–ray magnetic circular dichroism (XMCD) and electron paramagnetic resonance (EPR) measurements. In addition, electronic consequences of Fe incorporation into CdTe semiconductor host were studied by means of first principles calculations. In order to improve accuracy of the calculated total energies, the band gaps and the band edge positions, special attention is paid to the treatment of exchange–correlation interaction and the description of highly localized Fe 3d–states. Also, the Bader theory of the topological properties of the electron charge density is used to access details of the nature, strength and distribution of the (next) nearest neighbour bonds. Local and electronic structure around Fe in Cd0.97Fe0.03Te and Cd0.98Fe0.02Te0.97Se0.03 systems have been found to exhibit similar characteristics, since the first coordination sphere around Fe comprises four Te atoms located at approximately the same distance. In Cd0.99Fe0.01Te0.91S0.09 system, however, local bimodal distribution of distances has been revealed, with one Fe–Te bond replaced with much shorter Fe–S bond, resulting in much stronger crystal–field. Along with the crystal field effect, the spin–orbit interaction has proven to play decisive role in determining the nature of Fe doped CdTe systems. While the systems with higher Fe concentrations (25 at.%) are intrinsic insulators, in systems with only 3.125 at.% Fe one spin channel contributes to the density of states at the Fermi level, which makes them suitable for spin selective electronic transport applications. © 2018 Elsevier B.V.
T2  - Journal of Alloys and Compounds
T1  - Survey of electronic properties and local structures around Fe in selected multinary chalcogenides
VL  - 782
SP  - 160
EP  - 169
DO  - 10.1016/j.jallcom.2018.12.167
ER  - 
@article{
author = "Radisavljević, Ivana and Novaković, Nikola and Mahnke, Heinz-Eberhard and Andrić, Velibor and Kurko, Sandra V. and Milivojević, Dušan and Romčević, Nebojša Ž. and Ivanović, Nenad",
year = "2019",
abstract = "Paper presents detailed studies of local and electronic structure around Fe in Cd0.97Fe0.03Te, Cd0.98Fe0.02Te0.97Se0.03 and Cd0.99Fe0.01Te0.91S0.09 multinary chalcogenides by means of X–ray absorption fine structure (XAFS), X–ray magnetic circular dichroism (XMCD) and electron paramagnetic resonance (EPR) measurements. In addition, electronic consequences of Fe incorporation into CdTe semiconductor host were studied by means of first principles calculations. In order to improve accuracy of the calculated total energies, the band gaps and the band edge positions, special attention is paid to the treatment of exchange–correlation interaction and the description of highly localized Fe 3d–states. Also, the Bader theory of the topological properties of the electron charge density is used to access details of the nature, strength and distribution of the (next) nearest neighbour bonds. Local and electronic structure around Fe in Cd0.97Fe0.03Te and Cd0.98Fe0.02Te0.97Se0.03 systems have been found to exhibit similar characteristics, since the first coordination sphere around Fe comprises four Te atoms located at approximately the same distance. In Cd0.99Fe0.01Te0.91S0.09 system, however, local bimodal distribution of distances has been revealed, with one Fe–Te bond replaced with much shorter Fe–S bond, resulting in much stronger crystal–field. Along with the crystal field effect, the spin–orbit interaction has proven to play decisive role in determining the nature of Fe doped CdTe systems. While the systems with higher Fe concentrations (25 at.%) are intrinsic insulators, in systems with only 3.125 at.% Fe one spin channel contributes to the density of states at the Fermi level, which makes them suitable for spin selective electronic transport applications. © 2018 Elsevier B.V.",
journal = "Journal of Alloys and Compounds",
title = "Survey of electronic properties and local structures around Fe in selected multinary chalcogenides",
volume = "782",
pages = "160-169",
doi = "10.1016/j.jallcom.2018.12.167"
}
Radisavljević, I., Novaković, N., Mahnke, H., Andrić, V., Kurko, S. V., Milivojević, D., Romčević, N. Ž.,& Ivanović, N.. (2019). Survey of electronic properties and local structures around Fe in selected multinary chalcogenides. in Journal of Alloys and Compounds, 782, 160-169.
https://doi.org/10.1016/j.jallcom.2018.12.167
Radisavljević I, Novaković N, Mahnke H, Andrić V, Kurko SV, Milivojević D, Romčević NŽ, Ivanović N. Survey of electronic properties and local structures around Fe in selected multinary chalcogenides. in Journal of Alloys and Compounds. 2019;782:160-169.
doi:10.1016/j.jallcom.2018.12.167 .
Radisavljević, Ivana, Novaković, Nikola, Mahnke, Heinz-Eberhard, Andrić, Velibor, Kurko, Sandra V., Milivojević, Dušan, Romčević, Nebojša Ž., Ivanović, Nenad, "Survey of electronic properties and local structures around Fe in selected multinary chalcogenides" in Journal of Alloys and Compounds, 782 (2019):160-169,
https://doi.org/10.1016/j.jallcom.2018.12.167 . .
2
1
2

Electrochemical sensors based on pyrophyllite

Mitrović, Anđela I.; Milićević, Jelena; Milošević Govedarović, Sanja S.; Kurko, Sandra; Pantić, Tijana B.; Rmuš, Jelena; Mravik, Željko; Grbović-Novaković, Jasmina

(Belgrade : Institute for Multidisciplinary Research, University of Belgrade, 2019)

TY  - CONF
AU  - Mitrović, Anđela I.
AU  - Milićević, Jelena
AU  - Milošević Govedarović, Sanja S.
AU  - Kurko, Sandra
AU  - Pantić, Tijana B.
AU  - Rmuš, Jelena
AU  - Mravik, Željko
AU  - Grbović-Novaković, Jasmina
PY  - 2019
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/11182
PB  - Belgrade : Institute for Multidisciplinary Research, University of Belgrade
C3  - Advanced Ceramics and Application : 5th Conference of The Serbian Society for Ceramic Materials, 5CSCS-2019, June 11-13, 2019, Belgrade, Serbia
T1  - Electrochemical sensors based on pyrophyllite
SP  - 97
UR  - https://hdl.handle.net/21.15107/rcub_vinar_11182
ER  - 
@conference{
author = "Mitrović, Anđela I. and Milićević, Jelena and Milošević Govedarović, Sanja S. and Kurko, Sandra and Pantić, Tijana B. and Rmuš, Jelena and Mravik, Željko and Grbović-Novaković, Jasmina",
year = "2019",
publisher = "Belgrade : Institute for Multidisciplinary Research, University of Belgrade",
journal = "Advanced Ceramics and Application : 5th Conference of The Serbian Society for Ceramic Materials, 5CSCS-2019, June 11-13, 2019, Belgrade, Serbia",
title = "Electrochemical sensors based on pyrophyllite",
pages = "97",
url = "https://hdl.handle.net/21.15107/rcub_vinar_11182"
}
Mitrović, A. I., Milićević, J., Milošević Govedarović, S. S., Kurko, S., Pantić, T. B., Rmuš, J., Mravik, Ž.,& Grbović-Novaković, J.. (2019). Electrochemical sensors based on pyrophyllite. in Advanced Ceramics and Application : 5th Conference of The Serbian Society for Ceramic Materials, 5CSCS-2019, June 11-13, 2019, Belgrade, Serbia
Belgrade : Institute for Multidisciplinary Research, University of Belgrade., 97.
https://hdl.handle.net/21.15107/rcub_vinar_11182
Mitrović AI, Milićević J, Milošević Govedarović SS, Kurko S, Pantić TB, Rmuš J, Mravik Ž, Grbović-Novaković J. Electrochemical sensors based on pyrophyllite. in Advanced Ceramics and Application : 5th Conference of The Serbian Society for Ceramic Materials, 5CSCS-2019, June 11-13, 2019, Belgrade, Serbia. 2019;:97.
https://hdl.handle.net/21.15107/rcub_vinar_11182 .
Mitrović, Anđela I., Milićević, Jelena, Milošević Govedarović, Sanja S., Kurko, Sandra, Pantić, Tijana B., Rmuš, Jelena, Mravik, Željko, Grbović-Novaković, Jasmina, "Electrochemical sensors based on pyrophyllite" in Advanced Ceramics and Application : 5th Conference of The Serbian Society for Ceramic Materials, 5CSCS-2019, June 11-13, 2019, Belgrade, Serbia (2019):97,
https://hdl.handle.net/21.15107/rcub_vinar_11182 .

Influence of Defects on the Stability and Hydrogen‐Sorption Behavior of Mg‐Based Hydrides

Grbović-Novaković, Jasmina; Novaković, Nikola; Kurko, Sandra V.; Milošević Govedarović, Sanja S.; Pantić, Tijana; Paskaš Mamula, Bojana; Batalović, Katarina; Radaković, Jana; Rmuš, Jelena; Shelyapina, Marina; Skryabina, Nataliya; de Rango, Patricia; Fruchart, Daniel

(2019)

TY  - JOUR
AU  - Grbović-Novaković, Jasmina
AU  - Novaković, Nikola
AU  - Kurko, Sandra V.
AU  - Milošević Govedarović, Sanja S.
AU  - Pantić, Tijana
AU  - Paskaš Mamula, Bojana
AU  - Batalović, Katarina
AU  - Radaković, Jana
AU  - Rmuš, Jelena
AU  - Shelyapina, Marina
AU  - Skryabina, Nataliya
AU  - de Rango, Patricia
AU  - Fruchart, Daniel
PY  - 2019
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/8161
AB  - This review deals with the destabilization methods for improvement of storage properties of metal hydrides. Both theoretical and experimental approaches were used to point out the influence of various types of defects on structure and stability of hydrides. As a case study, Mg, and Ni based hydrides has been investigated. Theoretical studies, mainly carried out within various implementations of DFT, are a powerful tool to study mostly MgH 2 based materials. By providing an insight on metal-hydrogen bonding that governs both thermodynamics and hydrogen kinetics, they allow us to describe phenomena to which experimental methods have a limited access or do not have it at all: to follow the hydrogen sorption reaction on a specific metal surface and hydrogen induced phase transformations, to describe structure of phase boundaries or to explain the impact of defects or various additives on MgH 2 stability and hydrogen sorption kinetics. In several cases theoretical calculations reveal themselves as being able to predict new properties of materials, including the ways to modify Mg or MgH 2 that would lead to better characteristics in terms of hydrogen storage. The influence of ion irradiation and mechanical milling with and without additives has been discussed. Ion irradiation is the way to introduce a well-defined concentration of defects (Frankel pairs) at the surface and sub-surface layers of a material. Defects at the surface play the main role in sorption reaction since they enhance the dissociation of hydrogen. On the other hand, ball-milling introduce defects through the entire sample volume, refine the structure and thus decrease the path for hydrogen diffusion. Two Severe Plastic Deformation techniques were used to better understand the hydrogenation/dehydrogenation kinetics of Mg- and Mg 2 Ni-based alloys: Equal-Angular-Channel-Pressing and Fast-Forging. Successive ECAP passes leads to refinement of the microstructure of AZ31 ingots and to instalment therein of high densities of defects. Depending on mode, number and temperature of ECAP passes, the H-sorption kinetics have been improved satisfactorily without any additive for mass H-storage applications considering the relative speed of the shaping procedure. A qualitative understanding of the kinetic advanced principles has been built. Fast-Forging was used for a “quasi-instantaneous” synthesis of Mg/Mg 2 Ni-based composites. Hydrogenation of the as-received almost bi-phased materials remains rather slow as generally observed elsewhere, whatever are multiple and different techniques used to deliver the composite alloys. However, our preliminary results suggest that a synergic hydrogenation / dehydrogenation process should assist hydrogen transfers from Mg/Mg 2 Ni on one side to MgH 2 /Mg 2 NiH 4 on the other side via the rather stable a-Mg 2 NiH 0.3 , acting as in-situ catalyser. © 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
T2  - ChemPhysChem
T1  - Influence of Defects on the Stability and Hydrogen‐Sorption Behavior of Mg‐Based Hydrides
VL  - 20
IS  - 10
SP  - 1216
EP  - 1247
DO  - 10.1002/cphc.201801125
ER  - 
@article{
author = "Grbović-Novaković, Jasmina and Novaković, Nikola and Kurko, Sandra V. and Milošević Govedarović, Sanja S. and Pantić, Tijana and Paskaš Mamula, Bojana and Batalović, Katarina and Radaković, Jana and Rmuš, Jelena and Shelyapina, Marina and Skryabina, Nataliya and de Rango, Patricia and Fruchart, Daniel",
year = "2019",
abstract = "This review deals with the destabilization methods for improvement of storage properties of metal hydrides. Both theoretical and experimental approaches were used to point out the influence of various types of defects on structure and stability of hydrides. As a case study, Mg, and Ni based hydrides has been investigated. Theoretical studies, mainly carried out within various implementations of DFT, are a powerful tool to study mostly MgH 2 based materials. By providing an insight on metal-hydrogen bonding that governs both thermodynamics and hydrogen kinetics, they allow us to describe phenomena to which experimental methods have a limited access or do not have it at all: to follow the hydrogen sorption reaction on a specific metal surface and hydrogen induced phase transformations, to describe structure of phase boundaries or to explain the impact of defects or various additives on MgH 2 stability and hydrogen sorption kinetics. In several cases theoretical calculations reveal themselves as being able to predict new properties of materials, including the ways to modify Mg or MgH 2 that would lead to better characteristics in terms of hydrogen storage. The influence of ion irradiation and mechanical milling with and without additives has been discussed. Ion irradiation is the way to introduce a well-defined concentration of defects (Frankel pairs) at the surface and sub-surface layers of a material. Defects at the surface play the main role in sorption reaction since they enhance the dissociation of hydrogen. On the other hand, ball-milling introduce defects through the entire sample volume, refine the structure and thus decrease the path for hydrogen diffusion. Two Severe Plastic Deformation techniques were used to better understand the hydrogenation/dehydrogenation kinetics of Mg- and Mg 2 Ni-based alloys: Equal-Angular-Channel-Pressing and Fast-Forging. Successive ECAP passes leads to refinement of the microstructure of AZ31 ingots and to instalment therein of high densities of defects. Depending on mode, number and temperature of ECAP passes, the H-sorption kinetics have been improved satisfactorily without any additive for mass H-storage applications considering the relative speed of the shaping procedure. A qualitative understanding of the kinetic advanced principles has been built. Fast-Forging was used for a “quasi-instantaneous” synthesis of Mg/Mg 2 Ni-based composites. Hydrogenation of the as-received almost bi-phased materials remains rather slow as generally observed elsewhere, whatever are multiple and different techniques used to deliver the composite alloys. However, our preliminary results suggest that a synergic hydrogenation / dehydrogenation process should assist hydrogen transfers from Mg/Mg 2 Ni on one side to MgH 2 /Mg 2 NiH 4 on the other side via the rather stable a-Mg 2 NiH 0.3 , acting as in-situ catalyser. © 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim",
journal = "ChemPhysChem",
title = "Influence of Defects on the Stability and Hydrogen‐Sorption Behavior of Mg‐Based Hydrides",
volume = "20",
number = "10",
pages = "1216-1247",
doi = "10.1002/cphc.201801125"
}
Grbović-Novaković, J., Novaković, N., Kurko, S. V., Milošević Govedarović, S. S., Pantić, T., Paskaš Mamula, B., Batalović, K., Radaković, J., Rmuš, J., Shelyapina, M., Skryabina, N., de Rango, P.,& Fruchart, D.. (2019). Influence of Defects on the Stability and Hydrogen‐Sorption Behavior of Mg‐Based Hydrides. in ChemPhysChem, 20(10), 1216-1247.
https://doi.org/10.1002/cphc.201801125
Grbović-Novaković J, Novaković N, Kurko SV, Milošević Govedarović SS, Pantić T, Paskaš Mamula B, Batalović K, Radaković J, Rmuš J, Shelyapina M, Skryabina N, de Rango P, Fruchart D. Influence of Defects on the Stability and Hydrogen‐Sorption Behavior of Mg‐Based Hydrides. in ChemPhysChem. 2019;20(10):1216-1247.
doi:10.1002/cphc.201801125 .
Grbović-Novaković, Jasmina, Novaković, Nikola, Kurko, Sandra V., Milošević Govedarović, Sanja S., Pantić, Tijana, Paskaš Mamula, Bojana, Batalović, Katarina, Radaković, Jana, Rmuš, Jelena, Shelyapina, Marina, Skryabina, Nataliya, de Rango, Patricia, Fruchart, Daniel, "Influence of Defects on the Stability and Hydrogen‐Sorption Behavior of Mg‐Based Hydrides" in ChemPhysChem, 20, no. 10 (2019):1216-1247,
https://doi.org/10.1002/cphc.201801125 . .
1
25
7
22

Influence of Defects on the Stability and Hydrogen‐Sorption Behavior of Mg‐Based Hydrides

Grbović-Novaković, Jasmina; Novaković, Nikola; Kurko, Sandra V.; Milošević Govedarović, Sanja S.; Pantić, Tijana; Paskaš Mamula, Bojana; Batalović, Katarina; Radaković, Jana; Rmuš, Jelena; Shelyapina, Marina; Skryabina, Nataliya; de Rango, Patricia; Fruchart, Daniel

(2019)

TY  - JOUR
AU  - Grbović-Novaković, Jasmina
AU  - Novaković, Nikola
AU  - Kurko, Sandra V.
AU  - Milošević Govedarović, Sanja S.
AU  - Pantić, Tijana
AU  - Paskaš Mamula, Bojana
AU  - Batalović, Katarina
AU  - Radaković, Jana
AU  - Rmuš, Jelena
AU  - Shelyapina, Marina
AU  - Skryabina, Nataliya
AU  - de Rango, Patricia
AU  - Fruchart, Daniel
PY  - 2019
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/8169
AB  - This review deals with the destabilization methods for improvement of storage properties of metal hydrides. Both theoretical and experimental approaches were used to point out the influence of various types of defects on structure and stability of hydrides. As a case study, Mg, and Ni based hydrides has been investigated. Theoretical studies, mainly carried out within various implementations of DFT, are a powerful tool to study mostly MgH 2 based materials. By providing an insight on metal-hydrogen bonding that governs both thermodynamics and hydrogen kinetics, they allow us to describe phenomena to which experimental methods have a limited access or do not have it at all: to follow the hydrogen sorption reaction on a specific metal surface and hydrogen induced phase transformations, to describe structure of phase boundaries or to explain the impact of defects or various additives on MgH 2 stability and hydrogen sorption kinetics. In several cases theoretical calculations reveal themselves as being able to predict new properties of materials, including the ways to modify Mg or MgH 2 that would lead to better characteristics in terms of hydrogen storage. The influence of ion irradiation and mechanical milling with and without additives has been discussed. Ion irradiation is the way to introduce a well-defined concentration of defects (Frankel pairs) at the surface and sub-surface layers of a material. Defects at the surface play the main role in sorption reaction since they enhance the dissociation of hydrogen. On the other hand, ball-milling introduce defects through the entire sample volume, refine the structure and thus decrease the path for hydrogen diffusion. Two Severe Plastic Deformation techniques were used to better understand the hydrogenation/dehydrogenation kinetics of Mg- and Mg 2 Ni-based alloys: Equal-Angular-Channel-Pressing and Fast-Forging. Successive ECAP passes leads to refinement of the microstructure of AZ31 ingots and to instalment therein of high densities of defects. Depending on mode, number and temperature of ECAP passes, the H-sorption kinetics have been improved satisfactorily without any additive for mass H-storage applications considering the relative speed of the shaping procedure. A qualitative understanding of the kinetic advanced principles has been built. Fast-Forging was used for a “quasi-instantaneous” synthesis of Mg/Mg 2 Ni-based composites. Hydrogenation of the as-received almost bi-phased materials remains rather slow as generally observed elsewhere, whatever are multiple and different techniques used to deliver the composite alloys. However, our preliminary results suggest that a synergic hydrogenation / dehydrogenation process should assist hydrogen transfers from Mg/Mg 2 Ni on one side to MgH 2 /Mg 2 NiH 4 on the other side via the rather stable a-Mg 2 NiH 0.3 , acting as in-situ catalyser. © 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
T2  - ChemPhysChem
T1  - Influence of Defects on the Stability and Hydrogen‐Sorption Behavior of Mg‐Based Hydrides
VL  - 20
IS  - 10
SP  - 1216
EP  - 1247
DO  - 10.1002/cphc.201801125
ER  - 
@article{
author = "Grbović-Novaković, Jasmina and Novaković, Nikola and Kurko, Sandra V. and Milošević Govedarović, Sanja S. and Pantić, Tijana and Paskaš Mamula, Bojana and Batalović, Katarina and Radaković, Jana and Rmuš, Jelena and Shelyapina, Marina and Skryabina, Nataliya and de Rango, Patricia and Fruchart, Daniel",
year = "2019",
abstract = "This review deals with the destabilization methods for improvement of storage properties of metal hydrides. Both theoretical and experimental approaches were used to point out the influence of various types of defects on structure and stability of hydrides. As a case study, Mg, and Ni based hydrides has been investigated. Theoretical studies, mainly carried out within various implementations of DFT, are a powerful tool to study mostly MgH 2 based materials. By providing an insight on metal-hydrogen bonding that governs both thermodynamics and hydrogen kinetics, they allow us to describe phenomena to which experimental methods have a limited access or do not have it at all: to follow the hydrogen sorption reaction on a specific metal surface and hydrogen induced phase transformations, to describe structure of phase boundaries or to explain the impact of defects or various additives on MgH 2 stability and hydrogen sorption kinetics. In several cases theoretical calculations reveal themselves as being able to predict new properties of materials, including the ways to modify Mg or MgH 2 that would lead to better characteristics in terms of hydrogen storage. The influence of ion irradiation and mechanical milling with and without additives has been discussed. Ion irradiation is the way to introduce a well-defined concentration of defects (Frankel pairs) at the surface and sub-surface layers of a material. Defects at the surface play the main role in sorption reaction since they enhance the dissociation of hydrogen. On the other hand, ball-milling introduce defects through the entire sample volume, refine the structure and thus decrease the path for hydrogen diffusion. Two Severe Plastic Deformation techniques were used to better understand the hydrogenation/dehydrogenation kinetics of Mg- and Mg 2 Ni-based alloys: Equal-Angular-Channel-Pressing and Fast-Forging. Successive ECAP passes leads to refinement of the microstructure of AZ31 ingots and to instalment therein of high densities of defects. Depending on mode, number and temperature of ECAP passes, the H-sorption kinetics have been improved satisfactorily without any additive for mass H-storage applications considering the relative speed of the shaping procedure. A qualitative understanding of the kinetic advanced principles has been built. Fast-Forging was used for a “quasi-instantaneous” synthesis of Mg/Mg 2 Ni-based composites. Hydrogenation of the as-received almost bi-phased materials remains rather slow as generally observed elsewhere, whatever are multiple and different techniques used to deliver the composite alloys. However, our preliminary results suggest that a synergic hydrogenation / dehydrogenation process should assist hydrogen transfers from Mg/Mg 2 Ni on one side to MgH 2 /Mg 2 NiH 4 on the other side via the rather stable a-Mg 2 NiH 0.3 , acting as in-situ catalyser. © 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim",
journal = "ChemPhysChem",
title = "Influence of Defects on the Stability and Hydrogen‐Sorption Behavior of Mg‐Based Hydrides",
volume = "20",
number = "10",
pages = "1216-1247",
doi = "10.1002/cphc.201801125"
}
Grbović-Novaković, J., Novaković, N., Kurko, S. V., Milošević Govedarović, S. S., Pantić, T., Paskaš Mamula, B., Batalović, K., Radaković, J., Rmuš, J., Shelyapina, M., Skryabina, N., de Rango, P.,& Fruchart, D.. (2019). Influence of Defects on the Stability and Hydrogen‐Sorption Behavior of Mg‐Based Hydrides. in ChemPhysChem, 20(10), 1216-1247.
https://doi.org/10.1002/cphc.201801125
Grbović-Novaković J, Novaković N, Kurko SV, Milošević Govedarović SS, Pantić T, Paskaš Mamula B, Batalović K, Radaković J, Rmuš J, Shelyapina M, Skryabina N, de Rango P, Fruchart D. Influence of Defects on the Stability and Hydrogen‐Sorption Behavior of Mg‐Based Hydrides. in ChemPhysChem. 2019;20(10):1216-1247.
doi:10.1002/cphc.201801125 .
Grbović-Novaković, Jasmina, Novaković, Nikola, Kurko, Sandra V., Milošević Govedarović, Sanja S., Pantić, Tijana, Paskaš Mamula, Bojana, Batalović, Katarina, Radaković, Jana, Rmuš, Jelena, Shelyapina, Marina, Skryabina, Nataliya, de Rango, Patricia, Fruchart, Daniel, "Influence of Defects on the Stability and Hydrogen‐Sorption Behavior of Mg‐Based Hydrides" in ChemPhysChem, 20, no. 10 (2019):1216-1247,
https://doi.org/10.1002/cphc.201801125 . .
1
25
7
20

Interaction of oxide ceramics with metal hydrides

Novaković, Nikola; Milošević Govedarović, Sanja S.; Paskaš Mamula, Bojana; Kurko, Sandra; Pantić, Tijana; Medić-Ilić, Mirjana; Grbović-Novaković, Jasmina

(Belgrade : Serbian Ceramic Society, 2018)

TY  - CONF
AU  - Novaković, Nikola
AU  - Milošević Govedarović, Sanja S.
AU  - Paskaš Mamula, Bojana
AU  - Kurko, Sandra
AU  - Pantić, Tijana
AU  - Medić-Ilić, Mirjana
AU  - Grbović-Novaković, Jasmina
PY  - 2018
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/10879
AB  - Magnesium hydride (MgH2 ) is one of the most favorable hydrogen storage materials because it is directly formed from the reaction of Mg metal with gaseous hydrogen while reaching a high mass capacity (7.6 wt %). However, the sorption reaction is too slow for practical use and needs higher temperature than 300 °C for hydrogen sorption reactions. The hydrogen storage properties can be tailored by addition of small amount of transition metal oxides (TiO2,VO2 ). In order to understand the processes that occurred during sorption reaction we have used both theoretical and experimental approach to study reaction mechanism in powder and thin films materials. Processes taking place during hydrogen desorption from Mg/MgH2 thin films upon modification either by TiO2 capped layer or by ion irradiation were also investigated. Irradiation was used to produce controlled point defects quantity with well-defined depth distribution. It was shown that the size, shape, and concentration of Mg nuclei formed during hydrogen desorption from MgH2 thin films depend on the characteristics and distribution of the induced defects. Addition of VO2 to powder milling bland dramatically improves the kinetics of sorption reaction, It is worth to notice that the full charge/discharge is achieved at relatively low temperatures.
PB  - Belgrade : Serbian Ceramic Society
C3  - Advanced Ceramics and Application : 7th Serbian Ceramic Society Conference : program and the book of abstracts; September 17-19, 2018; Belgrade
T1  - Interaction of oxide ceramics with metal hydrides
SP  - 60
EP  - 61
UR  - https://hdl.handle.net/21.15107/rcub_vinar_10879
ER  - 
@conference{
author = "Novaković, Nikola and Milošević Govedarović, Sanja S. and Paskaš Mamula, Bojana and Kurko, Sandra and Pantić, Tijana and Medić-Ilić, Mirjana and Grbović-Novaković, Jasmina",
year = "2018",
abstract = "Magnesium hydride (MgH2 ) is one of the most favorable hydrogen storage materials because it is directly formed from the reaction of Mg metal with gaseous hydrogen while reaching a high mass capacity (7.6 wt %). However, the sorption reaction is too slow for practical use and needs higher temperature than 300 °C for hydrogen sorption reactions. The hydrogen storage properties can be tailored by addition of small amount of transition metal oxides (TiO2,VO2 ). In order to understand the processes that occurred during sorption reaction we have used both theoretical and experimental approach to study reaction mechanism in powder and thin films materials. Processes taking place during hydrogen desorption from Mg/MgH2 thin films upon modification either by TiO2 capped layer or by ion irradiation were also investigated. Irradiation was used to produce controlled point defects quantity with well-defined depth distribution. It was shown that the size, shape, and concentration of Mg nuclei formed during hydrogen desorption from MgH2 thin films depend on the characteristics and distribution of the induced defects. Addition of VO2 to powder milling bland dramatically improves the kinetics of sorption reaction, It is worth to notice that the full charge/discharge is achieved at relatively low temperatures.",
publisher = "Belgrade : Serbian Ceramic Society",
journal = "Advanced Ceramics and Application : 7th Serbian Ceramic Society Conference : program and the book of abstracts; September 17-19, 2018; Belgrade",
title = "Interaction of oxide ceramics with metal hydrides",
pages = "60-61",
url = "https://hdl.handle.net/21.15107/rcub_vinar_10879"
}
Novaković, N., Milošević Govedarović, S. S., Paskaš Mamula, B., Kurko, S., Pantić, T., Medić-Ilić, M.,& Grbović-Novaković, J.. (2018). Interaction of oxide ceramics with metal hydrides. in Advanced Ceramics and Application : 7th Serbian Ceramic Society Conference : program and the book of abstracts; September 17-19, 2018; Belgrade
Belgrade : Serbian Ceramic Society., 60-61.
https://hdl.handle.net/21.15107/rcub_vinar_10879
Novaković N, Milošević Govedarović SS, Paskaš Mamula B, Kurko S, Pantić T, Medić-Ilić M, Grbović-Novaković J. Interaction of oxide ceramics with metal hydrides. in Advanced Ceramics and Application : 7th Serbian Ceramic Society Conference : program and the book of abstracts; September 17-19, 2018; Belgrade. 2018;:60-61.
https://hdl.handle.net/21.15107/rcub_vinar_10879 .
Novaković, Nikola, Milošević Govedarović, Sanja S., Paskaš Mamula, Bojana, Kurko, Sandra, Pantić, Tijana, Medić-Ilić, Mirjana, Grbović-Novaković, Jasmina, "Interaction of oxide ceramics with metal hydrides" in Advanced Ceramics and Application : 7th Serbian Ceramic Society Conference : program and the book of abstracts; September 17-19, 2018; Belgrade (2018):60-61,
https://hdl.handle.net/21.15107/rcub_vinar_10879 .