Gattia, Daniele Mirabile

Link to this page

Authority KeyName Variants
f730112e-474c-46de-9569-8b2eff70c830
  • Gattia, Daniele Mirabile (2)
Projects

Author's Bibliography

Nanostructured materials for solid-state hydrogen storage: A review of the achievement of COST Action MP1103

Callini, Elsa; Aguey-Zinsou, Kondo-Francois; Ahuja, Rajeev; Ramon Ares, Jose; Bals, Sara; Biliškov, Nikola; Chakraborty, Sudip; Charalambopoulou, Georgia; Chaudhary, Anna-Lisa; Cuevas, Fermin; Dam, Bernard; de Jongh, Petra; Dornheim, Martin; Filinchuk, Yaroslav; Grbović-Novaković, Jasmina; Hirscher, Michael; Jensen, Torben R.; Jensen, Peter Bjerre; Novaković, Nikola; Lai, Qiwen; Leardini, Fabrice; Gattia, Daniele Mirabile; Pasquini, Luca; Steriotis, Theodore; Turner, Stuart; Vegge, Tejs; Zuttel, Andreas; Montone, Amelia

(2016)

TY  - JOUR
AU  - Callini, Elsa
AU  - Aguey-Zinsou, Kondo-Francois
AU  - Ahuja, Rajeev
AU  - Ramon Ares, Jose
AU  - Bals, Sara
AU  - Biliškov, Nikola
AU  - Chakraborty, Sudip
AU  - Charalambopoulou, Georgia
AU  - Chaudhary, Anna-Lisa
AU  - Cuevas, Fermin
AU  - Dam, Bernard
AU  - de Jongh, Petra
AU  - Dornheim, Martin
AU  - Filinchuk, Yaroslav
AU  - Grbović-Novaković, Jasmina
AU  - Hirscher, Michael
AU  - Jensen, Torben R.
AU  - Jensen, Peter Bjerre
AU  - Novaković, Nikola
AU  - Lai, Qiwen
AU  - Leardini, Fabrice
AU  - Gattia, Daniele Mirabile
AU  - Pasquini, Luca
AU  - Steriotis, Theodore
AU  - Turner, Stuart
AU  - Vegge, Tejs
AU  - Zuttel, Andreas
AU  - Montone, Amelia
PY  - 2016
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/7109
AB  - In the framework of the European Cooperation in Science and Technology (COST) Action MP1103 Nanostructured Materials for Solid-State Hydrogen Storage were synthesized, characterized and modeled. This Action dealt with the state of the art of energy storage and set up a competitive and coordinated network capable to define new and unexplored ways for Solid State Hydrogen Storage by innovative and interdisciplinary research within the European Research Area. An important number of new compounds have been synthesized: metal hydrides, complex hydrides, metal halide ammines and amidoboranes. Tuning the structure from bulk to thin film, nanoparticles and nanoconfined composites improved the hydrogen sorption properties and opened the perspective to new technological applications. Direct imaging of the hydrogenation reactions and in situ measurements under operando conditions have been carried out in these studies. Computational screening methods allowed the prediction of suitable compounds for hydrogen storage and the modeling of the hydrogen sorption reactions on mono-, bi-, and three-dimensional systems. This manuscript presents a review of the main achievements of this Action. (C) 2016 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
T2  - International Journal of Hydrogen Energy
T1  - Nanostructured materials for solid-state hydrogen storage: A review of the achievement of COST Action MP1103
VL  - 41
IS  - 32
SP  - 14404
EP  - 14428
DO  - 10.1016/j.ijhydene.2016.04.025
ER  - 
@article{
author = "Callini, Elsa and Aguey-Zinsou, Kondo-Francois and Ahuja, Rajeev and Ramon Ares, Jose and Bals, Sara and Biliškov, Nikola and Chakraborty, Sudip and Charalambopoulou, Georgia and Chaudhary, Anna-Lisa and Cuevas, Fermin and Dam, Bernard and de Jongh, Petra and Dornheim, Martin and Filinchuk, Yaroslav and Grbović-Novaković, Jasmina and Hirscher, Michael and Jensen, Torben R. and Jensen, Peter Bjerre and Novaković, Nikola and Lai, Qiwen and Leardini, Fabrice and Gattia, Daniele Mirabile and Pasquini, Luca and Steriotis, Theodore and Turner, Stuart and Vegge, Tejs and Zuttel, Andreas and Montone, Amelia",
year = "2016",
abstract = "In the framework of the European Cooperation in Science and Technology (COST) Action MP1103 Nanostructured Materials for Solid-State Hydrogen Storage were synthesized, characterized and modeled. This Action dealt with the state of the art of energy storage and set up a competitive and coordinated network capable to define new and unexplored ways for Solid State Hydrogen Storage by innovative and interdisciplinary research within the European Research Area. An important number of new compounds have been synthesized: metal hydrides, complex hydrides, metal halide ammines and amidoboranes. Tuning the structure from bulk to thin film, nanoparticles and nanoconfined composites improved the hydrogen sorption properties and opened the perspective to new technological applications. Direct imaging of the hydrogenation reactions and in situ measurements under operando conditions have been carried out in these studies. Computational screening methods allowed the prediction of suitable compounds for hydrogen storage and the modeling of the hydrogen sorption reactions on mono-, bi-, and three-dimensional systems. This manuscript presents a review of the main achievements of this Action. (C) 2016 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.",
journal = "International Journal of Hydrogen Energy",
title = "Nanostructured materials for solid-state hydrogen storage: A review of the achievement of COST Action MP1103",
volume = "41",
number = "32",
pages = "14404-14428",
doi = "10.1016/j.ijhydene.2016.04.025"
}
Callini, E., Aguey-Zinsou, K., Ahuja, R., Ramon Ares, J., Bals, S., Biliškov, N., Chakraborty, S., Charalambopoulou, G., Chaudhary, A., Cuevas, F., Dam, B., de Jongh, P., Dornheim, M., Filinchuk, Y., Grbović-Novaković, J., Hirscher, M., Jensen, T. R., Jensen, P. B., Novaković, N., Lai, Q., Leardini, F., Gattia, D. M., Pasquini, L., Steriotis, T., Turner, S., Vegge, T., Zuttel, A.,& Montone, A.. (2016). Nanostructured materials for solid-state hydrogen storage: A review of the achievement of COST Action MP1103. in International Journal of Hydrogen Energy, 41(32), 14404-14428.
https://doi.org/10.1016/j.ijhydene.2016.04.025
Callini E, Aguey-Zinsou K, Ahuja R, Ramon Ares J, Bals S, Biliškov N, Chakraborty S, Charalambopoulou G, Chaudhary A, Cuevas F, Dam B, de Jongh P, Dornheim M, Filinchuk Y, Grbović-Novaković J, Hirscher M, Jensen TR, Jensen PB, Novaković N, Lai Q, Leardini F, Gattia DM, Pasquini L, Steriotis T, Turner S, Vegge T, Zuttel A, Montone A. Nanostructured materials for solid-state hydrogen storage: A review of the achievement of COST Action MP1103. in International Journal of Hydrogen Energy. 2016;41(32):14404-14428.
doi:10.1016/j.ijhydene.2016.04.025 .
Callini, Elsa, Aguey-Zinsou, Kondo-Francois, Ahuja, Rajeev, Ramon Ares, Jose, Bals, Sara, Biliškov, Nikola, Chakraborty, Sudip, Charalambopoulou, Georgia, Chaudhary, Anna-Lisa, Cuevas, Fermin, Dam, Bernard, de Jongh, Petra, Dornheim, Martin, Filinchuk, Yaroslav, Grbović-Novaković, Jasmina, Hirscher, Michael, Jensen, Torben R., Jensen, Peter Bjerre, Novaković, Nikola, Lai, Qiwen, Leardini, Fabrice, Gattia, Daniele Mirabile, Pasquini, Luca, Steriotis, Theodore, Turner, Stuart, Vegge, Tejs, Zuttel, Andreas, Montone, Amelia, "Nanostructured materials for solid-state hydrogen storage: A review of the achievement of COST Action MP1103" in International Journal of Hydrogen Energy, 41, no. 32 (2016):14404-14428,
https://doi.org/10.1016/j.ijhydene.2016.04.025 . .
7
98
66
92

Hydrogen sorption properties of MgH2/NaBH4 composites

Kurko, Sandra V.; Aurora, Annalisa; Gattia, Daniele Mirabile; Contini, Vittoria; Montone, Amelia; Rašković-Lovre, Željka; Grbović-Novaković, Jasmina

(2013)

TY  - JOUR
AU  - Kurko, Sandra V.
AU  - Aurora, Annalisa
AU  - Gattia, Daniele Mirabile
AU  - Contini, Vittoria
AU  - Montone, Amelia
AU  - Rašković-Lovre, Željka
AU  - Grbović-Novaković, Jasmina
PY  - 2013
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/5689
AB  - The hydrogen sorption properties of magnesium hydride-sodium borohydride composites prepared by means of high-energy ball milling under Ar atmosphere were investigated. Mutual influence of milling time and the content of NaBH4 were studied. Microstructural and morphological analyses were carried out using X-ray Diffraction (XRD), laser scattering measurements and Scanning Electron Microscopy (SEM), while kinetic analysis and cycling were performed in a Sieverts volumetric apparatus. It has been shown that low content of NaBH4 and short milling time are beneficial for hydrogen sorption kinetics. Copyright (C) 2013, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.
T2  - International Journal of Hydrogen Energy
T1  - Hydrogen sorption properties of MgH2/NaBH4 composites
VL  - 38
IS  - 27
SP  - 12140
EP  - 12145
DO  - 10.1016/j.ijhydene.2013.04.075
ER  - 
@article{
author = "Kurko, Sandra V. and Aurora, Annalisa and Gattia, Daniele Mirabile and Contini, Vittoria and Montone, Amelia and Rašković-Lovre, Željka and Grbović-Novaković, Jasmina",
year = "2013",
abstract = "The hydrogen sorption properties of magnesium hydride-sodium borohydride composites prepared by means of high-energy ball milling under Ar atmosphere were investigated. Mutual influence of milling time and the content of NaBH4 were studied. Microstructural and morphological analyses were carried out using X-ray Diffraction (XRD), laser scattering measurements and Scanning Electron Microscopy (SEM), while kinetic analysis and cycling were performed in a Sieverts volumetric apparatus. It has been shown that low content of NaBH4 and short milling time are beneficial for hydrogen sorption kinetics. Copyright (C) 2013, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.",
journal = "International Journal of Hydrogen Energy",
title = "Hydrogen sorption properties of MgH2/NaBH4 composites",
volume = "38",
number = "27",
pages = "12140-12145",
doi = "10.1016/j.ijhydene.2013.04.075"
}
Kurko, S. V., Aurora, A., Gattia, D. M., Contini, V., Montone, A., Rašković-Lovre, Ž.,& Grbović-Novaković, J.. (2013). Hydrogen sorption properties of MgH2/NaBH4 composites. in International Journal of Hydrogen Energy, 38(27), 12140-12145.
https://doi.org/10.1016/j.ijhydene.2013.04.075
Kurko SV, Aurora A, Gattia DM, Contini V, Montone A, Rašković-Lovre Ž, Grbović-Novaković J. Hydrogen sorption properties of MgH2/NaBH4 composites. in International Journal of Hydrogen Energy. 2013;38(27):12140-12145.
doi:10.1016/j.ijhydene.2013.04.075 .
Kurko, Sandra V., Aurora, Annalisa, Gattia, Daniele Mirabile, Contini, Vittoria, Montone, Amelia, Rašković-Lovre, Željka, Grbović-Novaković, Jasmina, "Hydrogen sorption properties of MgH2/NaBH4 composites" in International Journal of Hydrogen Energy, 38, no. 27 (2013):12140-12145,
https://doi.org/10.1016/j.ijhydene.2013.04.075 . .
21
16
22