Matos, Mariana

Link to this page

Authority KeyName Variants
orcid::0000-0003-4076-2459
  • Matos, Mariana (1)
Projects

Author's Bibliography

Advancing PHBV Biomedical Potential with the Incorporation of Bacterial Biopigment Prodigiosin

Ponjavić, Marijana; Malagurski, Ivana; Lazić, Jelena; Jeremić, Sanja; Pavlović, Vladimir B.; Prlainović, Nevena; Maksimović, Vesna; Ćosović, Vladan; Atanase, Leonard Ionut; Freitas, Filomena; Matos, Mariana; Nikodinović-Runić, Jasmina

(2023)

TY  - JOUR
AU  - Ponjavić, Marijana
AU  - Malagurski, Ivana
AU  - Lazić, Jelena
AU  - Jeremić, Sanja
AU  - Pavlović, Vladimir B.
AU  - Prlainović, Nevena
AU  - Maksimović, Vesna
AU  - Ćosović, Vladan
AU  - Atanase, Leonard Ionut
AU  - Freitas, Filomena
AU  - Matos, Mariana
AU  - Nikodinović-Runić, Jasmina
PY  - 2023
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/10660
AB  - The quest for sustainable biomaterials with excellent biocompatibility and tailorableproperties has put polyhydroxyalkanoates (PHAs) into the research spotlight. However, high productioncosts and the lack of bioactivity limit their market penetration. To address this, poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) was combined with a bacterial pigment with stronganticancer activity, prodigiosin (PG), to obtain functionally enhanced PHBV-based biomaterials. Thesamples were produced in the form of films 115.6–118.8  m in thickness using the solvent castingmethod. The effects of PG incorporation on the physical properties (morphology, biopolymer crystallinityand thermal stability) and functionality of the obtained biomaterials were investigated. PGhas acted as a nucleating agent, in turn affecting the degree of crystallinity, thermal stability andmorphology of the films. All samples with PG had a more organized internal structure and highermelting and degradation temperatures. The calculated degree of crystallinity of the PHBV copolymerwas 53%, while the PG1, PG3 and PG3 films had values of 64.0%, 63.9% and 69.2%, respectively.Cytotoxicity studies have shown the excellent anticancer activity of films against HCT116 (coloncancer) cells, thus advancing PHBV biomedical application potential.
T2  - International Journal of Molecular Sciences
T1  - Advancing PHBV Biomedical Potential with the Incorporation of Bacterial Biopigment Prodigiosin
VL  - 24
IS  - 3
SP  - 1906
DO  - 10.3390/ijms24031906
ER  - 
@article{
author = "Ponjavić, Marijana and Malagurski, Ivana and Lazić, Jelena and Jeremić, Sanja and Pavlović, Vladimir B. and Prlainović, Nevena and Maksimović, Vesna and Ćosović, Vladan and Atanase, Leonard Ionut and Freitas, Filomena and Matos, Mariana and Nikodinović-Runić, Jasmina",
year = "2023",
abstract = "The quest for sustainable biomaterials with excellent biocompatibility and tailorableproperties has put polyhydroxyalkanoates (PHAs) into the research spotlight. However, high productioncosts and the lack of bioactivity limit their market penetration. To address this, poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) was combined with a bacterial pigment with stronganticancer activity, prodigiosin (PG), to obtain functionally enhanced PHBV-based biomaterials. Thesamples were produced in the form of films 115.6–118.8  m in thickness using the solvent castingmethod. The effects of PG incorporation on the physical properties (morphology, biopolymer crystallinityand thermal stability) and functionality of the obtained biomaterials were investigated. PGhas acted as a nucleating agent, in turn affecting the degree of crystallinity, thermal stability andmorphology of the films. All samples with PG had a more organized internal structure and highermelting and degradation temperatures. The calculated degree of crystallinity of the PHBV copolymerwas 53%, while the PG1, PG3 and PG3 films had values of 64.0%, 63.9% and 69.2%, respectively.Cytotoxicity studies have shown the excellent anticancer activity of films against HCT116 (coloncancer) cells, thus advancing PHBV biomedical application potential.",
journal = "International Journal of Molecular Sciences",
title = "Advancing PHBV Biomedical Potential with the Incorporation of Bacterial Biopigment Prodigiosin",
volume = "24",
number = "3",
pages = "1906",
doi = "10.3390/ijms24031906"
}
Ponjavić, M., Malagurski, I., Lazić, J., Jeremić, S., Pavlović, V. B., Prlainović, N., Maksimović, V., Ćosović, V., Atanase, L. I., Freitas, F., Matos, M.,& Nikodinović-Runić, J.. (2023). Advancing PHBV Biomedical Potential with the Incorporation of Bacterial Biopigment Prodigiosin. in International Journal of Molecular Sciences, 24(3), 1906.
https://doi.org/10.3390/ijms24031906
Ponjavić M, Malagurski I, Lazić J, Jeremić S, Pavlović VB, Prlainović N, Maksimović V, Ćosović V, Atanase LI, Freitas F, Matos M, Nikodinović-Runić J. Advancing PHBV Biomedical Potential with the Incorporation of Bacterial Biopigment Prodigiosin. in International Journal of Molecular Sciences. 2023;24(3):1906.
doi:10.3390/ijms24031906 .
Ponjavić, Marijana, Malagurski, Ivana, Lazić, Jelena, Jeremić, Sanja, Pavlović, Vladimir B., Prlainović, Nevena, Maksimović, Vesna, Ćosović, Vladan, Atanase, Leonard Ionut, Freitas, Filomena, Matos, Mariana, Nikodinović-Runić, Jasmina, "Advancing PHBV Biomedical Potential with the Incorporation of Bacterial Biopigment Prodigiosin" in International Journal of Molecular Sciences, 24, no. 3 (2023):1906,
https://doi.org/10.3390/ijms24031906 . .
2
10
5