Pavlović, Vladimir B.

Link to this page

Authority KeyName Variants
orcid::0000-0002-1138-0331
  • Pavlović, Vladimir B. (149)
  • Pavlović, Vladimir (1)
Projects
Directed synthesis, structure and properties of multifunctional materials Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200017 (University of Belgrade, Institute of Nuclear Sciences 'Vinča', Belgrade-Vinča)
Thin films of single wall carbon nanotubes and graphene for electronic application Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200116 (University of Belgrade, Faculty of Agriculture)
Synthesis, processing and applications of nanostructured multifunctional materials with defined properties Synthesis, processing and characterization of nanostructured materials for application in the field of energy, mechanical engineering, environmental protection and biomedicine
Size-, shape- and structure- dependent properties of nanoparticles and nanocomposites Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200175 (Institute of Technical Sciences of SASA, Belgrade)
Functional, Functionalized and Advanced Nanomaterials Materials of Reduced Dimensions for Efficient Light Harvesting and Energy conversion
Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200026 (University of Belgrade, Institute of Chemistry, Technology and Metallurgy - IChTM) SASPRO - Mobility Programme of Slovak Academy of Sciences: Supportive Fund for Excellent Scientists
Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200135 (University of Belgrade, Faculty of Technology and Metallurgy) Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200162 (University of Belgrade, Faculty of Physics)
PHOTOGUN4MICROBES - Are photoactive nanoparticles salvation for global infectional treath? Synthesis and characterization of novel functional polymers and polymeric nanocomposites
Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200042 (University of Belgrade, Institute of Molecular Genetics and Genetic Engineering) Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200105 (University of Belgrade, Faculty of Mechanical Engineering)
Zero- to Three-Dimensional Nanostructures for Application in Electronics and Renewable Energy Sources: Synthesis, Characterization and Processing Novel encapsulation and enzyme technologies for designing of new biocatalysts and biologically active compounds targeting enhancement of food quality, safety and competitiveness
Investigation of the relation in triad: Synthesis structure-properties for functional materials Application of biotechnological methods for sustainable exploitation of by-products of agro-industry
NSF CREST [HRD-0833184] Bilateral cooperation between Serbia and France [4510339/2016/09/03 “Inteligent econanomaterials and nanocomposites”]
Investigation of intermetallics and semiconductors and possible application in renewable energy sources Investigation of the effect of parameters of synthesis and processing on dielectric, optical and magnetic properties, both bulk and surface of crystal and polymeric systems
Electroconducting and redox-active polymers and oligomers: synthesis, structure, properties and applications Studying signal transduction pathways and epigenetic mechanisms that control human SOX genes expression: further insight into their roles in cell fate determination and differentiation
Geologic and ecotoxicologic research in identification of geopathogen zones of toxic elements in drinking water reservoirs- research into methods and procedures for reduction of biochemical anomalies Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200146 (University of Belgrade, Faculty of Physical Chemistry)

Author's Bibliography

Reduction in Pathogenic Biofilms by the Photoactive Composite of Bacterial Cellulose and Nanochitosan Dots under Blue and Green Light

Zmejkoski, Danica; Zdravković, Nemanja M.; Budimir Filimonović, Milica D.; Pavlović, Vladimir B.; Butulija, Svetlana; Milivojević, Dušan; Marković, Zoran M.; Todorović Marković, Biljana M.

(2024)

TY  - JOUR
AU  - Zmejkoski, Danica
AU  - Zdravković, Nemanja M.
AU  - Budimir Filimonović, Milica D.
AU  - Pavlović, Vladimir B.
AU  - Butulija, Svetlana
AU  - Milivojević, Dušan
AU  - Marković, Zoran M.
AU  - Todorović Marković, Biljana M.
PY  - 2024
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/12990
AB  - In this study, nanochitosan dots (ChiDs) were synthesized using gamma rays and encapsulated in bacterial cellulose (BC) polymer matrix for antibiofilm potential in photodynamic therapy. The composites were analyzed for structural changes using SEM, AFM, FTIR, XRD, EPR, and porosity measurements. Additionally, ChiD release was assessed. The results showed that the chemical composition remained unaltered, but ChiD agglomerates embedded in BC changed shape (1.5–2.5 µm). Bacterial cellulose fibers became deformed and interconnected, with increased surface roughness and porosity and decreased crystallinity. No singlet oxygen formation was observed, and the total amount of released ChiD was up to 16.10%. Antibiofilm activity was higher under green light, with reductions ranging from 48 to 57% under blue light and 78 to 85% under green light. Methicillin-resistant Staphylococcus aureus was the most sensitive strain. The new photoactive composite hydrogels show promising potential for combating biofilm-related infections.
T2  - Journal of Functional Biomaterials
T1  - Reduction in Pathogenic Biofilms by the Photoactive Composite of Bacterial Cellulose and Nanochitosan Dots under Blue and Green Light
VL  - 15
IS  - 3
SP  - 72
DO  - 10.3390/jfb15030072
ER  - 
@article{
author = "Zmejkoski, Danica and Zdravković, Nemanja M. and Budimir Filimonović, Milica D. and Pavlović, Vladimir B. and Butulija, Svetlana and Milivojević, Dušan and Marković, Zoran M. and Todorović Marković, Biljana M.",
year = "2024",
abstract = "In this study, nanochitosan dots (ChiDs) were synthesized using gamma rays and encapsulated in bacterial cellulose (BC) polymer matrix for antibiofilm potential in photodynamic therapy. The composites were analyzed for structural changes using SEM, AFM, FTIR, XRD, EPR, and porosity measurements. Additionally, ChiD release was assessed. The results showed that the chemical composition remained unaltered, but ChiD agglomerates embedded in BC changed shape (1.5–2.5 µm). Bacterial cellulose fibers became deformed and interconnected, with increased surface roughness and porosity and decreased crystallinity. No singlet oxygen formation was observed, and the total amount of released ChiD was up to 16.10%. Antibiofilm activity was higher under green light, with reductions ranging from 48 to 57% under blue light and 78 to 85% under green light. Methicillin-resistant Staphylococcus aureus was the most sensitive strain. The new photoactive composite hydrogels show promising potential for combating biofilm-related infections.",
journal = "Journal of Functional Biomaterials",
title = "Reduction in Pathogenic Biofilms by the Photoactive Composite of Bacterial Cellulose and Nanochitosan Dots under Blue and Green Light",
volume = "15",
number = "3",
pages = "72",
doi = "10.3390/jfb15030072"
}
Zmejkoski, D., Zdravković, N. M., Budimir Filimonović, M. D., Pavlović, V. B., Butulija, S., Milivojević, D., Marković, Z. M.,& Todorović Marković, B. M.. (2024). Reduction in Pathogenic Biofilms by the Photoactive Composite of Bacterial Cellulose and Nanochitosan Dots under Blue and Green Light. in Journal of Functional Biomaterials, 15(3), 72.
https://doi.org/10.3390/jfb15030072
Zmejkoski D, Zdravković NM, Budimir Filimonović MD, Pavlović VB, Butulija S, Milivojević D, Marković ZM, Todorović Marković BM. Reduction in Pathogenic Biofilms by the Photoactive Composite of Bacterial Cellulose and Nanochitosan Dots under Blue and Green Light. in Journal of Functional Biomaterials. 2024;15(3):72.
doi:10.3390/jfb15030072 .
Zmejkoski, Danica, Zdravković, Nemanja M., Budimir Filimonović, Milica D., Pavlović, Vladimir B., Butulija, Svetlana, Milivojević, Dušan, Marković, Zoran M., Todorović Marković, Biljana M., "Reduction in Pathogenic Biofilms by the Photoactive Composite of Bacterial Cellulose and Nanochitosan Dots under Blue and Green Light" in Journal of Functional Biomaterials, 15, no. 3 (2024):72,
https://doi.org/10.3390/jfb15030072 . .

Effects of Synthesis Parameters on Structure and Antimicrobial Properties of Bacterial Cellulose/Hydroxyapatite/TiO2 Polymer–Ceramic Composite Material

Sknepnek, Aleksandra; Filipović, Suzana; Pavlović, Vladimir B.; Mirković, Nemanja; Miletić, Dunja; Gržetić, Jelena; Mirković, Miljana M.

(2024)

TY  - JOUR
AU  - Sknepnek, Aleksandra
AU  - Filipović, Suzana
AU  - Pavlović, Vladimir B.
AU  - Mirković, Nemanja
AU  - Miletić, Dunja
AU  - Gržetić, Jelena
AU  - Mirković, Miljana M.
PY  - 2024
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/12793
AB  - Bacterial cellulose (BC) is a highly pure polysaccharide biopolymer that can be produced by various bacterial genera. Even though BC lacks functional properties, its porosity, three-dimensional network, and high specific surface area make it a suitable carrier for functional composite materials. In the present study, BC-producing bacteria were isolated from kombucha beverage and identified using a molecular method. Two sets of the BC hydrogels were produced in static conditions after four and seven days. Afterwards, two different synthesis pathways were applied for BC functionalization. The first method implied the incorporation of previously synthesized HAp/TiO2 nanocomposite using an immersion technique, while the second method included the functionalization of BC during the synthesis of HAp/TiO2 nanocomposite in the reaction mixture. The primary goal was to find the best method to obtain the functionalized material. Physicochemical and microstructural properties were analyzed by SEM, EDS, FTIR, and XRD methods. Further properties were examined by tensile test and thermogravimetric analysis, and antimicrobial activity was assessed by a total plate count assay. The results showed that HAp/TiO2 was successfully incorporated into the produced BC hydrogels using both methods. The applied methods of incorporation influenced the differences in morphology, phase distribution, mechanical and thermal properties, and antimicrobial activity against Staphylococcus aureus (ATCC 25923), Escherichia coli (ATCC 25922), Proteus mirabilis (ATCC 12453), and Candida albicans (ATCC 10231). Composite material can be recommended for further development and application in environments that are suitable for diseases spreading.
T2  - Polymers
T1  - Effects of Synthesis Parameters on Structure and Antimicrobial Properties of Bacterial Cellulose/Hydroxyapatite/TiO2 Polymer–Ceramic Composite Material
VL  - 16
IS  - 4
SP  - 470
DO  - 10.3390/polym16040470
ER  - 
@article{
author = "Sknepnek, Aleksandra and Filipović, Suzana and Pavlović, Vladimir B. and Mirković, Nemanja and Miletić, Dunja and Gržetić, Jelena and Mirković, Miljana M.",
year = "2024",
abstract = "Bacterial cellulose (BC) is a highly pure polysaccharide biopolymer that can be produced by various bacterial genera. Even though BC lacks functional properties, its porosity, three-dimensional network, and high specific surface area make it a suitable carrier for functional composite materials. In the present study, BC-producing bacteria were isolated from kombucha beverage and identified using a molecular method. Two sets of the BC hydrogels were produced in static conditions after four and seven days. Afterwards, two different synthesis pathways were applied for BC functionalization. The first method implied the incorporation of previously synthesized HAp/TiO2 nanocomposite using an immersion technique, while the second method included the functionalization of BC during the synthesis of HAp/TiO2 nanocomposite in the reaction mixture. The primary goal was to find the best method to obtain the functionalized material. Physicochemical and microstructural properties were analyzed by SEM, EDS, FTIR, and XRD methods. Further properties were examined by tensile test and thermogravimetric analysis, and antimicrobial activity was assessed by a total plate count assay. The results showed that HAp/TiO2 was successfully incorporated into the produced BC hydrogels using both methods. The applied methods of incorporation influenced the differences in morphology, phase distribution, mechanical and thermal properties, and antimicrobial activity against Staphylococcus aureus (ATCC 25923), Escherichia coli (ATCC 25922), Proteus mirabilis (ATCC 12453), and Candida albicans (ATCC 10231). Composite material can be recommended for further development and application in environments that are suitable for diseases spreading.",
journal = "Polymers",
title = "Effects of Synthesis Parameters on Structure and Antimicrobial Properties of Bacterial Cellulose/Hydroxyapatite/TiO2 Polymer–Ceramic Composite Material",
volume = "16",
number = "4",
pages = "470",
doi = "10.3390/polym16040470"
}
Sknepnek, A., Filipović, S., Pavlović, V. B., Mirković, N., Miletić, D., Gržetić, J.,& Mirković, M. M.. (2024). Effects of Synthesis Parameters on Structure and Antimicrobial Properties of Bacterial Cellulose/Hydroxyapatite/TiO2 Polymer–Ceramic Composite Material. in Polymers, 16(4), 470.
https://doi.org/10.3390/polym16040470
Sknepnek A, Filipović S, Pavlović VB, Mirković N, Miletić D, Gržetić J, Mirković MM. Effects of Synthesis Parameters on Structure and Antimicrobial Properties of Bacterial Cellulose/Hydroxyapatite/TiO2 Polymer–Ceramic Composite Material. in Polymers. 2024;16(4):470.
doi:10.3390/polym16040470 .
Sknepnek, Aleksandra, Filipović, Suzana, Pavlović, Vladimir B., Mirković, Nemanja, Miletić, Dunja, Gržetić, Jelena, Mirković, Miljana M., "Effects of Synthesis Parameters on Structure and Antimicrobial Properties of Bacterial Cellulose/Hydroxyapatite/TiO2 Polymer–Ceramic Composite Material" in Polymers, 16, no. 4 (2024):470,
https://doi.org/10.3390/polym16040470 . .
1

Toward improved PVDF-BaTiO3 composite dielectrics: mechanical activation of the filler versus filler content

Đoković, Vladimir; Dudić, Duško; Dojčilović, Radovan; Marinković, Filip S.; Pavlović, Vera P.; Pavlović, Vladimir B.; Vlahović, Branislav

(2023)

TY  - JOUR
AU  - Đoković, Vladimir
AU  - Dudić, Duško
AU  - Dojčilović, Radovan
AU  - Marinković, Filip S.
AU  - Pavlović, Vera P.
AU  - Pavlović, Vladimir B.
AU  - Vlahović, Branislav
PY  - 2023
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/11656
AB  - Barium titanate (BT) perovskite particles were surface modified by means of mechanical treatment and used as inorganic component in polyvinylidene fluoride (PVDF) based composites. The changes in electrical properties of the composite films with increasing in filler content were followed by dielectric spectroscopy, breakdown strength and D-E measurements. A comparison of the properties of the composites prepared with untreated and mechanically activated particles revealed that there is a significant difference in their performances at low filler concentrations (<20 wt%). Introduction of the surface modified ceramic particles into PVDF matrix led to an increase of the dielectric constant without affecting significantly the electrical breakdown strength. In contrast, when as received BT particles were used a filler, both dielectric constants and breakdown strengths of the composite films were lower than the corresponding values observed for the pure PVDF. At higher concentrations, however, the influence of pre-treatment of the filler on the effective electrical properties becomes less significant. The obtained results were discussed in terms of the pronounced crystallization of polar β and γ crystal phases of PVDF in the presence of surface modified BT fillers, which is confirmed by Raman spectroscopy.
T2  - Physica Scripta
T1  - Toward improved PVDF-BaTiO3 composite dielectrics: mechanical activation of the filler versus filler content
VL  - 98
IS  - 11
SP  - 115932
DO  - 10.1088/1402-4896/acff4d
ER  - 
@article{
author = "Đoković, Vladimir and Dudić, Duško and Dojčilović, Radovan and Marinković, Filip S. and Pavlović, Vera P. and Pavlović, Vladimir B. and Vlahović, Branislav",
year = "2023",
abstract = "Barium titanate (BT) perovskite particles were surface modified by means of mechanical treatment and used as inorganic component in polyvinylidene fluoride (PVDF) based composites. The changes in electrical properties of the composite films with increasing in filler content were followed by dielectric spectroscopy, breakdown strength and D-E measurements. A comparison of the properties of the composites prepared with untreated and mechanically activated particles revealed that there is a significant difference in their performances at low filler concentrations (<20 wt%). Introduction of the surface modified ceramic particles into PVDF matrix led to an increase of the dielectric constant without affecting significantly the electrical breakdown strength. In contrast, when as received BT particles were used a filler, both dielectric constants and breakdown strengths of the composite films were lower than the corresponding values observed for the pure PVDF. At higher concentrations, however, the influence of pre-treatment of the filler on the effective electrical properties becomes less significant. The obtained results were discussed in terms of the pronounced crystallization of polar β and γ crystal phases of PVDF in the presence of surface modified BT fillers, which is confirmed by Raman spectroscopy.",
journal = "Physica Scripta",
title = "Toward improved PVDF-BaTiO3 composite dielectrics: mechanical activation of the filler versus filler content",
volume = "98",
number = "11",
pages = "115932",
doi = "10.1088/1402-4896/acff4d"
}
Đoković, V., Dudić, D., Dojčilović, R., Marinković, F. S., Pavlović, V. P., Pavlović, V. B.,& Vlahović, B.. (2023). Toward improved PVDF-BaTiO3 composite dielectrics: mechanical activation of the filler versus filler content. in Physica Scripta, 98(11), 115932.
https://doi.org/10.1088/1402-4896/acff4d
Đoković V, Dudić D, Dojčilović R, Marinković FS, Pavlović VP, Pavlović VB, Vlahović B. Toward improved PVDF-BaTiO3 composite dielectrics: mechanical activation of the filler versus filler content. in Physica Scripta. 2023;98(11):115932.
doi:10.1088/1402-4896/acff4d .
Đoković, Vladimir, Dudić, Duško, Dojčilović, Radovan, Marinković, Filip S., Pavlović, Vera P., Pavlović, Vladimir B., Vlahović, Branislav, "Toward improved PVDF-BaTiO3 composite dielectrics: mechanical activation of the filler versus filler content" in Physica Scripta, 98, no. 11 (2023):115932,
https://doi.org/10.1088/1402-4896/acff4d . .

Effect of the filler morphology on the crystallization behavior and dielectric properties of the polyvinylidene fluoride‐based composite

Filipović, Suzana; Obradović, Nina; Corlett, Cole; Fahrenholtz, William G.; Rosenschon, Martin; Füglein, Ekkehard; Dojčilović, Radovan; Tošić, Dragana; Petrović, Jovana; Đorđević, Antonije; Vlahović, Branislav; Pavlović, Vladimir B.

(2023)

TY  - JOUR
AU  - Filipović, Suzana
AU  - Obradović, Nina
AU  - Corlett, Cole
AU  - Fahrenholtz, William G.
AU  - Rosenschon, Martin
AU  - Füglein, Ekkehard
AU  - Dojčilović, Radovan
AU  - Tošić, Dragana
AU  - Petrović, Jovana
AU  - Đorđević, Antonije
AU  - Vlahović, Branislav
AU  - Pavlović, Vladimir B.
PY  - 2023
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/12400
AB  - Ceramic/polymer composites can be chemically stable, mechanically strong, and flexible, which make them candidates for electric devices, such as pressure or temperature sensors, energy storage or harvesting devices, actuators, and so forth. Depending on the application, various electrical properties are of importance. Polymers usually have low dielectric permittivity, but increased dielectric permittivity can be achieved by the addition of the ceramic fillers with high dielectric constant. With the aim to enhance dielectric properties of the composite without loss of flexibility, 5 wt% of BaTiO3-Fe2O3 powder was added into a polyvinylidene fluoride matrix. The powder was prepared by different synthesis conditions to produce core/shell structures. The effect of the phase composition and morphology of the BaTiO3-Fe2O3 core/shell filler on the structure and lattice dynamics of the polymer composites was investigated. Based on the results of the thermal analysis, various parameters of ceramic/polymer composites were determined. Differences in the phase composition and morphology of the filler have an influence on the formation of various polyvinylidene fluoride allomorphs and the degree of crystallinity. Furthermore, the dielectric performances of pure polyvinylidene fluoride and the polymer/ceramic composites were measured.
T2  - Journal of Applied Polymer Science
T1  - Effect of the filler morphology on the crystallization behavior and dielectric properties of the polyvinylidene fluoride‐based composite
DO  - 10.1002/app.55040
ER  - 
@article{
author = "Filipović, Suzana and Obradović, Nina and Corlett, Cole and Fahrenholtz, William G. and Rosenschon, Martin and Füglein, Ekkehard and Dojčilović, Radovan and Tošić, Dragana and Petrović, Jovana and Đorđević, Antonije and Vlahović, Branislav and Pavlović, Vladimir B.",
year = "2023",
abstract = "Ceramic/polymer composites can be chemically stable, mechanically strong, and flexible, which make them candidates for electric devices, such as pressure or temperature sensors, energy storage or harvesting devices, actuators, and so forth. Depending on the application, various electrical properties are of importance. Polymers usually have low dielectric permittivity, but increased dielectric permittivity can be achieved by the addition of the ceramic fillers with high dielectric constant. With the aim to enhance dielectric properties of the composite without loss of flexibility, 5 wt% of BaTiO3-Fe2O3 powder was added into a polyvinylidene fluoride matrix. The powder was prepared by different synthesis conditions to produce core/shell structures. The effect of the phase composition and morphology of the BaTiO3-Fe2O3 core/shell filler on the structure and lattice dynamics of the polymer composites was investigated. Based on the results of the thermal analysis, various parameters of ceramic/polymer composites were determined. Differences in the phase composition and morphology of the filler have an influence on the formation of various polyvinylidene fluoride allomorphs and the degree of crystallinity. Furthermore, the dielectric performances of pure polyvinylidene fluoride and the polymer/ceramic composites were measured.",
journal = "Journal of Applied Polymer Science",
title = "Effect of the filler morphology on the crystallization behavior and dielectric properties of the polyvinylidene fluoride‐based composite",
doi = "10.1002/app.55040"
}
Filipović, S., Obradović, N., Corlett, C., Fahrenholtz, W. G., Rosenschon, M., Füglein, E., Dojčilović, R., Tošić, D., Petrović, J., Đorđević, A., Vlahović, B.,& Pavlović, V. B.. (2023). Effect of the filler morphology on the crystallization behavior and dielectric properties of the polyvinylidene fluoride‐based composite. in Journal of Applied Polymer Science.
https://doi.org/10.1002/app.55040
Filipović S, Obradović N, Corlett C, Fahrenholtz WG, Rosenschon M, Füglein E, Dojčilović R, Tošić D, Petrović J, Đorđević A, Vlahović B, Pavlović VB. Effect of the filler morphology on the crystallization behavior and dielectric properties of the polyvinylidene fluoride‐based composite. in Journal of Applied Polymer Science. 2023;.
doi:10.1002/app.55040 .
Filipović, Suzana, Obradović, Nina, Corlett, Cole, Fahrenholtz, William G., Rosenschon, Martin, Füglein, Ekkehard, Dojčilović, Radovan, Tošić, Dragana, Petrović, Jovana, Đorđević, Antonije, Vlahović, Branislav, Pavlović, Vladimir B., "Effect of the filler morphology on the crystallization behavior and dielectric properties of the polyvinylidene fluoride‐based composite" in Journal of Applied Polymer Science (2023),
https://doi.org/10.1002/app.55040 . .

Structural, optical, and bioimaging characterization of carbon quantum dots solvothermally synthesized from o-phenylenediamine

Marković, Zoran M.; Budimir, Milica; Danko, Martin; Milivojević, Dušan; Kubat, Pavel; Zmejkoski, Danica; Pavlović, Vladimir B.; Mojsin, Marija; Stevanović, Milena J.; Todorović-Marković, Biljana

(2023)

TY  - JOUR
AU  - Marković, Zoran M.
AU  - Budimir, Milica
AU  - Danko, Martin
AU  - Milivojević, Dušan
AU  - Kubat, Pavel
AU  - Zmejkoski, Danica
AU  - Pavlović, Vladimir B.
AU  - Mojsin, Marija
AU  - Stevanović, Milena J.
AU  - Todorović-Marković, Biljana
PY  - 2023
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/10632
AB  - Carbon quantum dots as a novel type of carbon nanomaterials have attracted the attention of many researchers because of their unique optical, antibacterial, and anticancer properties as well as their biocompatibility. In this study, for the first time, carbon quantum dots were prepared from o-phenylenediamine dissolved in toluene by a solvothermal route. Subsequently, the prepared carbon quantum dots were encapsulated into polyurethane films by a swelling–encapsulation–shrink method. Analyses of the results obtained by different characterization methods (AFM, TEM, EDS, FTIR, photoluminescence, and EPR) indicate the significant influence of the precursor on structural, chemical, and optical properties. Antibacterial and cytotoxicity tests showed that these dots did not have any antibacterial potential, because of the low extent of reactive oxygen species production, and showed low dark cytotoxicity. By investigating the cellular uptake, it was established that these dots penetrated the HeLa cells and could be used as probes for bioimaging.
T2  - Beilstein Journal of Nanotechnology
T1  - Structural, optical, and bioimaging characterization of carbon quantum dots solvothermally synthesized from o-phenylenediamine
VL  - 14
IS  - 1
SP  - 165
EP  - 174
DO  - 10.3762/bjnano.14.17
ER  - 
@article{
author = "Marković, Zoran M. and Budimir, Milica and Danko, Martin and Milivojević, Dušan and Kubat, Pavel and Zmejkoski, Danica and Pavlović, Vladimir B. and Mojsin, Marija and Stevanović, Milena J. and Todorović-Marković, Biljana",
year = "2023",
abstract = "Carbon quantum dots as a novel type of carbon nanomaterials have attracted the attention of many researchers because of their unique optical, antibacterial, and anticancer properties as well as their biocompatibility. In this study, for the first time, carbon quantum dots were prepared from o-phenylenediamine dissolved in toluene by a solvothermal route. Subsequently, the prepared carbon quantum dots were encapsulated into polyurethane films by a swelling–encapsulation–shrink method. Analyses of the results obtained by different characterization methods (AFM, TEM, EDS, FTIR, photoluminescence, and EPR) indicate the significant influence of the precursor on structural, chemical, and optical properties. Antibacterial and cytotoxicity tests showed that these dots did not have any antibacterial potential, because of the low extent of reactive oxygen species production, and showed low dark cytotoxicity. By investigating the cellular uptake, it was established that these dots penetrated the HeLa cells and could be used as probes for bioimaging.",
journal = "Beilstein Journal of Nanotechnology",
title = "Structural, optical, and bioimaging characterization of carbon quantum dots solvothermally synthesized from o-phenylenediamine",
volume = "14",
number = "1",
pages = "165-174",
doi = "10.3762/bjnano.14.17"
}
Marković, Z. M., Budimir, M., Danko, M., Milivojević, D., Kubat, P., Zmejkoski, D., Pavlović, V. B., Mojsin, M., Stevanović, M. J.,& Todorović-Marković, B.. (2023). Structural, optical, and bioimaging characterization of carbon quantum dots solvothermally synthesized from o-phenylenediamine. in Beilstein Journal of Nanotechnology, 14(1), 165-174.
https://doi.org/10.3762/bjnano.14.17
Marković ZM, Budimir M, Danko M, Milivojević D, Kubat P, Zmejkoski D, Pavlović VB, Mojsin M, Stevanović MJ, Todorović-Marković B. Structural, optical, and bioimaging characterization of carbon quantum dots solvothermally synthesized from o-phenylenediamine. in Beilstein Journal of Nanotechnology. 2023;14(1):165-174.
doi:10.3762/bjnano.14.17 .
Marković, Zoran M., Budimir, Milica, Danko, Martin, Milivojević, Dušan, Kubat, Pavel, Zmejkoski, Danica, Pavlović, Vladimir B., Mojsin, Marija, Stevanović, Milena J., Todorović-Marković, Biljana, "Structural, optical, and bioimaging characterization of carbon quantum dots solvothermally synthesized from o-phenylenediamine" in Beilstein Journal of Nanotechnology, 14, no. 1 (2023):165-174,
https://doi.org/10.3762/bjnano.14.17 . .
2
5

Employing Gamma-Ray-Modified Carbon Quantum Dots to Combat a Wide Range of Bacteria

Marković, Zoran M.; Mišović, Aleksandra; Zmejkoski, Danica; Zdravković, Nemanja M.; Kovač, Janez; Bajuk-Bogdanović, Danica; Milivojević, Dušan; Mojsin, Marija; Stevanović, Milena; Pavlović, Vladimir B.; Todorović-Marković, Biljana

(2023)

TY  - JOUR
AU  - Marković, Zoran M.
AU  - Mišović, Aleksandra
AU  - Zmejkoski, Danica
AU  - Zdravković, Nemanja M.
AU  - Kovač, Janez
AU  - Bajuk-Bogdanović, Danica
AU  - Milivojević, Dušan
AU  - Mojsin, Marija
AU  - Stevanović, Milena
AU  - Pavlović, Vladimir B.
AU  - Todorović-Marković, Biljana
PY  - 2023
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/11075
AB  - Nowadays, it is a great challenge to develop new medicines for treating various infectious diseases. The treatment of these diseases is of utmost interest to further prevent the development of multi-drug resistance in different pathogens. Carbon quantum dots, as a new member of the carbon nanomaterials family, can potentially be used as a highly promising visible-light-triggered antibacterial agent. In this work, the results of antibacterial and cytotoxic activities of gamma-ray-irradiated carbon quantum dots are presented. Carbon quantum dots (CQDs) were synthesized from citric acid by a pyrolysis procedure and irradiated by gamma rays at different doses (25, 50, 100 and 200 kGy). Structure, chemical composition and optical properties were investigated by atomic force microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, Raman spectroscopy, UV-Vis spectrometry and photoluminescence. Structural analysis showed that CQDs have a spherical-like shape and dose-dependent average diameters and heights. Antibacterial tests showed that all irradiated dots had antibacterial activity but CQDs irradiated with dose of 100 kGy had antibacterial activity against all seven pathogen-reference bacterial strains. Gamma-ray-modified CQDs did not show any cytotoxicity toward human fetal-originated MRC-5 cells. Moreover, fluorescence microscopy showed excellent cellular uptake of CQDs irradiated with doses of 25 and 200 kGy into MRC-5 cells.
T2  - Antibiotics
T1  - Employing Gamma-Ray-Modified Carbon Quantum Dots to Combat a Wide Range of Bacteria
VL  - 12
IS  - 5
SP  - 919
DO  - 10.3390/antibiotics12050919
ER  - 
@article{
author = "Marković, Zoran M. and Mišović, Aleksandra and Zmejkoski, Danica and Zdravković, Nemanja M. and Kovač, Janez and Bajuk-Bogdanović, Danica and Milivojević, Dušan and Mojsin, Marija and Stevanović, Milena and Pavlović, Vladimir B. and Todorović-Marković, Biljana",
year = "2023",
abstract = "Nowadays, it is a great challenge to develop new medicines for treating various infectious diseases. The treatment of these diseases is of utmost interest to further prevent the development of multi-drug resistance in different pathogens. Carbon quantum dots, as a new member of the carbon nanomaterials family, can potentially be used as a highly promising visible-light-triggered antibacterial agent. In this work, the results of antibacterial and cytotoxic activities of gamma-ray-irradiated carbon quantum dots are presented. Carbon quantum dots (CQDs) were synthesized from citric acid by a pyrolysis procedure and irradiated by gamma rays at different doses (25, 50, 100 and 200 kGy). Structure, chemical composition and optical properties were investigated by atomic force microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, Raman spectroscopy, UV-Vis spectrometry and photoluminescence. Structural analysis showed that CQDs have a spherical-like shape and dose-dependent average diameters and heights. Antibacterial tests showed that all irradiated dots had antibacterial activity but CQDs irradiated with dose of 100 kGy had antibacterial activity against all seven pathogen-reference bacterial strains. Gamma-ray-modified CQDs did not show any cytotoxicity toward human fetal-originated MRC-5 cells. Moreover, fluorescence microscopy showed excellent cellular uptake of CQDs irradiated with doses of 25 and 200 kGy into MRC-5 cells.",
journal = "Antibiotics",
title = "Employing Gamma-Ray-Modified Carbon Quantum Dots to Combat a Wide Range of Bacteria",
volume = "12",
number = "5",
pages = "919",
doi = "10.3390/antibiotics12050919"
}
Marković, Z. M., Mišović, A., Zmejkoski, D., Zdravković, N. M., Kovač, J., Bajuk-Bogdanović, D., Milivojević, D., Mojsin, M., Stevanović, M., Pavlović, V. B.,& Todorović-Marković, B.. (2023). Employing Gamma-Ray-Modified Carbon Quantum Dots to Combat a Wide Range of Bacteria. in Antibiotics, 12(5), 919.
https://doi.org/10.3390/antibiotics12050919
Marković ZM, Mišović A, Zmejkoski D, Zdravković NM, Kovač J, Bajuk-Bogdanović D, Milivojević D, Mojsin M, Stevanović M, Pavlović VB, Todorović-Marković B. Employing Gamma-Ray-Modified Carbon Quantum Dots to Combat a Wide Range of Bacteria. in Antibiotics. 2023;12(5):919.
doi:10.3390/antibiotics12050919 .
Marković, Zoran M., Mišović, Aleksandra, Zmejkoski, Danica, Zdravković, Nemanja M., Kovač, Janez, Bajuk-Bogdanović, Danica, Milivojević, Dušan, Mojsin, Marija, Stevanović, Milena, Pavlović, Vladimir B., Todorović-Marković, Biljana, "Employing Gamma-Ray-Modified Carbon Quantum Dots to Combat a Wide Range of Bacteria" in Antibiotics, 12, no. 5 (2023):919,
https://doi.org/10.3390/antibiotics12050919 . .
4
1

Design of PEI and Amine Modified Metakaolin-Brushite Hybrid Polymeric Composite Materials for CO2 Capturing

Mirković, Miljana; Yilmaz, Muge Sari; Kljajević, Ljiljana M.; Pavlović, Vladimir B.; Ivanović, Marija; Đukić, Dunja; Eren, Tarik

(2023)

TY  - JOUR
AU  - Mirković, Miljana
AU  - Yilmaz, Muge Sari
AU  - Kljajević, Ljiljana M.
AU  - Pavlović, Vladimir B.
AU  - Ivanović, Marija
AU  - Đukić, Dunja
AU  - Eren, Tarik
PY  - 2023
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/11031
AB  - In this paper, the properties of organic-inorganic hybrid polymer materials, which were synthesized from an aluminosilicate inorganic matrix with the addition of brushite and aminosilane grafted on one side and PEI covalently bonded composites on the other side, were examined. The synthesized organic-inorganic hybrid polymers were examined in terms of a structural, morphological, thermo-gravimetric, and adsorption-desorption analysis and also as potential CO2 capturers. The structural and phase properties as well as the percentage contents of the crystalline and amorphous phase were determined by the X-ray diffraction method. The higher content of the amorphous phase in the structure of hybrid polymers was proven in metakaolin and metakaolin-brushite hybrid samples with the addition of amino silane and with 1,000,000 PEI in a structure. The DRIFT method showed the main band changes with the addition of an organic phase and inorganic matrix. Microstructural studies with the EDS analysis showed a uniform distribution of organic and inorganic phases in the hybrid geopolymers. The thermo-gravimetric analysis showed that organic compounds are successfully bonded to inorganic polymer matrix, while adsorption-desorption analysis confirmed that the organic phase completely covered the surface of the inorganic matrix. The CO2 adsorption experiments showed that the amine-modified composites have the higher capture capacity, which is 0.685 mmol·g−1 for the GM10 sample and 0.581 mmol·g−1 for the BGM10 sample, with 1,000,000 PEI in the structure.
T2  - Polymers
T1  - Design of PEI and Amine Modified Metakaolin-Brushite Hybrid Polymeric Composite Materials for CO2 Capturing
VL  - 15
IS  - 7
SP  - 1669
DO  - 10.3390/polym15071669
ER  - 
@article{
author = "Mirković, Miljana and Yilmaz, Muge Sari and Kljajević, Ljiljana M. and Pavlović, Vladimir B. and Ivanović, Marija and Đukić, Dunja and Eren, Tarik",
year = "2023",
abstract = "In this paper, the properties of organic-inorganic hybrid polymer materials, which were synthesized from an aluminosilicate inorganic matrix with the addition of brushite and aminosilane grafted on one side and PEI covalently bonded composites on the other side, were examined. The synthesized organic-inorganic hybrid polymers were examined in terms of a structural, morphological, thermo-gravimetric, and adsorption-desorption analysis and also as potential CO2 capturers. The structural and phase properties as well as the percentage contents of the crystalline and amorphous phase were determined by the X-ray diffraction method. The higher content of the amorphous phase in the structure of hybrid polymers was proven in metakaolin and metakaolin-brushite hybrid samples with the addition of amino silane and with 1,000,000 PEI in a structure. The DRIFT method showed the main band changes with the addition of an organic phase and inorganic matrix. Microstructural studies with the EDS analysis showed a uniform distribution of organic and inorganic phases in the hybrid geopolymers. The thermo-gravimetric analysis showed that organic compounds are successfully bonded to inorganic polymer matrix, while adsorption-desorption analysis confirmed that the organic phase completely covered the surface of the inorganic matrix. The CO2 adsorption experiments showed that the amine-modified composites have the higher capture capacity, which is 0.685 mmol·g−1 for the GM10 sample and 0.581 mmol·g−1 for the BGM10 sample, with 1,000,000 PEI in the structure.",
journal = "Polymers",
title = "Design of PEI and Amine Modified Metakaolin-Brushite Hybrid Polymeric Composite Materials for CO2 Capturing",
volume = "15",
number = "7",
pages = "1669",
doi = "10.3390/polym15071669"
}
Mirković, M., Yilmaz, M. S., Kljajević, L. M., Pavlović, V. B., Ivanović, M., Đukić, D.,& Eren, T.. (2023). Design of PEI and Amine Modified Metakaolin-Brushite Hybrid Polymeric Composite Materials for CO2 Capturing. in Polymers, 15(7), 1669.
https://doi.org/10.3390/polym15071669
Mirković M, Yilmaz MS, Kljajević LM, Pavlović VB, Ivanović M, Đukić D, Eren T. Design of PEI and Amine Modified Metakaolin-Brushite Hybrid Polymeric Composite Materials for CO2 Capturing. in Polymers. 2023;15(7):1669.
doi:10.3390/polym15071669 .
Mirković, Miljana, Yilmaz, Muge Sari, Kljajević, Ljiljana M., Pavlović, Vladimir B., Ivanović, Marija, Đukić, Dunja, Eren, Tarik, "Design of PEI and Amine Modified Metakaolin-Brushite Hybrid Polymeric Composite Materials for CO2 Capturing" in Polymers, 15, no. 7 (2023):1669,
https://doi.org/10.3390/polym15071669 . .
2
1

BaTiO3/NixZn1−xFe2O4 (x = 0, 0.5, 1) Composites Synthesized by Thermal Decomposition: Magnetic, Dielectric and Ferroelectric Properties

Šuljagić, Marija; Petronijević, Ivan; Mirković, Miljana M.; Kremenović, Aleksandar S.; Džunuzović, Adis; Pavlović, Vladimir B.; Kalezić-Glišović, Aleksandra; Anđelković, Ljubica

(2023)

TY  - JOUR
AU  - Šuljagić, Marija
AU  - Petronijević, Ivan
AU  - Mirković, Miljana M.
AU  - Kremenović, Aleksandar S.
AU  - Džunuzović, Adis
AU  - Pavlović, Vladimir B.
AU  - Kalezić-Glišović, Aleksandra
AU  - Anđelković, Ljubica
PY  - 2023
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/10690
AB  - To investigate the influence of spinel structure and sintering temperature on the functional properties of BaTiO3/NixZn1−xFe2O4 (x = 0, 0.5, 1), NiFe2O4, ZnFe2O4, and Ni0.5Zn0.5Fe2O4 were in situ prepared by thermal decomposition onto BaTiO3 surface from acetylacetonate precursors. As-prepared powders were additionally sintered at 1150 °C and 1300 °C. X-ray powder diffraction (XRPD) and scanning electron microscopy (SEM) coupled with electron dispersive spectroscopy (EDS) were used for the detailed examination of phase composition and morphology. The magnetic, dielectric, and ferroelectric properties were investigated. The optimal phase composition in the BaTiO3/NiFe2O4 composite, sintered at 1150 °C, resulted in a wide frequency range stability. Additionally, particular phase composition indicates favorable properties such as low conductivity and ideal-like hysteresis loop behavior. The favorable properties of BaTiO3/NiFe2O4 make this particular composite an ideal material choice for further studies on applications of multi-ferroic devices.
T2  - Inorganics
T1  - BaTiO3/NixZn1−xFe2O4 (x = 0, 0.5, 1) Composites Synthesized by Thermal Decomposition: Magnetic, Dielectric and Ferroelectric Properties
VL  - 11
IS  - 2
SP  - 51
DO  - 10.3390/inorganics11020051
ER  - 
@article{
author = "Šuljagić, Marija and Petronijević, Ivan and Mirković, Miljana M. and Kremenović, Aleksandar S. and Džunuzović, Adis and Pavlović, Vladimir B. and Kalezić-Glišović, Aleksandra and Anđelković, Ljubica",
year = "2023",
abstract = "To investigate the influence of spinel structure and sintering temperature on the functional properties of BaTiO3/NixZn1−xFe2O4 (x = 0, 0.5, 1), NiFe2O4, ZnFe2O4, and Ni0.5Zn0.5Fe2O4 were in situ prepared by thermal decomposition onto BaTiO3 surface from acetylacetonate precursors. As-prepared powders were additionally sintered at 1150 °C and 1300 °C. X-ray powder diffraction (XRPD) and scanning electron microscopy (SEM) coupled with electron dispersive spectroscopy (EDS) were used for the detailed examination of phase composition and morphology. The magnetic, dielectric, and ferroelectric properties were investigated. The optimal phase composition in the BaTiO3/NiFe2O4 composite, sintered at 1150 °C, resulted in a wide frequency range stability. Additionally, particular phase composition indicates favorable properties such as low conductivity and ideal-like hysteresis loop behavior. The favorable properties of BaTiO3/NiFe2O4 make this particular composite an ideal material choice for further studies on applications of multi-ferroic devices.",
journal = "Inorganics",
title = "BaTiO3/NixZn1−xFe2O4 (x = 0, 0.5, 1) Composites Synthesized by Thermal Decomposition: Magnetic, Dielectric and Ferroelectric Properties",
volume = "11",
number = "2",
pages = "51",
doi = "10.3390/inorganics11020051"
}
Šuljagić, M., Petronijević, I., Mirković, M. M., Kremenović, A. S., Džunuzović, A., Pavlović, V. B., Kalezić-Glišović, A.,& Anđelković, L.. (2023). BaTiO3/NixZn1−xFe2O4 (x = 0, 0.5, 1) Composites Synthesized by Thermal Decomposition: Magnetic, Dielectric and Ferroelectric Properties. in Inorganics, 11(2), 51.
https://doi.org/10.3390/inorganics11020051
Šuljagić M, Petronijević I, Mirković MM, Kremenović AS, Džunuzović A, Pavlović VB, Kalezić-Glišović A, Anđelković L. BaTiO3/NixZn1−xFe2O4 (x = 0, 0.5, 1) Composites Synthesized by Thermal Decomposition: Magnetic, Dielectric and Ferroelectric Properties. in Inorganics. 2023;11(2):51.
doi:10.3390/inorganics11020051 .
Šuljagić, Marija, Petronijević, Ivan, Mirković, Miljana M., Kremenović, Aleksandar S., Džunuzović, Adis, Pavlović, Vladimir B., Kalezić-Glišović, Aleksandra, Anđelković, Ljubica, "BaTiO3/NixZn1−xFe2O4 (x = 0, 0.5, 1) Composites Synthesized by Thermal Decomposition: Magnetic, Dielectric and Ferroelectric Properties" in Inorganics, 11, no. 2 (2023):51,
https://doi.org/10.3390/inorganics11020051 . .
2
1

The Study of Cu(II) Adsorption onto Synthetically Modified Geopolymers

Šuránek, Matej; Melichová, Zuzana; Mirković, Miljana M.; Ivanović, Marija M.; Pavlović, Vladimir B.; Kljajević, Ljiljana M.; Nenadović, Snežana S.

(2023)

TY  - JOUR
AU  - Šuránek, Matej
AU  - Melichová, Zuzana
AU  - Mirković, Miljana M.
AU  - Ivanović, Marija M.
AU  - Pavlović, Vladimir B.
AU  - Kljajević, Ljiljana M.
AU  - Nenadović, Snežana S.
PY  - 2023
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/10735
AB  - The study of Cu(II) from aqueous solutions using the adsorption process on synthetically modified geopolymers was performed under static conditions. Three geopolymers (based on metaphase of Serbian clay, metaphase of German clay and metaphase of German clay plus 10% of carbon cloth) were used. The geopolymers were made by condensing a mixture of metaphases and alkali activator solution at a fixed ratio at room temperature and then at a temperature of 60 °C in a dry oven. Then, the geopolymer samples were pre-crashed to a fixed-radius size. Their properties were characterized by X-ray diffractometry (XRD), Diffuse Reflectance Infrared Fourier Transform (DRIFT) analysis and Scanning Electron Microscopy (SEM) with Energy Dispersive Spectroscopy (EDS). Adsorption experiments were carried out under batch process as a function of the dose, concentration of metal, and contact time. The uptake of Cu(II) was rapid, and it increased with increasing metal concentration. The sorption percentage decreased with increasing concentration of Cu(II). The equilibrium adsorption capacity of geopolymers was measured and extrapolated using more isotherms. The data fit very well the linear Langmuir isotherm model. The pseudo-second-order kinetic model can well describe the adsorption behavior of Cu(II) ions with geopolymers samples. These results show that used geopolymers hold great potential to remove Cu(II) from industrial wastewater.
T2  - Sustainability
T1  - The Study of Cu(II) Adsorption onto Synthetically Modified Geopolymers
VL  - 15
IS  - 4
SP  - 2869
DO  - 10.3390/su15042869
ER  - 
@article{
author = "Šuránek, Matej and Melichová, Zuzana and Mirković, Miljana M. and Ivanović, Marija M. and Pavlović, Vladimir B. and Kljajević, Ljiljana M. and Nenadović, Snežana S.",
year = "2023",
abstract = "The study of Cu(II) from aqueous solutions using the adsorption process on synthetically modified geopolymers was performed under static conditions. Three geopolymers (based on metaphase of Serbian clay, metaphase of German clay and metaphase of German clay plus 10% of carbon cloth) were used. The geopolymers were made by condensing a mixture of metaphases and alkali activator solution at a fixed ratio at room temperature and then at a temperature of 60 °C in a dry oven. Then, the geopolymer samples were pre-crashed to a fixed-radius size. Their properties were characterized by X-ray diffractometry (XRD), Diffuse Reflectance Infrared Fourier Transform (DRIFT) analysis and Scanning Electron Microscopy (SEM) with Energy Dispersive Spectroscopy (EDS). Adsorption experiments were carried out under batch process as a function of the dose, concentration of metal, and contact time. The uptake of Cu(II) was rapid, and it increased with increasing metal concentration. The sorption percentage decreased with increasing concentration of Cu(II). The equilibrium adsorption capacity of geopolymers was measured and extrapolated using more isotherms. The data fit very well the linear Langmuir isotherm model. The pseudo-second-order kinetic model can well describe the adsorption behavior of Cu(II) ions with geopolymers samples. These results show that used geopolymers hold great potential to remove Cu(II) from industrial wastewater.",
journal = "Sustainability",
title = "The Study of Cu(II) Adsorption onto Synthetically Modified Geopolymers",
volume = "15",
number = "4",
pages = "2869",
doi = "10.3390/su15042869"
}
Šuránek, M., Melichová, Z., Mirković, M. M., Ivanović, M. M., Pavlović, V. B., Kljajević, L. M.,& Nenadović, S. S.. (2023). The Study of Cu(II) Adsorption onto Synthetically Modified Geopolymers. in Sustainability, 15(4), 2869.
https://doi.org/10.3390/su15042869
Šuránek M, Melichová Z, Mirković MM, Ivanović MM, Pavlović VB, Kljajević LM, Nenadović SS. The Study of Cu(II) Adsorption onto Synthetically Modified Geopolymers. in Sustainability. 2023;15(4):2869.
doi:10.3390/su15042869 .
Šuránek, Matej, Melichová, Zuzana, Mirković, Miljana M., Ivanović, Marija M., Pavlović, Vladimir B., Kljajević, Ljiljana M., Nenadović, Snežana S., "The Study of Cu(II) Adsorption onto Synthetically Modified Geopolymers" in Sustainability, 15, no. 4 (2023):2869,
https://doi.org/10.3390/su15042869 . .
1
1

Structural Characterization of Geopolymers with the Addition of Eggshell Ash

Ivanović, Marija M.; Knežević, Sanja; Mirković, Miljana M.; Kljajević, Ljiljana M.; Bučevac, Dušan; Pavlović, Vladimir B.; Nenadović, Miloš

(2023)

TY  - JOUR
AU  - Ivanović, Marija M.
AU  - Knežević, Sanja
AU  - Mirković, Miljana M.
AU  - Kljajević, Ljiljana M.
AU  - Bučevac, Dušan
AU  - Pavlović, Vladimir B.
AU  - Nenadović, Miloš
PY  - 2023
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/10741
AB  - It is well known that geopolymers are a new group of binder materials of alumosilicate origin. Geopolymers are made by the reaction of precursor aluminosilicate materials with alkaline activator solutions. The current research relates to a low-cost and eco-friendly procedure, suitable of being implemented in two easy steps. The first step is the production of a solid phase based on fly ash (Obrenovac, Serbia) and eggshell ash as waste materials rich in calcium. The second step is alkali activating the solid phase using an alkaline activator (a mixture of NaOH and Na2SiO3) and procedures in proper laboratory conditions. Four samples with different eggshell ash content were synthesized. The concentration of used NaOH was 12 mol dm−3. The structural properties of all investigated samples were analyzed by XRD (X-ray diffraction), DRIFT (diffuse reflectance infrared Fourier transform), SEM (scanning electron microscopy) and UV/Vis spectroscopy analysis. XRD determined the amorphous halo with the presence of quartz as the crystal phase in all of the investigated samples. These results were confirmed by DRIFT analysis. The morphology of the samples was determined by SEM analysis. UV/Vis showed that the material could be a potential adsorbent.
T2  - Sustainability
T1  - Structural Characterization of Geopolymers with the Addition of Eggshell Ash
VL  - 15
IS  - 6
SP  - 5419
DO  - 10.3390/su15065419
ER  - 
@article{
author = "Ivanović, Marija M. and Knežević, Sanja and Mirković, Miljana M. and Kljajević, Ljiljana M. and Bučevac, Dušan and Pavlović, Vladimir B. and Nenadović, Miloš",
year = "2023",
abstract = "It is well known that geopolymers are a new group of binder materials of alumosilicate origin. Geopolymers are made by the reaction of precursor aluminosilicate materials with alkaline activator solutions. The current research relates to a low-cost and eco-friendly procedure, suitable of being implemented in two easy steps. The first step is the production of a solid phase based on fly ash (Obrenovac, Serbia) and eggshell ash as waste materials rich in calcium. The second step is alkali activating the solid phase using an alkaline activator (a mixture of NaOH and Na2SiO3) and procedures in proper laboratory conditions. Four samples with different eggshell ash content were synthesized. The concentration of used NaOH was 12 mol dm−3. The structural properties of all investigated samples were analyzed by XRD (X-ray diffraction), DRIFT (diffuse reflectance infrared Fourier transform), SEM (scanning electron microscopy) and UV/Vis spectroscopy analysis. XRD determined the amorphous halo with the presence of quartz as the crystal phase in all of the investigated samples. These results were confirmed by DRIFT analysis. The morphology of the samples was determined by SEM analysis. UV/Vis showed that the material could be a potential adsorbent.",
journal = "Sustainability",
title = "Structural Characterization of Geopolymers with the Addition of Eggshell Ash",
volume = "15",
number = "6",
pages = "5419",
doi = "10.3390/su15065419"
}
Ivanović, M. M., Knežević, S., Mirković, M. M., Kljajević, L. M., Bučevac, D., Pavlović, V. B.,& Nenadović, M.. (2023). Structural Characterization of Geopolymers with the Addition of Eggshell Ash. in Sustainability, 15(6), 5419.
https://doi.org/10.3390/su15065419
Ivanović MM, Knežević S, Mirković MM, Kljajević LM, Bučevac D, Pavlović VB, Nenadović M. Structural Characterization of Geopolymers with the Addition of Eggshell Ash. in Sustainability. 2023;15(6):5419.
doi:10.3390/su15065419 .
Ivanović, Marija M., Knežević, Sanja, Mirković, Miljana M., Kljajević, Ljiljana M., Bučevac, Dušan, Pavlović, Vladimir B., Nenadović, Miloš, "Structural Characterization of Geopolymers with the Addition of Eggshell Ash" in Sustainability, 15, no. 6 (2023):5419,
https://doi.org/10.3390/su15065419 . .
1
1

Dielectric and Structural Properties of the Hybrid Material Polyvinylidene Fluoride-Bacterial Nanocellulose-Based Composite

Janićijević, Aleksandra; Filipović, Suzana; Sknepnek, Aleksandra; Vlahović, Branislav; Đorđević, Nenad; Kovacević, Danijela; Mirković, Miljana; Petronijević, Ivan; Zivković, Predrag; Rogan, Jelena; Pavlović, Vladimir B.

(2023)

TY  - JOUR
AU  - Janićijević, Aleksandra
AU  - Filipović, Suzana
AU  - Sknepnek, Aleksandra
AU  - Vlahović, Branislav
AU  - Đorđević, Nenad
AU  - Kovacević, Danijela
AU  - Mirković, Miljana
AU  - Petronijević, Ivan
AU  - Zivković, Predrag
AU  - Rogan, Jelena
AU  - Pavlović, Vladimir B.
PY  - 2023
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/11872
AB  - In the search for environmentally friendly materials with a wide range of properties, polymer composites have emerged as a promising alternative due to their multifunctional properties. This study focuses on the synthesis of composite materials consisting of four components: bacterial nanocellulose (BNC) modified with magnetic Fe3O4 , and a mixture of BaTiO3 (BT) and polyvinylidene fluoride (PVDF). The BT powder was mechanically activated prior to mixing with PVDF. The influence of BT mechanical activation and BNC with magnetic particles on the PVDF matrix was investigated. The obtained composite films’ structural characteristics, morphology, and dielectric properties are presented. This research provides insights into the relationship between mechanical activation of the filler and structural and dielectric properties in the PVDF/BT/BNC/Fe3O4 system, creating the way for the development of materials with a wide range of diverse properties that support the concept of green technologies.
T2  - Polymers
T1  - Dielectric and Structural Properties of the Hybrid Material Polyvinylidene Fluoride-Bacterial Nanocellulose-Based Composite
VL  - 15
IS  - 20
SP  - 4080
DO  - 10.3390/polym15204080
ER  - 
@article{
author = "Janićijević, Aleksandra and Filipović, Suzana and Sknepnek, Aleksandra and Vlahović, Branislav and Đorđević, Nenad and Kovacević, Danijela and Mirković, Miljana and Petronijević, Ivan and Zivković, Predrag and Rogan, Jelena and Pavlović, Vladimir B.",
year = "2023",
abstract = "In the search for environmentally friendly materials with a wide range of properties, polymer composites have emerged as a promising alternative due to their multifunctional properties. This study focuses on the synthesis of composite materials consisting of four components: bacterial nanocellulose (BNC) modified with magnetic Fe3O4 , and a mixture of BaTiO3 (BT) and polyvinylidene fluoride (PVDF). The BT powder was mechanically activated prior to mixing with PVDF. The influence of BT mechanical activation and BNC with magnetic particles on the PVDF matrix was investigated. The obtained composite films’ structural characteristics, morphology, and dielectric properties are presented. This research provides insights into the relationship between mechanical activation of the filler and structural and dielectric properties in the PVDF/BT/BNC/Fe3O4 system, creating the way for the development of materials with a wide range of diverse properties that support the concept of green technologies.",
journal = "Polymers",
title = "Dielectric and Structural Properties of the Hybrid Material Polyvinylidene Fluoride-Bacterial Nanocellulose-Based Composite",
volume = "15",
number = "20",
pages = "4080",
doi = "10.3390/polym15204080"
}
Janićijević, A., Filipović, S., Sknepnek, A., Vlahović, B., Đorđević, N., Kovacević, D., Mirković, M., Petronijević, I., Zivković, P., Rogan, J.,& Pavlović, V. B.. (2023). Dielectric and Structural Properties of the Hybrid Material Polyvinylidene Fluoride-Bacterial Nanocellulose-Based Composite. in Polymers, 15(20), 4080.
https://doi.org/10.3390/polym15204080
Janićijević A, Filipović S, Sknepnek A, Vlahović B, Đorđević N, Kovacević D, Mirković M, Petronijević I, Zivković P, Rogan J, Pavlović VB. Dielectric and Structural Properties of the Hybrid Material Polyvinylidene Fluoride-Bacterial Nanocellulose-Based Composite. in Polymers. 2023;15(20):4080.
doi:10.3390/polym15204080 .
Janićijević, Aleksandra, Filipović, Suzana, Sknepnek, Aleksandra, Vlahović, Branislav, Đorđević, Nenad, Kovacević, Danijela, Mirković, Miljana, Petronijević, Ivan, Zivković, Predrag, Rogan, Jelena, Pavlović, Vladimir B., "Dielectric and Structural Properties of the Hybrid Material Polyvinylidene Fluoride-Bacterial Nanocellulose-Based Composite" in Polymers, 15, no. 20 (2023):4080,
https://doi.org/10.3390/polym15204080 . .

Gamma rays induced synthesis of graphene oxide/gold nanoparticle composites: structural and photothermal study

Kepić, Dejan P.; Stefanović, Anđela M.; Budimir, Milica; Pavlović, Vladimir B.; Bonasera, Aurelio; Scopelliti, Michelangelo; Todorović-Marković, Biljana

(2023)

TY  - JOUR
AU  - Kepić, Dejan P.
AU  - Stefanović, Anđela M.
AU  - Budimir, Milica
AU  - Pavlović, Vladimir B.
AU  - Bonasera, Aurelio
AU  - Scopelliti, Michelangelo
AU  - Todorović-Marković, Biljana
PY  - 2023
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/10426
AB  - Gamma irradiation provides an alternative pathway to conventional gold nanoparticle synthesis because it is simple, fast, and economical. Here, we employed gamma irradiation at low doses (1–20 kGy) to obtain gold nanoparticles (Au NPs) anchored onto graphene oxide (GO) sheets. GO was selected as a suitable platform for the nucleation and growth of Au NPs because of its large surface area and good dispersibility in water due to the presence of polar oxygen-containing functional groups in its structure. Gamma irradiation at all the applied doses led to the reduction of chloroauric acid and the formation of evenly distributed Au NPs at the GO surface, simultaneously causing the reduction of GO and partial restoration of the graphene structure. As-prepared Au NPs have predominately spheric shapes and the smallest nanoparticles were reported for the dose of 1 kGy. The increase in the irradiation dose caused either the growth of larger particles (5 and 10 kGy) or the broad distribution of particles’ sizes (20 kGy). All samples showed a temperature increase upon exposure to 800 nm laser and photothermal efficiency was the highest for the sample prepared at 20 kGy. © 2022 Elsevier Ltd
T2  - Radiation Physics and Chemistry
T1  - Gamma rays induced synthesis of graphene oxide/gold nanoparticle composites: structural and photothermal study
VL  - 202
DO  - 10.1016/j.radphyschem.2022.110545
ER  - 
@article{
author = "Kepić, Dejan P. and Stefanović, Anđela M. and Budimir, Milica and Pavlović, Vladimir B. and Bonasera, Aurelio and Scopelliti, Michelangelo and Todorović-Marković, Biljana",
year = "2023",
abstract = "Gamma irradiation provides an alternative pathway to conventional gold nanoparticle synthesis because it is simple, fast, and economical. Here, we employed gamma irradiation at low doses (1–20 kGy) to obtain gold nanoparticles (Au NPs) anchored onto graphene oxide (GO) sheets. GO was selected as a suitable platform for the nucleation and growth of Au NPs because of its large surface area and good dispersibility in water due to the presence of polar oxygen-containing functional groups in its structure. Gamma irradiation at all the applied doses led to the reduction of chloroauric acid and the formation of evenly distributed Au NPs at the GO surface, simultaneously causing the reduction of GO and partial restoration of the graphene structure. As-prepared Au NPs have predominately spheric shapes and the smallest nanoparticles were reported for the dose of 1 kGy. The increase in the irradiation dose caused either the growth of larger particles (5 and 10 kGy) or the broad distribution of particles’ sizes (20 kGy). All samples showed a temperature increase upon exposure to 800 nm laser and photothermal efficiency was the highest for the sample prepared at 20 kGy. © 2022 Elsevier Ltd",
journal = "Radiation Physics and Chemistry",
title = "Gamma rays induced synthesis of graphene oxide/gold nanoparticle composites: structural and photothermal study",
volume = "202",
doi = "10.1016/j.radphyschem.2022.110545"
}
Kepić, D. P., Stefanović, A. M., Budimir, M., Pavlović, V. B., Bonasera, A., Scopelliti, M.,& Todorović-Marković, B.. (2023). Gamma rays induced synthesis of graphene oxide/gold nanoparticle composites: structural and photothermal study. in Radiation Physics and Chemistry, 202.
https://doi.org/10.1016/j.radphyschem.2022.110545
Kepić DP, Stefanović AM, Budimir M, Pavlović VB, Bonasera A, Scopelliti M, Todorović-Marković B. Gamma rays induced synthesis of graphene oxide/gold nanoparticle composites: structural and photothermal study. in Radiation Physics and Chemistry. 2023;202.
doi:10.1016/j.radphyschem.2022.110545 .
Kepić, Dejan P., Stefanović, Anđela M., Budimir, Milica, Pavlović, Vladimir B., Bonasera, Aurelio, Scopelliti, Michelangelo, Todorović-Marković, Biljana, "Gamma rays induced synthesis of graphene oxide/gold nanoparticle composites: structural and photothermal study" in Radiation Physics and Chemistry, 202 (2023),
https://doi.org/10.1016/j.radphyschem.2022.110545 . .
4
3

Advancing PHBV Biomedical Potential with the Incorporation of Bacterial Biopigment Prodigiosin

Ponjavić, Marijana; Malagurski, Ivana; Lazić, Jelena; Jeremić, Sanja; Pavlović, Vladimir B.; Prlainović, Nevena; Maksimović, Vesna; Ćosović, Vladan; Atanase, Leonard Ionut; Freitas, Filomena; Matos, Mariana; Nikodinović-Runić, Jasmina

(2023)

TY  - JOUR
AU  - Ponjavić, Marijana
AU  - Malagurski, Ivana
AU  - Lazić, Jelena
AU  - Jeremić, Sanja
AU  - Pavlović, Vladimir B.
AU  - Prlainović, Nevena
AU  - Maksimović, Vesna
AU  - Ćosović, Vladan
AU  - Atanase, Leonard Ionut
AU  - Freitas, Filomena
AU  - Matos, Mariana
AU  - Nikodinović-Runić, Jasmina
PY  - 2023
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/10660
AB  - The quest for sustainable biomaterials with excellent biocompatibility and tailorableproperties has put polyhydroxyalkanoates (PHAs) into the research spotlight. However, high productioncosts and the lack of bioactivity limit their market penetration. To address this, poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) was combined with a bacterial pigment with stronganticancer activity, prodigiosin (PG), to obtain functionally enhanced PHBV-based biomaterials. Thesamples were produced in the form of films 115.6–118.8  m in thickness using the solvent castingmethod. The effects of PG incorporation on the physical properties (morphology, biopolymer crystallinityand thermal stability) and functionality of the obtained biomaterials were investigated. PGhas acted as a nucleating agent, in turn affecting the degree of crystallinity, thermal stability andmorphology of the films. All samples with PG had a more organized internal structure and highermelting and degradation temperatures. The calculated degree of crystallinity of the PHBV copolymerwas 53%, while the PG1, PG3 and PG3 films had values of 64.0%, 63.9% and 69.2%, respectively.Cytotoxicity studies have shown the excellent anticancer activity of films against HCT116 (coloncancer) cells, thus advancing PHBV biomedical application potential.
T2  - International Journal of Molecular Sciences
T1  - Advancing PHBV Biomedical Potential with the Incorporation of Bacterial Biopigment Prodigiosin
VL  - 24
IS  - 3
SP  - 1906
DO  - 10.3390/ijms24031906
ER  - 
@article{
author = "Ponjavić, Marijana and Malagurski, Ivana and Lazić, Jelena and Jeremić, Sanja and Pavlović, Vladimir B. and Prlainović, Nevena and Maksimović, Vesna and Ćosović, Vladan and Atanase, Leonard Ionut and Freitas, Filomena and Matos, Mariana and Nikodinović-Runić, Jasmina",
year = "2023",
abstract = "The quest for sustainable biomaterials with excellent biocompatibility and tailorableproperties has put polyhydroxyalkanoates (PHAs) into the research spotlight. However, high productioncosts and the lack of bioactivity limit their market penetration. To address this, poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) was combined with a bacterial pigment with stronganticancer activity, prodigiosin (PG), to obtain functionally enhanced PHBV-based biomaterials. Thesamples were produced in the form of films 115.6–118.8  m in thickness using the solvent castingmethod. The effects of PG incorporation on the physical properties (morphology, biopolymer crystallinityand thermal stability) and functionality of the obtained biomaterials were investigated. PGhas acted as a nucleating agent, in turn affecting the degree of crystallinity, thermal stability andmorphology of the films. All samples with PG had a more organized internal structure and highermelting and degradation temperatures. The calculated degree of crystallinity of the PHBV copolymerwas 53%, while the PG1, PG3 and PG3 films had values of 64.0%, 63.9% and 69.2%, respectively.Cytotoxicity studies have shown the excellent anticancer activity of films against HCT116 (coloncancer) cells, thus advancing PHBV biomedical application potential.",
journal = "International Journal of Molecular Sciences",
title = "Advancing PHBV Biomedical Potential with the Incorporation of Bacterial Biopigment Prodigiosin",
volume = "24",
number = "3",
pages = "1906",
doi = "10.3390/ijms24031906"
}
Ponjavić, M., Malagurski, I., Lazić, J., Jeremić, S., Pavlović, V. B., Prlainović, N., Maksimović, V., Ćosović, V., Atanase, L. I., Freitas, F., Matos, M.,& Nikodinović-Runić, J.. (2023). Advancing PHBV Biomedical Potential with the Incorporation of Bacterial Biopigment Prodigiosin. in International Journal of Molecular Sciences, 24(3), 1906.
https://doi.org/10.3390/ijms24031906
Ponjavić M, Malagurski I, Lazić J, Jeremić S, Pavlović VB, Prlainović N, Maksimović V, Ćosović V, Atanase LI, Freitas F, Matos M, Nikodinović-Runić J. Advancing PHBV Biomedical Potential with the Incorporation of Bacterial Biopigment Prodigiosin. in International Journal of Molecular Sciences. 2023;24(3):1906.
doi:10.3390/ijms24031906 .
Ponjavić, Marijana, Malagurski, Ivana, Lazić, Jelena, Jeremić, Sanja, Pavlović, Vladimir B., Prlainović, Nevena, Maksimović, Vesna, Ćosović, Vladan, Atanase, Leonard Ionut, Freitas, Filomena, Matos, Mariana, Nikodinović-Runić, Jasmina, "Advancing PHBV Biomedical Potential with the Incorporation of Bacterial Biopigment Prodigiosin" in International Journal of Molecular Sciences, 24, no. 3 (2023):1906,
https://doi.org/10.3390/ijms24031906 . .
2
10
5

Synthesis of octenyl succinic anhydride-modified levan and investigation of its microstructural, physicochemical, and emulsifying properties

Gojgić-Cvijović, Gordana; Jakovljević, Dragica; Živković, Ljiljana; Ćosović, Vladan; Pavlović, Vladimir B.; Nikolić, Ivana; Maravić, Nikola; Dokić, Ljubica

(2023)

TY  - JOUR
AU  - Gojgić-Cvijović, Gordana
AU  - Jakovljević, Dragica
AU  - Živković, Ljiljana
AU  - Ćosović, Vladan
AU  - Pavlović, Vladimir B.
AU  - Nikolić, Ivana
AU  - Maravić, Nikola
AU  - Dokić, Ljubica
PY  - 2023
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/11023
AB  - In this study, levan from Bacillus licheniformis NS032 was modified in an aqueous medium by octenyl succinic anhydride (OSA), and the properties of the obtained derivatives were studied. The maximum efficiency in the synthesis reaction was achieved at 40 °C and a polysaccharide slurry concentration of 30 %. Increasing the reagent concentration (2–10 %) led to an increase in the degree of substitution (0.016–0.048). Structures of derivatives were confirmed by FTIR and NMR. Scanning electronic microscopy, thermogravimetry, and dynamic light scattering analyses showed that the derivatives with degrees of substitution of 0.025 and 0.036 retained levan's porous structure and thermostability and showed better colloidal stability than the native polysaccharide. The intrinsic viscosity of derivatives increased upon modification, while the surface tension of the 1 % solution was lowered to 61 mN/m. Oil-in-water emulsions prepared with sunflower oil (10 % and 20 %) by mechanical homogenization and 2 and 10 % derivatives in the continuous phase showed mean oil droplet sizes of 106–195 μm, while the distribution curves exhibited bimodal character. The studied derivatives have a good capacity to stabilize emulsions, as they have a creaming index ranging from 73 % to 94 %. The OSA-modified levans could have potential applications in new formulations of emulsion-based systems.
T2  - International Journal of Biological Macromolecules
T1  - Synthesis of octenyl succinic anhydride-modified levan and investigation of its microstructural, physicochemical, and emulsifying properties
VL  - 242
SP  - 124837
DO  - 10.1016/j.ijbiomac.2023.124837
ER  - 
@article{
author = "Gojgić-Cvijović, Gordana and Jakovljević, Dragica and Živković, Ljiljana and Ćosović, Vladan and Pavlović, Vladimir B. and Nikolić, Ivana and Maravić, Nikola and Dokić, Ljubica",
year = "2023",
abstract = "In this study, levan from Bacillus licheniformis NS032 was modified in an aqueous medium by octenyl succinic anhydride (OSA), and the properties of the obtained derivatives were studied. The maximum efficiency in the synthesis reaction was achieved at 40 °C and a polysaccharide slurry concentration of 30 %. Increasing the reagent concentration (2–10 %) led to an increase in the degree of substitution (0.016–0.048). Structures of derivatives were confirmed by FTIR and NMR. Scanning electronic microscopy, thermogravimetry, and dynamic light scattering analyses showed that the derivatives with degrees of substitution of 0.025 and 0.036 retained levan's porous structure and thermostability and showed better colloidal stability than the native polysaccharide. The intrinsic viscosity of derivatives increased upon modification, while the surface tension of the 1 % solution was lowered to 61 mN/m. Oil-in-water emulsions prepared with sunflower oil (10 % and 20 %) by mechanical homogenization and 2 and 10 % derivatives in the continuous phase showed mean oil droplet sizes of 106–195 μm, while the distribution curves exhibited bimodal character. The studied derivatives have a good capacity to stabilize emulsions, as they have a creaming index ranging from 73 % to 94 %. The OSA-modified levans could have potential applications in new formulations of emulsion-based systems.",
journal = "International Journal of Biological Macromolecules",
title = "Synthesis of octenyl succinic anhydride-modified levan and investigation of its microstructural, physicochemical, and emulsifying properties",
volume = "242",
pages = "124837",
doi = "10.1016/j.ijbiomac.2023.124837"
}
Gojgić-Cvijović, G., Jakovljević, D., Živković, L., Ćosović, V., Pavlović, V. B., Nikolić, I., Maravić, N.,& Dokić, L.. (2023). Synthesis of octenyl succinic anhydride-modified levan and investigation of its microstructural, physicochemical, and emulsifying properties. in International Journal of Biological Macromolecules, 242, 124837.
https://doi.org/10.1016/j.ijbiomac.2023.124837
Gojgić-Cvijović G, Jakovljević D, Živković L, Ćosović V, Pavlović VB, Nikolić I, Maravić N, Dokić L. Synthesis of octenyl succinic anhydride-modified levan and investigation of its microstructural, physicochemical, and emulsifying properties. in International Journal of Biological Macromolecules. 2023;242:124837.
doi:10.1016/j.ijbiomac.2023.124837 .
Gojgić-Cvijović, Gordana, Jakovljević, Dragica, Živković, Ljiljana, Ćosović, Vladan, Pavlović, Vladimir B., Nikolić, Ivana, Maravić, Nikola, Dokić, Ljubica, "Synthesis of octenyl succinic anhydride-modified levan and investigation of its microstructural, physicochemical, and emulsifying properties" in International Journal of Biological Macromolecules, 242 (2023):124837,
https://doi.org/10.1016/j.ijbiomac.2023.124837 . .
1

Influence of Ultrasonic and Chemical Pretreatments on Quality Attributes of Dried Pepper (Capsicum annuum)

Lučić, Milica; Potkonjak, Nebojša; Sredović Ignjatović, Ivana; Lević, Steva; Dajić-Stevanović, Zora; Kolašinac, Stefan; Belović, Miona; Torbica, Aleksandra; Zlatanović, Ivan; Pavlović, Vladimir; Onjia, Antonije

(2023)

TY  - JOUR
AU  - Lučić, Milica
AU  - Potkonjak, Nebojša
AU  - Sredović Ignjatović, Ivana
AU  - Lević, Steva
AU  - Dajić-Stevanović, Zora
AU  - Kolašinac, Stefan
AU  - Belović, Miona
AU  - Torbica, Aleksandra
AU  - Zlatanović, Ivan
AU  - Pavlović, Vladimir
AU  - Onjia, Antonije
PY  - 2023
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/11363
AB  - This study investigates the effects of ultrasound, in combination with chemical pretreatments, on the quality attributes (total phenolic and carotenoid content, antioxidant activity (2,2-Diphenyl-1-picrylhydrazyl assay (DPPH)), ferric-reducing ability (FRAP), CIE L* a* b* color, non-enzymatic browning, rehydration ratio, textural and morphological properties) of red pepper subjected to drying (hot air drying or freeze drying). The fractional factorial design was used to assess the impact of factors. The global Derringer desirability function was used to determine the optimal conditions for the best quality attributes of dried pepper. The drying method influenced total phenolic content, a* (redness), and initial rehydration ratio; pretreatment time significantly affected FRAP antiradical activity, a*, chroma and non-browning index, while pH-value had a significant effect on the texture of dried pepper. Non-enzymatic browning was reduced to 72.6%, while the DPPH antioxidant capacity of freeze-dried peppers was enhanced from 4.2% to 71.9%. Ultrasonic pretreatment led to changes in the pepper morphology, while potassium metabisulfite (KMS) was a more effective additive than citric acid.
T2  - Foods
T1  - Influence of Ultrasonic and Chemical Pretreatments on Quality Attributes of Dried Pepper (Capsicum annuum)
VL  - 12
IS  - 13
SP  - 2468
DO  - 10.3390/foods12132468
ER  - 
@article{
author = "Lučić, Milica and Potkonjak, Nebojša and Sredović Ignjatović, Ivana and Lević, Steva and Dajić-Stevanović, Zora and Kolašinac, Stefan and Belović, Miona and Torbica, Aleksandra and Zlatanović, Ivan and Pavlović, Vladimir and Onjia, Antonije",
year = "2023",
abstract = "This study investigates the effects of ultrasound, in combination with chemical pretreatments, on the quality attributes (total phenolic and carotenoid content, antioxidant activity (2,2-Diphenyl-1-picrylhydrazyl assay (DPPH)), ferric-reducing ability (FRAP), CIE L* a* b* color, non-enzymatic browning, rehydration ratio, textural and morphological properties) of red pepper subjected to drying (hot air drying or freeze drying). The fractional factorial design was used to assess the impact of factors. The global Derringer desirability function was used to determine the optimal conditions for the best quality attributes of dried pepper. The drying method influenced total phenolic content, a* (redness), and initial rehydration ratio; pretreatment time significantly affected FRAP antiradical activity, a*, chroma and non-browning index, while pH-value had a significant effect on the texture of dried pepper. Non-enzymatic browning was reduced to 72.6%, while the DPPH antioxidant capacity of freeze-dried peppers was enhanced from 4.2% to 71.9%. Ultrasonic pretreatment led to changes in the pepper morphology, while potassium metabisulfite (KMS) was a more effective additive than citric acid.",
journal = "Foods",
title = "Influence of Ultrasonic and Chemical Pretreatments on Quality Attributes of Dried Pepper (Capsicum annuum)",
volume = "12",
number = "13",
pages = "2468",
doi = "10.3390/foods12132468"
}
Lučić, M., Potkonjak, N., Sredović Ignjatović, I., Lević, S., Dajić-Stevanović, Z., Kolašinac, S., Belović, M., Torbica, A., Zlatanović, I., Pavlović, V.,& Onjia, A.. (2023). Influence of Ultrasonic and Chemical Pretreatments on Quality Attributes of Dried Pepper (Capsicum annuum). in Foods, 12(13), 2468.
https://doi.org/10.3390/foods12132468
Lučić M, Potkonjak N, Sredović Ignjatović I, Lević S, Dajić-Stevanović Z, Kolašinac S, Belović M, Torbica A, Zlatanović I, Pavlović V, Onjia A. Influence of Ultrasonic and Chemical Pretreatments on Quality Attributes of Dried Pepper (Capsicum annuum). in Foods. 2023;12(13):2468.
doi:10.3390/foods12132468 .
Lučić, Milica, Potkonjak, Nebojša, Sredović Ignjatović, Ivana, Lević, Steva, Dajić-Stevanović, Zora, Kolašinac, Stefan, Belović, Miona, Torbica, Aleksandra, Zlatanović, Ivan, Pavlović, Vladimir, Onjia, Antonije, "Influence of Ultrasonic and Chemical Pretreatments on Quality Attributes of Dried Pepper (Capsicum annuum)" in Foods, 12, no. 13 (2023):2468,
https://doi.org/10.3390/foods12132468 . .

Anticancer effect of novel luteolin capped gold nanoparticles selectively cytotoxic towards human cervical adenocarcinoma HeLa cells: An in vitro approach

Matić, Ivana Z.; Mraković, Ana; Rakočević, Zlatko; Stoiljković, Milovan; Pavlović, Vladimir B.; Momić, Tatjana

(2023)

TY  - JOUR
AU  - Matić, Ivana Z.
AU  - Mraković, Ana
AU  - Rakočević, Zlatko
AU  - Stoiljković, Milovan
AU  - Pavlović, Vladimir B.
AU  - Momić, Tatjana
PY  - 2023
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/11544
AB  - Background: Although luteolin has been confirmed as potent anticancer agent, its potential application as therapeutic is limited by its water solubility. To overcome this shortcoming nanoparticle technology approach was applied. Owing to their proven low toxicity and the possibility to be easily functionalized gold nanoparticles (AuNP) were the nanosystem of choice used in this study. Novel luteolin capped gold nanoparticles (AuNPL) were synthesized and their anticancer effect towards human cervical adenocarcinoma HeLa cells was investigated in vitro. Methods: AuNPL were synthesized by reducing chloroauric acid by trisodium citrate with subsequent addition of luteoline during synthesis and their physicochemical characterization was done. AuNPL cytotoxicity against HeLa, human malignant melanoma A375, and normal human keratinocytes HaCaT cells was tested by MTT cell survival assay, and their IC50 values were determined. The capability of AuNPL to induce cell cycle arrest and apoptosis in HeLa cells were demonstrated by flow cytometry. The antioxidant activity of AuNPL was assessed by DPPH⋅ and ABTS⋅þ scavenging assays. Cytoprotective properties of AuNPL towards HaCaT cells were examined by measuring the physiological and H2O2 induced intracellular reactive oxygen species (ROS) levels using flow cytometry. Also, genotoxicity of AuNPL in HaCaT cells was investigated by the single cell alkaline comet assay. Results: Spherical AuNPL, stable in aqueous solution up to six months at 4 ◦C were obtained in the synthesis. The selectivity in the cytotoxic action of AuNPL on HeLa and A375 cancer cells compared with their cytotoxicity on normal keratinocytes HaCaT was observed. AuNPL exerted their cytotoxic activity against HeLa cells through accumulation of the cells in the subG1 phase of the cell cycle, inducing the apoptotic cell death mediated by the activation of caspase-3 − 8, and − 9. AuNPL antioxidative potential was confirmed by DPPH⋅ and ABTS⋅þ scavenging assays. IC50 concentration of AuNPL exerted cytoprotective effect against HaCaT cells by the significant reduction of the physiological intracellular ROS level. Additionally, AuNPL were shown as more cytoprotective towards HaCaT cells then luteolin due to the more successful elimination of H2O2 induced intracellular ROS. Moreover, nontoxic concentrations of AuNPL did not cause considerable DNA damage of HaCaT cells, indicating low genotoxicity of the nanoparticles.
T2  - Journal of Trace Elements in Medicine and Biology
T1  - Anticancer effect of novel luteolin capped gold nanoparticles selectively cytotoxic towards human cervical adenocarcinoma HeLa cells: An in vitro approach
VL  - 80
SP  - 127286
DO  - 10.1016/j.jtemb.2023.127286
ER  - 
@article{
author = "Matić, Ivana Z. and Mraković, Ana and Rakočević, Zlatko and Stoiljković, Milovan and Pavlović, Vladimir B. and Momić, Tatjana",
year = "2023",
abstract = "Background: Although luteolin has been confirmed as potent anticancer agent, its potential application as therapeutic is limited by its water solubility. To overcome this shortcoming nanoparticle technology approach was applied. Owing to their proven low toxicity and the possibility to be easily functionalized gold nanoparticles (AuNP) were the nanosystem of choice used in this study. Novel luteolin capped gold nanoparticles (AuNPL) were synthesized and their anticancer effect towards human cervical adenocarcinoma HeLa cells was investigated in vitro. Methods: AuNPL were synthesized by reducing chloroauric acid by trisodium citrate with subsequent addition of luteoline during synthesis and their physicochemical characterization was done. AuNPL cytotoxicity against HeLa, human malignant melanoma A375, and normal human keratinocytes HaCaT cells was tested by MTT cell survival assay, and their IC50 values were determined. The capability of AuNPL to induce cell cycle arrest and apoptosis in HeLa cells were demonstrated by flow cytometry. The antioxidant activity of AuNPL was assessed by DPPH⋅ and ABTS⋅þ scavenging assays. Cytoprotective properties of AuNPL towards HaCaT cells were examined by measuring the physiological and H2O2 induced intracellular reactive oxygen species (ROS) levels using flow cytometry. Also, genotoxicity of AuNPL in HaCaT cells was investigated by the single cell alkaline comet assay. Results: Spherical AuNPL, stable in aqueous solution up to six months at 4 ◦C were obtained in the synthesis. The selectivity in the cytotoxic action of AuNPL on HeLa and A375 cancer cells compared with their cytotoxicity on normal keratinocytes HaCaT was observed. AuNPL exerted their cytotoxic activity against HeLa cells through accumulation of the cells in the subG1 phase of the cell cycle, inducing the apoptotic cell death mediated by the activation of caspase-3 − 8, and − 9. AuNPL antioxidative potential was confirmed by DPPH⋅ and ABTS⋅þ scavenging assays. IC50 concentration of AuNPL exerted cytoprotective effect against HaCaT cells by the significant reduction of the physiological intracellular ROS level. Additionally, AuNPL were shown as more cytoprotective towards HaCaT cells then luteolin due to the more successful elimination of H2O2 induced intracellular ROS. Moreover, nontoxic concentrations of AuNPL did not cause considerable DNA damage of HaCaT cells, indicating low genotoxicity of the nanoparticles.",
journal = "Journal of Trace Elements in Medicine and Biology",
title = "Anticancer effect of novel luteolin capped gold nanoparticles selectively cytotoxic towards human cervical adenocarcinoma HeLa cells: An in vitro approach",
volume = "80",
pages = "127286",
doi = "10.1016/j.jtemb.2023.127286"
}
Matić, I. Z., Mraković, A., Rakočević, Z., Stoiljković, M., Pavlović, V. B.,& Momić, T.. (2023). Anticancer effect of novel luteolin capped gold nanoparticles selectively cytotoxic towards human cervical adenocarcinoma HeLa cells: An in vitro approach. in Journal of Trace Elements in Medicine and Biology, 80, 127286.
https://doi.org/10.1016/j.jtemb.2023.127286
Matić IZ, Mraković A, Rakočević Z, Stoiljković M, Pavlović VB, Momić T. Anticancer effect of novel luteolin capped gold nanoparticles selectively cytotoxic towards human cervical adenocarcinoma HeLa cells: An in vitro approach. in Journal of Trace Elements in Medicine and Biology. 2023;80:127286.
doi:10.1016/j.jtemb.2023.127286 .
Matić, Ivana Z., Mraković, Ana, Rakočević, Zlatko, Stoiljković, Milovan, Pavlović, Vladimir B., Momić, Tatjana, "Anticancer effect of novel luteolin capped gold nanoparticles selectively cytotoxic towards human cervical adenocarcinoma HeLa cells: An in vitro approach" in Journal of Trace Elements in Medicine and Biology, 80 (2023):127286,
https://doi.org/10.1016/j.jtemb.2023.127286 . .
1

Brushite-Metakaolin Composite Geopolymer Material as an Effective Adsorbent for Lead Removal from Aqueous Solutions

Đukić, Dunja; Krstić, Aleksandar D.; Jakovljević, Ksenija; Butulija, Svetlana; Anđelković, Ljubica; Pavlović, Vladimir B.; Mirković, Miljana M.

(2022)

TY  - JOUR
AU  - Đukić, Dunja
AU  - Krstić, Aleksandar D.
AU  - Jakovljević, Ksenija
AU  - Butulija, Svetlana
AU  - Anđelković, Ljubica
AU  - Pavlović, Vladimir B.
AU  - Mirković, Miljana M.
PY  - 2022
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/10233
AB  - Newly designed mesoporous brushite-metakaolin-based geopolymer materials were examined with an idea for using this material as a potential adsorbent for Pb(II) removal from aqueous solutions. As a starting component for geopolymer synthesis, a natural raw kaolinite clay with theaddition of 2 wt.%, 4 wt.%, 6 wt.%, 8 wt.%, and 10 wt.% of pure brushite was used. Phase, structural,morphological, and adsorption properties of newly synthesized mesoporous brushite-metakaolin geopolymer materials were examined in detail by the means of XRPD, FTIR, SEM-EDS, BET/BJH, and ICP-OES methods. The ICP-OES results showed that the synthesized material samples with 2 wt.%, 4 wt.%, and 6 wt.% of brushite possess significant adsorption properties and the mechanisms of the adsorption process can be attributed to chemisorption. The most notable result is that brushite-metakaolin-geopolymer with 2 wt.% of brushite have the best efficiency removal, more than 85% of Pb(II).
T2  - Sustainability
T1  - Brushite-Metakaolin Composite Geopolymer Material as an Effective Adsorbent for Lead Removal from Aqueous Solutions
VL  - 14
IS  - 7
SP  - 4003
DO  - 10.3390/su14074003
ER  - 
@article{
author = "Đukić, Dunja and Krstić, Aleksandar D. and Jakovljević, Ksenija and Butulija, Svetlana and Anđelković, Ljubica and Pavlović, Vladimir B. and Mirković, Miljana M.",
year = "2022",
abstract = "Newly designed mesoporous brushite-metakaolin-based geopolymer materials were examined with an idea for using this material as a potential adsorbent for Pb(II) removal from aqueous solutions. As a starting component for geopolymer synthesis, a natural raw kaolinite clay with theaddition of 2 wt.%, 4 wt.%, 6 wt.%, 8 wt.%, and 10 wt.% of pure brushite was used. Phase, structural,morphological, and adsorption properties of newly synthesized mesoporous brushite-metakaolin geopolymer materials were examined in detail by the means of XRPD, FTIR, SEM-EDS, BET/BJH, and ICP-OES methods. The ICP-OES results showed that the synthesized material samples with 2 wt.%, 4 wt.%, and 6 wt.% of brushite possess significant adsorption properties and the mechanisms of the adsorption process can be attributed to chemisorption. The most notable result is that brushite-metakaolin-geopolymer with 2 wt.% of brushite have the best efficiency removal, more than 85% of Pb(II).",
journal = "Sustainability",
title = "Brushite-Metakaolin Composite Geopolymer Material as an Effective Adsorbent for Lead Removal from Aqueous Solutions",
volume = "14",
number = "7",
pages = "4003",
doi = "10.3390/su14074003"
}
Đukić, D., Krstić, A. D., Jakovljević, K., Butulija, S., Anđelković, L., Pavlović, V. B.,& Mirković, M. M.. (2022). Brushite-Metakaolin Composite Geopolymer Material as an Effective Adsorbent for Lead Removal from Aqueous Solutions. in Sustainability, 14(7), 4003.
https://doi.org/10.3390/su14074003
Đukić D, Krstić AD, Jakovljević K, Butulija S, Anđelković L, Pavlović VB, Mirković MM. Brushite-Metakaolin Composite Geopolymer Material as an Effective Adsorbent for Lead Removal from Aqueous Solutions. in Sustainability. 2022;14(7):4003.
doi:10.3390/su14074003 .
Đukić, Dunja, Krstić, Aleksandar D., Jakovljević, Ksenija, Butulija, Svetlana, Anđelković, Ljubica, Pavlović, Vladimir B., Mirković, Miljana M., "Brushite-Metakaolin Composite Geopolymer Material as an Effective Adsorbent for Lead Removal from Aqueous Solutions" in Sustainability, 14, no. 7 (2022):4003,
https://doi.org/10.3390/su14074003 . .
2
2

Photoactive graphene quantum dots/bacterial cellulose hydrogels: Structural, mechanical, and pro-oxidant study

Marković, Zoran M.; Zmejkoski, Danica; Budimir, Milica; Bugarova, Nikol; Kleinova, Angela; Kuzman, Sanja; Špitalsky, Zdeno; Pavlović, Vladimir B.; Milivojević, Dušan; Todorović-Marković, Biljana

(2022)

TY  - JOUR
AU  - Marković, Zoran M.
AU  - Zmejkoski, Danica
AU  - Budimir, Milica
AU  - Bugarova, Nikol
AU  - Kleinova, Angela
AU  - Kuzman, Sanja
AU  - Špitalsky, Zdeno
AU  - Pavlović, Vladimir B.
AU  - Milivojević, Dušan
AU  - Todorović-Marković, Biljana
PY  - 2022
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/10634
AB  - Due to their unique structural properties bacterial cellulose (BC) hydrogels find possible usage in many fields such as cosmetology, food industry, or medicine. In this study, photoactive BC hydrogels are investigated through modifications of their structural, mechanical, and pro-oxidant properties resulting from graphene quantum dots (GQDs) encapsulation. Detailed structural analysis is conducted by atomic force microscopy, transmission electron microscopy and scanning electron microscopy, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, and X-ray diffraction method. Dynamic mechanical analysis is performed to study the changes in storage modulus, loss modulus and tan δ. Pro-oxidative properties of new designed composites are tested by electron paramagnetic resonance (EPR). Structural and mechanical analyses show successful encapsulation of GQDs into BC whereas EPR measurements indicate high potential of these composites for singlet oxygen production.
T2  - Journal of Applied Polymer Science
T1  - Photoactive graphene quantum dots/bacterial cellulose hydrogels: Structural, mechanical, and pro-oxidant study
VL  - 139
IS  - 16
SP  - 51996
DO  - 10.1002/app.51996
ER  - 
@article{
author = "Marković, Zoran M. and Zmejkoski, Danica and Budimir, Milica and Bugarova, Nikol and Kleinova, Angela and Kuzman, Sanja and Špitalsky, Zdeno and Pavlović, Vladimir B. and Milivojević, Dušan and Todorović-Marković, Biljana",
year = "2022",
abstract = "Due to their unique structural properties bacterial cellulose (BC) hydrogels find possible usage in many fields such as cosmetology, food industry, or medicine. In this study, photoactive BC hydrogels are investigated through modifications of their structural, mechanical, and pro-oxidant properties resulting from graphene quantum dots (GQDs) encapsulation. Detailed structural analysis is conducted by atomic force microscopy, transmission electron microscopy and scanning electron microscopy, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, and X-ray diffraction method. Dynamic mechanical analysis is performed to study the changes in storage modulus, loss modulus and tan δ. Pro-oxidative properties of new designed composites are tested by electron paramagnetic resonance (EPR). Structural and mechanical analyses show successful encapsulation of GQDs into BC whereas EPR measurements indicate high potential of these composites for singlet oxygen production.",
journal = "Journal of Applied Polymer Science",
title = "Photoactive graphene quantum dots/bacterial cellulose hydrogels: Structural, mechanical, and pro-oxidant study",
volume = "139",
number = "16",
pages = "51996",
doi = "10.1002/app.51996"
}
Marković, Z. M., Zmejkoski, D., Budimir, M., Bugarova, N., Kleinova, A., Kuzman, S., Špitalsky, Z., Pavlović, V. B., Milivojević, D.,& Todorović-Marković, B.. (2022). Photoactive graphene quantum dots/bacterial cellulose hydrogels: Structural, mechanical, and pro-oxidant study. in Journal of Applied Polymer Science, 139(16), 51996.
https://doi.org/10.1002/app.51996
Marković ZM, Zmejkoski D, Budimir M, Bugarova N, Kleinova A, Kuzman S, Špitalsky Z, Pavlović VB, Milivojević D, Todorović-Marković B. Photoactive graphene quantum dots/bacterial cellulose hydrogels: Structural, mechanical, and pro-oxidant study. in Journal of Applied Polymer Science. 2022;139(16):51996.
doi:10.1002/app.51996 .
Marković, Zoran M., Zmejkoski, Danica, Budimir, Milica, Bugarova, Nikol, Kleinova, Angela, Kuzman, Sanja, Špitalsky, Zdeno, Pavlović, Vladimir B., Milivojević, Dušan, Todorović-Marković, Biljana, "Photoactive graphene quantum dots/bacterial cellulose hydrogels: Structural, mechanical, and pro-oxidant study" in Journal of Applied Polymer Science, 139, no. 16 (2022):51996,
https://doi.org/10.1002/app.51996 . .
3
3

Hydroxyapatite/TiO2 Nanomaterial with Defined Microstructural and Good Antimicrobial Properties

Mirković, Miljana M.; Filipović, Suzana; Kalijadis, Ana; Mašković, Pavle; Mašković, Jelena; Vlahović, Branislav; Pavlović, Vladimir B.

(2022)

TY  - JOUR
AU  - Mirković, Miljana M.
AU  - Filipović, Suzana
AU  - Kalijadis, Ana
AU  - Mašković, Pavle
AU  - Mašković, Jelena
AU  - Vlahović, Branislav
AU  - Pavlović, Vladimir B.
PY  - 2022
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/10270
AB  - Due to the growing number of people infected with the new coronavirus globally, which weakens immunity, there has been an increase in bacterial infections. Hence, knowledge about simple and low-cost synthesis methods of materials with good structural and antimicrobial properties is of great importance. A material obtained through the combination of a nanoscale hydroxyapatite material (with good biocompatibility) and titanium dioxide (with good degradation properties of organic molecules) can absorb and decompose bacteria. In this investigation, three different synthesis routes used to prepare hydroxyapatite/titanium dioxide nanomaterials are examined. The morphology and semiquantitative chemical composition are characterized by scanning electron microscopy with energy dispersive X-ray analysis (SEM-EDX). The obtained materials’ phase and structural characterization are determined using the X-ray powder diffraction method (XRD). The crystallite sizes of the obtained materials are in the range of 8 nm to 15 nm. Based on XRD peak positions, the hexagonal hydroxyapatite phases are formed in all samples along with TiO2 anatase and rutile phases. According to SEM and TEM analyses, the morphology of the prepared samples differs depending on the synthesis route. The EDX analysis confirmed the presence of Ti, Ca, P, and O in the obtained materials. The IR spectroscopy verified the vibration bands characteristic for HAp and titanium. The investigated materials show excellent antimicrobial and photocatalytic properties.
T2  - Antibiotics
T1  - Hydroxyapatite/TiO2 Nanomaterial with Defined Microstructural and Good Antimicrobial Properties
VL  - 11
IS  - 5
SP  - 592
DO  - 10.3390/antibiotics11050592
ER  - 
@article{
author = "Mirković, Miljana M. and Filipović, Suzana and Kalijadis, Ana and Mašković, Pavle and Mašković, Jelena and Vlahović, Branislav and Pavlović, Vladimir B.",
year = "2022",
abstract = "Due to the growing number of people infected with the new coronavirus globally, which weakens immunity, there has been an increase in bacterial infections. Hence, knowledge about simple and low-cost synthesis methods of materials with good structural and antimicrobial properties is of great importance. A material obtained through the combination of a nanoscale hydroxyapatite material (with good biocompatibility) and titanium dioxide (with good degradation properties of organic molecules) can absorb and decompose bacteria. In this investigation, three different synthesis routes used to prepare hydroxyapatite/titanium dioxide nanomaterials are examined. The morphology and semiquantitative chemical composition are characterized by scanning electron microscopy with energy dispersive X-ray analysis (SEM-EDX). The obtained materials’ phase and structural characterization are determined using the X-ray powder diffraction method (XRD). The crystallite sizes of the obtained materials are in the range of 8 nm to 15 nm. Based on XRD peak positions, the hexagonal hydroxyapatite phases are formed in all samples along with TiO2 anatase and rutile phases. According to SEM and TEM analyses, the morphology of the prepared samples differs depending on the synthesis route. The EDX analysis confirmed the presence of Ti, Ca, P, and O in the obtained materials. The IR spectroscopy verified the vibration bands characteristic for HAp and titanium. The investigated materials show excellent antimicrobial and photocatalytic properties.",
journal = "Antibiotics",
title = "Hydroxyapatite/TiO2 Nanomaterial with Defined Microstructural and Good Antimicrobial Properties",
volume = "11",
number = "5",
pages = "592",
doi = "10.3390/antibiotics11050592"
}
Mirković, M. M., Filipović, S., Kalijadis, A., Mašković, P., Mašković, J., Vlahović, B.,& Pavlović, V. B.. (2022). Hydroxyapatite/TiO2 Nanomaterial with Defined Microstructural and Good Antimicrobial Properties. in Antibiotics, 11(5), 592.
https://doi.org/10.3390/antibiotics11050592
Mirković MM, Filipović S, Kalijadis A, Mašković P, Mašković J, Vlahović B, Pavlović VB. Hydroxyapatite/TiO2 Nanomaterial with Defined Microstructural and Good Antimicrobial Properties. in Antibiotics. 2022;11(5):592.
doi:10.3390/antibiotics11050592 .
Mirković, Miljana M., Filipović, Suzana, Kalijadis, Ana, Mašković, Pavle, Mašković, Jelena, Vlahović, Branislav, Pavlović, Vladimir B., "Hydroxyapatite/TiO2 Nanomaterial with Defined Microstructural and Good Antimicrobial Properties" in Antibiotics, 11, no. 5 (2022):592,
https://doi.org/10.3390/antibiotics11050592 . .
10
9

Silver distribution and binding mode as key determinants of the antimicrobial performance of iron oxide/silver nanocomposites

Šuljagić, Marija; Milenković, Milica; Uskoković, Vuk; Mirković, Miljana M.; Vrbica, Boško; Pavlović, Vladimir B.; Živković-Radovanović, Vukosava; Stanković, Dalibor M.; Anđelković, Ljubica

(2022)

TY  - JOUR
AU  - Šuljagić, Marija
AU  - Milenković, Milica
AU  - Uskoković, Vuk
AU  - Mirković, Miljana M.
AU  - Vrbica, Boško
AU  - Pavlović, Vladimir B.
AU  - Živković-Radovanović, Vukosava
AU  - Stanković, Dalibor M.
AU  - Anđelković, Ljubica
PY  - 2022
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/10386
AB  - The emerging threat of bacterial resistance to antibiotics prompts the urgent search for biomaterials for the treatment of infectious disease. Here we report on the synthesis and characterization of a multiphasic nanocomposite comprising magnetic iron oxide and silver nanoparticles. The method of synthesis involved the combustion of a metalorganic complex and reduction of the silver ions that were exchanged and/or adsorbed on the surface of iron oxide. Different physical and chemical treatments coupled to the reduction process, including ultrasound and Lugol's iodine solution, respectively, homogenized the distribution of the silver nanoparticles on the iron oxide phase. Remarkably, using ascorbic acid as a reductant enhanced the magnetic properties of the material as a result of the reduction of the magnetic matrix alongside the silver cations. The treatment with ultrasound detached large amounts of silver from the iron oxide phase and resulted in the lowest amount of silver incorporated in the nanocomposite. Despite that, this treatment led to the highest antibacterial activity against both Gram-positive and Gram-negative strains, indicating that the homogeneity of the distribution of silver on the iron oxide matrix is a more important determinant of the antibacterial performance than the amount of silver incorporated in the material. At the same time, the treatment with Lugol's iodine equally increased the distribution homogeneity, but induced excessive ion exchange and crystal lattice substitutions, thereby adversely affecting the antibacterial performance. This has indicated that the mode of binding silver to iron oxide can compensate for the positive effects of homogeneous distribution with respect to the antibacterial performance.
T2  - Materials Today Communications
T1  - Silver distribution and binding mode as key determinants of the antimicrobial performance of iron oxide/silver nanocomposites
VL  - 32
SP  - 104157
DO  - 10.1016/j.mtcomm.2022.104157
ER  - 
@article{
author = "Šuljagić, Marija and Milenković, Milica and Uskoković, Vuk and Mirković, Miljana M. and Vrbica, Boško and Pavlović, Vladimir B. and Živković-Radovanović, Vukosava and Stanković, Dalibor M. and Anđelković, Ljubica",
year = "2022",
abstract = "The emerging threat of bacterial resistance to antibiotics prompts the urgent search for biomaterials for the treatment of infectious disease. Here we report on the synthesis and characterization of a multiphasic nanocomposite comprising magnetic iron oxide and silver nanoparticles. The method of synthesis involved the combustion of a metalorganic complex and reduction of the silver ions that were exchanged and/or adsorbed on the surface of iron oxide. Different physical and chemical treatments coupled to the reduction process, including ultrasound and Lugol's iodine solution, respectively, homogenized the distribution of the silver nanoparticles on the iron oxide phase. Remarkably, using ascorbic acid as a reductant enhanced the magnetic properties of the material as a result of the reduction of the magnetic matrix alongside the silver cations. The treatment with ultrasound detached large amounts of silver from the iron oxide phase and resulted in the lowest amount of silver incorporated in the nanocomposite. Despite that, this treatment led to the highest antibacterial activity against both Gram-positive and Gram-negative strains, indicating that the homogeneity of the distribution of silver on the iron oxide matrix is a more important determinant of the antibacterial performance than the amount of silver incorporated in the material. At the same time, the treatment with Lugol's iodine equally increased the distribution homogeneity, but induced excessive ion exchange and crystal lattice substitutions, thereby adversely affecting the antibacterial performance. This has indicated that the mode of binding silver to iron oxide can compensate for the positive effects of homogeneous distribution with respect to the antibacterial performance.",
journal = "Materials Today Communications",
title = "Silver distribution and binding mode as key determinants of the antimicrobial performance of iron oxide/silver nanocomposites",
volume = "32",
pages = "104157",
doi = "10.1016/j.mtcomm.2022.104157"
}
Šuljagić, M., Milenković, M., Uskoković, V., Mirković, M. M., Vrbica, B., Pavlović, V. B., Živković-Radovanović, V., Stanković, D. M.,& Anđelković, L.. (2022). Silver distribution and binding mode as key determinants of the antimicrobial performance of iron oxide/silver nanocomposites. in Materials Today Communications, 32, 104157.
https://doi.org/10.1016/j.mtcomm.2022.104157
Šuljagić M, Milenković M, Uskoković V, Mirković MM, Vrbica B, Pavlović VB, Živković-Radovanović V, Stanković DM, Anđelković L. Silver distribution and binding mode as key determinants of the antimicrobial performance of iron oxide/silver nanocomposites. in Materials Today Communications. 2022;32:104157.
doi:10.1016/j.mtcomm.2022.104157 .
Šuljagić, Marija, Milenković, Milica, Uskoković, Vuk, Mirković, Miljana M., Vrbica, Boško, Pavlović, Vladimir B., Živković-Radovanović, Vukosava, Stanković, Dalibor M., Anđelković, Ljubica, "Silver distribution and binding mode as key determinants of the antimicrobial performance of iron oxide/silver nanocomposites" in Materials Today Communications, 32 (2022):104157,
https://doi.org/10.1016/j.mtcomm.2022.104157 . .
1
1

Aluminosilicate matrix of alkali activated mixture of metakaolin/fly ash and wood ash/metakaolin

Mladenović Nikolić, Nataša; Knežević, Sanja; Ivanović, Marija; Nenadović, Snežana S.; Mirković, Miljana M.; Pavlović, Vladimir B.; Kljajević, Ljiljana M.

(Belgrade : Serbian Ceramic Society, 2022)

TY  - CONF
AU  - Mladenović Nikolić, Nataša
AU  - Knežević, Sanja
AU  - Ivanović, Marija
AU  - Nenadović, Snežana S.
AU  - Mirković, Miljana M.
AU  - Pavlović, Vladimir B.
AU  - Kljajević, Ljiljana M.
PY  - 2022
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/10805
AB  - Presented research related to the structure of a different kind of alumosilicate matrix of alkali activated materials (AAM). Fly ash (FA), wood ash (WA) and metakaolin (MK) were used as a solid precursors of final AAM samples. Synthesis of the AAM was conducted by mixing in a determined ratio solid precursors and an alkali activator (sodium silicate solution, NaOH solutions concentration-4 mol dm-3 and 12 mol dm-3 ). AAM samples were synthesized by a two-component system: MK/FA and WA/MK. The ratio of components MK/FA and WA/MK was 0.9. The AAM samples were cured at determined laboratory conditions (time, temperature, humidity, aging) in covering mold. The X-ray diffraction (XRD), Diffuse reflectance infrared Fourier transform spectroscopy (DRIFT), and Scanning Electron Microscopy (SEM) were provided to the samples after twenty-eight days of geopolymerization process. The higher background of both MK/FA and WA/MK based AAM samples indicates the achievement of amorphization during the geopolymerization process. In investigated samples, the characteristic stretching asymmetric vibrations C=O, and carbonate vibrations were expected in highly alkaline FA/MK and WA/MK mixture. SEM morphology of all AAM samples noticed an amorphous phase with irregularly distributed, agglomerated particles, and some crystal phases originating from raw materials on the surface alumosilicate matrix.
PB  - Belgrade : Serbian Ceramic Society
C3  - Advanced Ceramics and Application : 10th Serbian Ceramic Society Conference : program and the book of abstracts; September 26-27, 2022; Belgrade
T1  - Aluminosilicate matrix of alkali activated mixture of metakaolin/fly ash and wood ash/metakaolin
SP  - 73
EP  - 74
UR  - https://hdl.handle.net/21.15107/rcub_vinar_10805
ER  - 
@conference{
author = "Mladenović Nikolić, Nataša and Knežević, Sanja and Ivanović, Marija and Nenadović, Snežana S. and Mirković, Miljana M. and Pavlović, Vladimir B. and Kljajević, Ljiljana M.",
year = "2022",
abstract = "Presented research related to the structure of a different kind of alumosilicate matrix of alkali activated materials (AAM). Fly ash (FA), wood ash (WA) and metakaolin (MK) were used as a solid precursors of final AAM samples. Synthesis of the AAM was conducted by mixing in a determined ratio solid precursors and an alkali activator (sodium silicate solution, NaOH solutions concentration-4 mol dm-3 and 12 mol dm-3 ). AAM samples were synthesized by a two-component system: MK/FA and WA/MK. The ratio of components MK/FA and WA/MK was 0.9. The AAM samples were cured at determined laboratory conditions (time, temperature, humidity, aging) in covering mold. The X-ray diffraction (XRD), Diffuse reflectance infrared Fourier transform spectroscopy (DRIFT), and Scanning Electron Microscopy (SEM) were provided to the samples after twenty-eight days of geopolymerization process. The higher background of both MK/FA and WA/MK based AAM samples indicates the achievement of amorphization during the geopolymerization process. In investigated samples, the characteristic stretching asymmetric vibrations C=O, and carbonate vibrations were expected in highly alkaline FA/MK and WA/MK mixture. SEM morphology of all AAM samples noticed an amorphous phase with irregularly distributed, agglomerated particles, and some crystal phases originating from raw materials on the surface alumosilicate matrix.",
publisher = "Belgrade : Serbian Ceramic Society",
journal = "Advanced Ceramics and Application : 10th Serbian Ceramic Society Conference : program and the book of abstracts; September 26-27, 2022; Belgrade",
title = "Aluminosilicate matrix of alkali activated mixture of metakaolin/fly ash and wood ash/metakaolin",
pages = "73-74",
url = "https://hdl.handle.net/21.15107/rcub_vinar_10805"
}
Mladenović Nikolić, N., Knežević, S., Ivanović, M., Nenadović, S. S., Mirković, M. M., Pavlović, V. B.,& Kljajević, L. M.. (2022). Aluminosilicate matrix of alkali activated mixture of metakaolin/fly ash and wood ash/metakaolin. in Advanced Ceramics and Application : 10th Serbian Ceramic Society Conference : program and the book of abstracts; September 26-27, 2022; Belgrade
Belgrade : Serbian Ceramic Society., 73-74.
https://hdl.handle.net/21.15107/rcub_vinar_10805
Mladenović Nikolić N, Knežević S, Ivanović M, Nenadović SS, Mirković MM, Pavlović VB, Kljajević LM. Aluminosilicate matrix of alkali activated mixture of metakaolin/fly ash and wood ash/metakaolin. in Advanced Ceramics and Application : 10th Serbian Ceramic Society Conference : program and the book of abstracts; September 26-27, 2022; Belgrade. 2022;:73-74.
https://hdl.handle.net/21.15107/rcub_vinar_10805 .
Mladenović Nikolić, Nataša, Knežević, Sanja, Ivanović, Marija, Nenadović, Snežana S., Mirković, Miljana M., Pavlović, Vladimir B., Kljajević, Ljiljana M., "Aluminosilicate matrix of alkali activated mixture of metakaolin/fly ash and wood ash/metakaolin" in Advanced Ceramics and Application : 10th Serbian Ceramic Society Conference : program and the book of abstracts; September 26-27, 2022; Belgrade (2022):73-74,
https://hdl.handle.net/21.15107/rcub_vinar_10805 .

Properties of free-standing graphene oxide/silver nanowires films and effects of chemical reduction and gamma irradiation

Mišović, Aleksandra; Bajuk-Bogdanović, Danica V.; Kepić, Dejan; Pavlović, Vladimir B.; Huskić, Miroslav; Hasheminejad, Navid; Vuye, Cedric; Zorić, Nemanja; Jovanović, Svetlana P.

(2022)

TY  - JOUR
AU  - Mišović, Aleksandra
AU  - Bajuk-Bogdanović, Danica V.
AU  - Kepić, Dejan
AU  - Pavlović, Vladimir B.
AU  - Huskić, Miroslav
AU  - Hasheminejad, Navid
AU  - Vuye, Cedric
AU  - Zorić, Nemanja
AU  - Jovanović, Svetlana P.
PY  - 2022
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/10078
AB  - The need for stable, chemical resistant and conductive materials is on the rise in recent times. Graphene shows promising electrical conductivity and chemical stability, but the production of a continual, conductive layer is limited and expensive. Silver nanowires (AgNWs) are both conducive and economically viable, but they are sensitive to water and oxygen. In this study, graphene oxide (GO) and AgNWs were synthesized and combined in different mass ratios (3:1, 2.5:1.5, and 1:1) to obtain chemically stable composites with improved electrical properties. Composites were reduced using ascorbic acid. With the increase of AgNWs to GO mass ratio, the surface of the free-standing composite film improved: the root mean square roughness was lowered from 376 nm for GO to 168 nm for the composite with the mass ratio of GO:AgNWs 1:1, while the sheet resistance was lowered from 146 × 106 Ω/□ to 4 Ω/□. For the first time, the effects of gamma irradiation on the structure of the composites were studied. Doses of 15, 25, and 35 kGy were applied.
T2  - Synthetic Metals
T1  - Properties of free-standing graphene oxide/silver nanowires films and effects of chemical reduction and gamma irradiation
VL  - 283
SP  - 116980
DO  - 10.1016/j.synthmet.2021.116980
ER  - 
@article{
author = "Mišović, Aleksandra and Bajuk-Bogdanović, Danica V. and Kepić, Dejan and Pavlović, Vladimir B. and Huskić, Miroslav and Hasheminejad, Navid and Vuye, Cedric and Zorić, Nemanja and Jovanović, Svetlana P.",
year = "2022",
abstract = "The need for stable, chemical resistant and conductive materials is on the rise in recent times. Graphene shows promising electrical conductivity and chemical stability, but the production of a continual, conductive layer is limited and expensive. Silver nanowires (AgNWs) are both conducive and economically viable, but they are sensitive to water and oxygen. In this study, graphene oxide (GO) and AgNWs were synthesized and combined in different mass ratios (3:1, 2.5:1.5, and 1:1) to obtain chemically stable composites with improved electrical properties. Composites were reduced using ascorbic acid. With the increase of AgNWs to GO mass ratio, the surface of the free-standing composite film improved: the root mean square roughness was lowered from 376 nm for GO to 168 nm for the composite with the mass ratio of GO:AgNWs 1:1, while the sheet resistance was lowered from 146 × 106 Ω/□ to 4 Ω/□. For the first time, the effects of gamma irradiation on the structure of the composites were studied. Doses of 15, 25, and 35 kGy were applied.",
journal = "Synthetic Metals",
title = "Properties of free-standing graphene oxide/silver nanowires films and effects of chemical reduction and gamma irradiation",
volume = "283",
pages = "116980",
doi = "10.1016/j.synthmet.2021.116980"
}
Mišović, A., Bajuk-Bogdanović, D. V., Kepić, D., Pavlović, V. B., Huskić, M., Hasheminejad, N., Vuye, C., Zorić, N.,& Jovanović, S. P.. (2022). Properties of free-standing graphene oxide/silver nanowires films and effects of chemical reduction and gamma irradiation. in Synthetic Metals, 283, 116980.
https://doi.org/10.1016/j.synthmet.2021.116980
Mišović A, Bajuk-Bogdanović DV, Kepić D, Pavlović VB, Huskić M, Hasheminejad N, Vuye C, Zorić N, Jovanović SP. Properties of free-standing graphene oxide/silver nanowires films and effects of chemical reduction and gamma irradiation. in Synthetic Metals. 2022;283:116980.
doi:10.1016/j.synthmet.2021.116980 .
Mišović, Aleksandra, Bajuk-Bogdanović, Danica V., Kepić, Dejan, Pavlović, Vladimir B., Huskić, Miroslav, Hasheminejad, Navid, Vuye, Cedric, Zorić, Nemanja, Jovanović, Svetlana P., "Properties of free-standing graphene oxide/silver nanowires films and effects of chemical reduction and gamma irradiation" in Synthetic Metals, 283 (2022):116980,
https://doi.org/10.1016/j.synthmet.2021.116980 . .
4
2

Physico-chemical and mechanical properties of geopolymer/zircon composites

Kljajević, Ljiljana M.; Nenadović, Miloš; Petković, Marijana; Bučevac, Dušan; Pavlović, Vladimir B.; Mladenović-Nikolić, Nataša; Nenadović, Snežana B.

(2022)

TY  - JOUR
AU  - Kljajević, Ljiljana M.
AU  - Nenadović, Miloš
AU  - Petković, Marijana
AU  - Bučevac, Dušan
AU  - Pavlović, Vladimir B.
AU  - Mladenović-Nikolić, Nataša
AU  - Nenadović, Snežana B.
PY  - 2022
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/10246
AB  - The effect of zircon (ZrSiO4) on the physico-chemical and mechanical properties of geopolymer/zircon composites was examined in this study. Four geopolymer/zircon composites containing 10, 20, 30 and 40 wt.% zircon were prepared from metakaolin with alkali activators. Characterization of the obtained geopolymers was performed by X-ray diffraction (XRD), Scanning electron microscope (SEM-EDS), Fourier transform infrared spectroscopy (FTIR) and Matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF). XRD results did not confirmed the formation of interconnected phases between added zircon, starting aluminum silicates and alkali activators. Compressive strength of prepared geopolymer was examined. The maximum obtained compressive strength of 70.15 MPa was measured in sample containing the smallest fraction of zircon, i.e., 10 wt.%. Addition of larger amount of zircon (20 wt.%) hinders the progress of geopolymerization reaction and consequently decreases compressive strength.
T2  - Science of Sintering
T1  - Physico-chemical and mechanical properties of geopolymer/zircon composites
VL  - 54
IS  - 1
SP  - 11
EP  - 24
DO  - 10.2298/SOS2201011K
ER  - 
@article{
author = "Kljajević, Ljiljana M. and Nenadović, Miloš and Petković, Marijana and Bučevac, Dušan and Pavlović, Vladimir B. and Mladenović-Nikolić, Nataša and Nenadović, Snežana B.",
year = "2022",
abstract = "The effect of zircon (ZrSiO4) on the physico-chemical and mechanical properties of geopolymer/zircon composites was examined in this study. Four geopolymer/zircon composites containing 10, 20, 30 and 40 wt.% zircon were prepared from metakaolin with alkali activators. Characterization of the obtained geopolymers was performed by X-ray diffraction (XRD), Scanning electron microscope (SEM-EDS), Fourier transform infrared spectroscopy (FTIR) and Matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF). XRD results did not confirmed the formation of interconnected phases between added zircon, starting aluminum silicates and alkali activators. Compressive strength of prepared geopolymer was examined. The maximum obtained compressive strength of 70.15 MPa was measured in sample containing the smallest fraction of zircon, i.e., 10 wt.%. Addition of larger amount of zircon (20 wt.%) hinders the progress of geopolymerization reaction and consequently decreases compressive strength.",
journal = "Science of Sintering",
title = "Physico-chemical and mechanical properties of geopolymer/zircon composites",
volume = "54",
number = "1",
pages = "11-24",
doi = "10.2298/SOS2201011K"
}
Kljajević, L. M., Nenadović, M., Petković, M., Bučevac, D., Pavlović, V. B., Mladenović-Nikolić, N.,& Nenadović, S. B.. (2022). Physico-chemical and mechanical properties of geopolymer/zircon composites. in Science of Sintering, 54(1), 11-24.
https://doi.org/10.2298/SOS2201011K
Kljajević LM, Nenadović M, Petković M, Bučevac D, Pavlović VB, Mladenović-Nikolić N, Nenadović SB. Physico-chemical and mechanical properties of geopolymer/zircon composites. in Science of Sintering. 2022;54(1):11-24.
doi:10.2298/SOS2201011K .
Kljajević, Ljiljana M., Nenadović, Miloš, Petković, Marijana, Bučevac, Dušan, Pavlović, Vladimir B., Mladenović-Nikolić, Nataša, Nenadović, Snežana B., "Physico-chemical and mechanical properties of geopolymer/zircon composites" in Science of Sintering, 54, no. 1 (2022):11-24,
https://doi.org/10.2298/SOS2201011K . .
1
2

Structural Characterization of Nanocellulose/Fe3O4 Hybrid Nanomaterials

Janićijević, Aleksandra; Pavlović, Vera P.; Kovačević, Danijela; Perić, Marko; Vlahović, Branislav; Pavlović, Vladimir B.; Filipović, Suzana

(2022)

TY  - JOUR
AU  - Janićijević, Aleksandra
AU  - Pavlović, Vera P.
AU  - Kovačević, Danijela
AU  - Perić, Marko
AU  - Vlahović, Branislav
AU  - Pavlović, Vladimir B.
AU  - Filipović, Suzana
PY  - 2022
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/10269
AB  - The rise of innovation in the electrical industry is driven by the controlled design of new materials. The hybrid materials based on magnetite/nanocellulose are highly interesting due to their various applications in medicine, ecology, catalysis and electronics. In this study, the structure and morphology of nanocellulose/magnetite hybrid nanomaterials were investigated. The effect of nanocellulose loading on the crystal structure of synthesized composites was investigated by XRD and FTIR methods. The presented study reveals that the interaction between the cellulose and magnetic nanoparticles depends on the nanocellulose content. Further, a transition from cellulose II to cellulose I allomorph is observed. SEM and EDS are employed to determine the variation in morphology with changes in component concentrations. By the calculation of magnetic interactions between adjacent Fe3+ and Fe2+ ions within composites, it is determined that ferromagnetic coupling predominates.
T2  - Polymers
T1  - Structural Characterization of Nanocellulose/Fe3O4 Hybrid Nanomaterials
VL  - 14
IS  - 9
SP  - 1819
DO  - 10.3390/polym14091819
ER  - 
@article{
author = "Janićijević, Aleksandra and Pavlović, Vera P. and Kovačević, Danijela and Perić, Marko and Vlahović, Branislav and Pavlović, Vladimir B. and Filipović, Suzana",
year = "2022",
abstract = "The rise of innovation in the electrical industry is driven by the controlled design of new materials. The hybrid materials based on magnetite/nanocellulose are highly interesting due to their various applications in medicine, ecology, catalysis and electronics. In this study, the structure and morphology of nanocellulose/magnetite hybrid nanomaterials were investigated. The effect of nanocellulose loading on the crystal structure of synthesized composites was investigated by XRD and FTIR methods. The presented study reveals that the interaction between the cellulose and magnetic nanoparticles depends on the nanocellulose content. Further, a transition from cellulose II to cellulose I allomorph is observed. SEM and EDS are employed to determine the variation in morphology with changes in component concentrations. By the calculation of magnetic interactions between adjacent Fe3+ and Fe2+ ions within composites, it is determined that ferromagnetic coupling predominates.",
journal = "Polymers",
title = "Structural Characterization of Nanocellulose/Fe3O4 Hybrid Nanomaterials",
volume = "14",
number = "9",
pages = "1819",
doi = "10.3390/polym14091819"
}
Janićijević, A., Pavlović, V. P., Kovačević, D., Perić, M., Vlahović, B., Pavlović, V. B.,& Filipović, S.. (2022). Structural Characterization of Nanocellulose/Fe3O4 Hybrid Nanomaterials. in Polymers, 14(9), 1819.
https://doi.org/10.3390/polym14091819
Janićijević A, Pavlović VP, Kovačević D, Perić M, Vlahović B, Pavlović VB, Filipović S. Structural Characterization of Nanocellulose/Fe3O4 Hybrid Nanomaterials. in Polymers. 2022;14(9):1819.
doi:10.3390/polym14091819 .
Janićijević, Aleksandra, Pavlović, Vera P., Kovačević, Danijela, Perić, Marko, Vlahović, Branislav, Pavlović, Vladimir B., Filipović, Suzana, "Structural Characterization of Nanocellulose/Fe3O4 Hybrid Nanomaterials" in Polymers, 14, no. 9 (2022):1819,
https://doi.org/10.3390/polym14091819 . .
7
4

Novel Solid-State Approach to Nickel Ferrite Electrocatalyst for the Detection of Gallic Acid

Stanković, Dalibor M.; Mirković, Marija; Pavlović, Vladimir B.; Petronijević, Ivan M.; Jeremić, Dejan; Anđelković, Ljubica; Šuljagić, Marija

(2022)

TY  - JOUR
AU  - Stanković, Dalibor M.
AU  - Mirković, Marija
AU  - Pavlović, Vladimir B.
AU  - Petronijević, Ivan M.
AU  - Jeremić, Dejan
AU  - Anđelković, Ljubica
AU  - Šuljagić, Marija
PY  - 2022
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/10600
AB  - Nickel ferrite nanoparticles were synthesized via thermal decomposition of β-diketonato complexes of nickel(II) and iron(III). The mechano-chemical activation of the complex precursors was used to ensure the increase in the reaction activity and consequently reduce thermal decomposition temperature. The prepared sample was thoroughly characterized by X-ray powder diffraction, FT-IR spectroscopy, scanning electron microscopy (SEM) coupled with electron dispersive spectroscopy (EDS), and transmission electron microscopy (TEM). X-ray powder diffraction and FT-IR confirmed the spinel phase of the investigated powder. SEM and TEM revealed the ultrafine nature of nanosized polygonal particles, with a pronounced agglomeration effect. The capacity for electrocatalytic applications was examined using cyclic voltammetry (CV) and electrical impedance spectroscopy (EIS). Electrocatalytic measurements pointed out that the addition of 5% of nickel ferrite as a modifier to carbon paste electrode caused a current increase and a decrease of the EIS semicircle. Further increase in the amount of the modifier decreased heterogeneity of the electrode surface and served as excellent sensor for the detection of gallic acid in the concentration range from 1 to 10 µM with the detection limit of 0.27 µM. This unambiguously indicated the significant improvement in electrode transfer rate and better characteristics of the diffusion layer. © 2022, Pleiades Publishing, Ltd.
T2  - Russian Journal of Inorganic Chemistry
T1  - Novel Solid-State Approach to Nickel Ferrite Electrocatalyst for the Detection of Gallic Acid
VL  - 67
IS  - Suppl. 1
SP  - S13
EP  - S21
DO  - 10.1134/S003602362260201X
ER  - 
@article{
author = "Stanković, Dalibor M. and Mirković, Marija and Pavlović, Vladimir B. and Petronijević, Ivan M. and Jeremić, Dejan and Anđelković, Ljubica and Šuljagić, Marija",
year = "2022",
abstract = "Nickel ferrite nanoparticles were synthesized via thermal decomposition of β-diketonato complexes of nickel(II) and iron(III). The mechano-chemical activation of the complex precursors was used to ensure the increase in the reaction activity and consequently reduce thermal decomposition temperature. The prepared sample was thoroughly characterized by X-ray powder diffraction, FT-IR spectroscopy, scanning electron microscopy (SEM) coupled with electron dispersive spectroscopy (EDS), and transmission electron microscopy (TEM). X-ray powder diffraction and FT-IR confirmed the spinel phase of the investigated powder. SEM and TEM revealed the ultrafine nature of nanosized polygonal particles, with a pronounced agglomeration effect. The capacity for electrocatalytic applications was examined using cyclic voltammetry (CV) and electrical impedance spectroscopy (EIS). Electrocatalytic measurements pointed out that the addition of 5% of nickel ferrite as a modifier to carbon paste electrode caused a current increase and a decrease of the EIS semicircle. Further increase in the amount of the modifier decreased heterogeneity of the electrode surface and served as excellent sensor for the detection of gallic acid in the concentration range from 1 to 10 µM with the detection limit of 0.27 µM. This unambiguously indicated the significant improvement in electrode transfer rate and better characteristics of the diffusion layer. © 2022, Pleiades Publishing, Ltd.",
journal = "Russian Journal of Inorganic Chemistry",
title = "Novel Solid-State Approach to Nickel Ferrite Electrocatalyst for the Detection of Gallic Acid",
volume = "67",
number = "Suppl. 1",
pages = "S13-S21",
doi = "10.1134/S003602362260201X"
}
Stanković, D. M., Mirković, M., Pavlović, V. B., Petronijević, I. M., Jeremić, D., Anđelković, L.,& Šuljagić, M.. (2022). Novel Solid-State Approach to Nickel Ferrite Electrocatalyst for the Detection of Gallic Acid. in Russian Journal of Inorganic Chemistry, 67(Suppl. 1), S13-S21.
https://doi.org/10.1134/S003602362260201X
Stanković DM, Mirković M, Pavlović VB, Petronijević IM, Jeremić D, Anđelković L, Šuljagić M. Novel Solid-State Approach to Nickel Ferrite Electrocatalyst for the Detection of Gallic Acid. in Russian Journal of Inorganic Chemistry. 2022;67(Suppl. 1):S13-S21.
doi:10.1134/S003602362260201X .
Stanković, Dalibor M., Mirković, Marija, Pavlović, Vladimir B., Petronijević, Ivan M., Jeremić, Dejan, Anđelković, Ljubica, Šuljagić, Marija, "Novel Solid-State Approach to Nickel Ferrite Electrocatalyst for the Detection of Gallic Acid" in Russian Journal of Inorganic Chemistry, 67, no. Suppl. 1 (2022):S13-S21,
https://doi.org/10.1134/S003602362260201X . .
1
1