Nedić Vasiljević, Bojana

Link to this page

Authority KeyName Variants
802e8966-141e-488f-b6de-53721db8e315
  • Nedić Vasiljević, Bojana (3)

Author's Bibliography

Carbonization of MOF-5/Polyaniline Composites to N,O-Doped Carbon/ZnO/ZnS and N,O-Doped Carbon/ZnO Composites with High Specific Capacitance, Specific Surface Area and Electrical Conductivity

Savić, Marjetka; Janošević Ležaić, Aleksandra; Gavrilov, Nemanja; Pašti, Igor; Nedić Vasiljević, Bojana; Krstić, Jugoslav; Ćirić-Marjanović, Gordana

(2023)

TY  - JOUR
AU  - Savić, Marjetka
AU  - Janošević Ležaić, Aleksandra
AU  - Gavrilov, Nemanja
AU  - Pašti, Igor
AU  - Nedić Vasiljević, Bojana
AU  - Krstić, Jugoslav
AU  - Ćirić-Marjanović, Gordana
PY  - 2023
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/10645
AB  - Composites of carbons with metal oxides and metal sulfides have attracted a lot of interestas materials for energy conversion and storage applications. Herein, we report on novel N,O-dopedcarbon/ZnO/ZnS and N,O-doped carbon/ZnO composites (generally named C-(MOF-5/PANI)),synthesized by the carbonization of metal–organic framework MOF-5/polyaniline (PANI) composites.The produced C-(MOF-5/PANI)s are comprehensively characterized in terms of composition,molecular and crystalline structure, morphology, electrical conductivity, surface area, and electrochemicalbehavior. The composition and properties of C-(MOF-5/PANI) composites are dictated bythe composition of MOF-5/PANI precursors and the form of PANI (conducting emeraldine salt (ES)or nonconducting emeraldine base). The ZnS phase is formed only with the PANI-ES form due toS-containing counter-ions. XRPD revealed that ZnO and ZnS existed as pure wurtzite crystallinephases. PANI and MOF-5 acted synergistically to produce C-(MOF-5/PANI)s with high SBET (up to609 m2 g−1), electrical conductivity (up to 0.24 S cm−1), and specific capacitance, Cspec, (up to 238.2 Fg−1 at 10 mV s−1). Values of Cspec commensurated with N content in C-(MOF-5/PANI) composites (1–10 wt.%) and overcame Cspec of carbonized individual components PANI and MOF-5. By acid etchingtreatment of C-(MOF-5/PANI), SBET and Cspec increased to 1148 m2 g−1 and 341 F g−1, respectively.The developed composites represent promising electrode materials for supercapacitors.
T2  - Materials
T1  - Carbonization of MOF-5/Polyaniline Composites to N,O-Doped Carbon/ZnO/ZnS and N,O-Doped Carbon/ZnO Composites with High Specific Capacitance, Specific Surface Area and Electrical Conductivity
VL  - 16
IS  - 3
SP  - 1018
DO  - 10.3390/ma16031018
ER  - 
@article{
author = "Savić, Marjetka and Janošević Ležaić, Aleksandra and Gavrilov, Nemanja and Pašti, Igor and Nedić Vasiljević, Bojana and Krstić, Jugoslav and Ćirić-Marjanović, Gordana",
year = "2023",
abstract = "Composites of carbons with metal oxides and metal sulfides have attracted a lot of interestas materials for energy conversion and storage applications. Herein, we report on novel N,O-dopedcarbon/ZnO/ZnS and N,O-doped carbon/ZnO composites (generally named C-(MOF-5/PANI)),synthesized by the carbonization of metal–organic framework MOF-5/polyaniline (PANI) composites.The produced C-(MOF-5/PANI)s are comprehensively characterized in terms of composition,molecular and crystalline structure, morphology, electrical conductivity, surface area, and electrochemicalbehavior. The composition and properties of C-(MOF-5/PANI) composites are dictated bythe composition of MOF-5/PANI precursors and the form of PANI (conducting emeraldine salt (ES)or nonconducting emeraldine base). The ZnS phase is formed only with the PANI-ES form due toS-containing counter-ions. XRPD revealed that ZnO and ZnS existed as pure wurtzite crystallinephases. PANI and MOF-5 acted synergistically to produce C-(MOF-5/PANI)s with high SBET (up to609 m2 g−1), electrical conductivity (up to 0.24 S cm−1), and specific capacitance, Cspec, (up to 238.2 Fg−1 at 10 mV s−1). Values of Cspec commensurated with N content in C-(MOF-5/PANI) composites (1–10 wt.%) and overcame Cspec of carbonized individual components PANI and MOF-5. By acid etchingtreatment of C-(MOF-5/PANI), SBET and Cspec increased to 1148 m2 g−1 and 341 F g−1, respectively.The developed composites represent promising electrode materials for supercapacitors.",
journal = "Materials",
title = "Carbonization of MOF-5/Polyaniline Composites to N,O-Doped Carbon/ZnO/ZnS and N,O-Doped Carbon/ZnO Composites with High Specific Capacitance, Specific Surface Area and Electrical Conductivity",
volume = "16",
number = "3",
pages = "1018",
doi = "10.3390/ma16031018"
}
Savić, M., Janošević Ležaić, A., Gavrilov, N., Pašti, I., Nedić Vasiljević, B., Krstić, J.,& Ćirić-Marjanović, G.. (2023). Carbonization of MOF-5/Polyaniline Composites to N,O-Doped Carbon/ZnO/ZnS and N,O-Doped Carbon/ZnO Composites with High Specific Capacitance, Specific Surface Area and Electrical Conductivity. in Materials, 16(3), 1018.
https://doi.org/10.3390/ma16031018
Savić M, Janošević Ležaić A, Gavrilov N, Pašti I, Nedić Vasiljević B, Krstić J, Ćirić-Marjanović G. Carbonization of MOF-5/Polyaniline Composites to N,O-Doped Carbon/ZnO/ZnS and N,O-Doped Carbon/ZnO Composites with High Specific Capacitance, Specific Surface Area and Electrical Conductivity. in Materials. 2023;16(3):1018.
doi:10.3390/ma16031018 .
Savić, Marjetka, Janošević Ležaić, Aleksandra, Gavrilov, Nemanja, Pašti, Igor, Nedić Vasiljević, Bojana, Krstić, Jugoslav, Ćirić-Marjanović, Gordana, "Carbonization of MOF-5/Polyaniline Composites to N,O-Doped Carbon/ZnO/ZnS and N,O-Doped Carbon/ZnO Composites with High Specific Capacitance, Specific Surface Area and Electrical Conductivity" in Materials, 16, no. 3 (2023):1018,
https://doi.org/10.3390/ma16031018 . .
5
2

Physicochemical properties of copper-doped bismuth vanadate nanoparticles

Jelić, Marko; Pašti, Igor; Nedić Vasiljević, Bojana; Erčić, Jelena; Bajuk-Bogdanović, Danica; Jovanović, Zoran; Jovanović, Sonja

(Belgrade : Materials Research Society of Serbia – MRS-Serbia, 2022)

TY  - CONF
AU  - Jelić, Marko
AU  - Pašti, Igor
AU  - Nedić Vasiljević, Bojana
AU  - Erčić, Jelena
AU  - Bajuk-Bogdanović, Danica
AU  - Jovanović, Zoran
AU  - Jovanović, Sonja
PY  - 2022
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/12427
AB  - Environmentaly friendly photoelectrochemical (PEC) materals are in the center of the research
interest for sustainable solar-to-chemical energy conversion. Lately, bismuth vanadate (BiVO4)
has attracted attention due to its visible light harvesting properties, band edge positions and lowcost synthesis method. However, BiVO4 has poor charge transfer properties due to the high rate
of electron-hole recombination. It has been shown that metal doping efficiently boosts charge
separation and hence increases PEC water splitting activity. Herein, we report physicochemical
properties of hydrothermaly sinthesized 1%-, 2.5%- and 5%- Cu-doped BiVO4 powders for 8 h
and 20 h. X-ray diffraction (XRD) study indicates that, depending on the degree of doping and
synthesis time, material exists in monoclinic or tetragonal scheelite phase, but mixed phase
composition was also possible. Monoclinic phase was formed in a case of pristine samples
(synthesized for 8 h and 20 h) and 1% and 2.5% doped samples synthesized for 8 h. Tetragonal
phase was observed in case of 5% and 1% doped samples synthesized for 8 h and 20 h,
respectively. In the samples synthesized for 20 h and doped with 2.5% and 5% mixed phase was
noticed. Scanning electron microscopy (SEM) reveals that samples with monoclinic phase
consists of combination of worm-like and prismatic structures while tetragonal samples showed
spherical shape. In case of samples with mixed phase a combination of prismatic and spherical
shape was observed. Local structure was examined with Raman and Fourier Transformed Infrared
(FTIR) spectroscopy. Optical properties were characterized with UV-Vis Diffuse Reflectance
Spectroscopy (DRS) and Photoluminescence (PL) spectroscopy. Monoclinic phase has band gap
in range 2.35 – 2.52 eV while samples with tetragonal phase has band gap in range 2.8 – 3 eV.
Based on the results it can be concluded that band gap is dependent on the phase composition of
samples. PL results indicate that monoclinic samples possess better recombination features than
tetragonal ones. Preliminary measurements confirmed considerable higher PEC activity of lightirradiated samples.
PB  - Belgrade : Materials Research Society of Serbia – MRS-Serbia
C3  - 23rd annual conference - YUCOMAT 2022 & 12th World Round Table Conference on Sintering - WRTCS 2022 : Program and Book of Abstracts
T1  - Physicochemical properties of copper-doped bismuth vanadate nanoparticles
VL  - XLV
SP  - 132
EP  - 132
UR  - https://hdl.handle.net/21.15107/rcub_vinar_12427
ER  - 
@conference{
author = "Jelić, Marko and Pašti, Igor and Nedić Vasiljević, Bojana and Erčić, Jelena and Bajuk-Bogdanović, Danica and Jovanović, Zoran and Jovanović, Sonja",
year = "2022",
abstract = "Environmentaly friendly photoelectrochemical (PEC) materals are in the center of the research
interest for sustainable solar-to-chemical energy conversion. Lately, bismuth vanadate (BiVO4)
has attracted attention due to its visible light harvesting properties, band edge positions and lowcost synthesis method. However, BiVO4 has poor charge transfer properties due to the high rate
of electron-hole recombination. It has been shown that metal doping efficiently boosts charge
separation and hence increases PEC water splitting activity. Herein, we report physicochemical
properties of hydrothermaly sinthesized 1%-, 2.5%- and 5%- Cu-doped BiVO4 powders for 8 h
and 20 h. X-ray diffraction (XRD) study indicates that, depending on the degree of doping and
synthesis time, material exists in monoclinic or tetragonal scheelite phase, but mixed phase
composition was also possible. Monoclinic phase was formed in a case of pristine samples
(synthesized for 8 h and 20 h) and 1% and 2.5% doped samples synthesized for 8 h. Tetragonal
phase was observed in case of 5% and 1% doped samples synthesized for 8 h and 20 h,
respectively. In the samples synthesized for 20 h and doped with 2.5% and 5% mixed phase was
noticed. Scanning electron microscopy (SEM) reveals that samples with monoclinic phase
consists of combination of worm-like and prismatic structures while tetragonal samples showed
spherical shape. In case of samples with mixed phase a combination of prismatic and spherical
shape was observed. Local structure was examined with Raman and Fourier Transformed Infrared
(FTIR) spectroscopy. Optical properties were characterized with UV-Vis Diffuse Reflectance
Spectroscopy (DRS) and Photoluminescence (PL) spectroscopy. Monoclinic phase has band gap
in range 2.35 – 2.52 eV while samples with tetragonal phase has band gap in range 2.8 – 3 eV.
Based on the results it can be concluded that band gap is dependent on the phase composition of
samples. PL results indicate that monoclinic samples possess better recombination features than
tetragonal ones. Preliminary measurements confirmed considerable higher PEC activity of lightirradiated samples.",
publisher = "Belgrade : Materials Research Society of Serbia – MRS-Serbia",
journal = "23rd annual conference - YUCOMAT 2022 & 12th World Round Table Conference on Sintering - WRTCS 2022 : Program and Book of Abstracts",
title = "Physicochemical properties of copper-doped bismuth vanadate nanoparticles",
volume = "XLV",
pages = "132-132",
url = "https://hdl.handle.net/21.15107/rcub_vinar_12427"
}
Jelić, M., Pašti, I., Nedić Vasiljević, B., Erčić, J., Bajuk-Bogdanović, D., Jovanović, Z.,& Jovanović, S.. (2022). Physicochemical properties of copper-doped bismuth vanadate nanoparticles. in 23rd annual conference - YUCOMAT 2022 & 12th World Round Table Conference on Sintering - WRTCS 2022 : Program and Book of Abstracts
Belgrade : Materials Research Society of Serbia – MRS-Serbia., XLV, 132-132.
https://hdl.handle.net/21.15107/rcub_vinar_12427
Jelić M, Pašti I, Nedić Vasiljević B, Erčić J, Bajuk-Bogdanović D, Jovanović Z, Jovanović S. Physicochemical properties of copper-doped bismuth vanadate nanoparticles. in 23rd annual conference - YUCOMAT 2022 & 12th World Round Table Conference on Sintering - WRTCS 2022 : Program and Book of Abstracts. 2022;XLV:132-132.
https://hdl.handle.net/21.15107/rcub_vinar_12427 .
Jelić, Marko, Pašti, Igor, Nedić Vasiljević, Bojana, Erčić, Jelena, Bajuk-Bogdanović, Danica, Jovanović, Zoran, Jovanović, Sonja, "Physicochemical properties of copper-doped bismuth vanadate nanoparticles" in 23rd annual conference - YUCOMAT 2022 & 12th World Round Table Conference on Sintering - WRTCS 2022 : Program and Book of Abstracts, XLV (2022):132-132,
https://hdl.handle.net/21.15107/rcub_vinar_12427 .

Mitigating toxicity of acetamiprid removal techniques – Fe modified zeolites in focus

Jevremović, Anka; Stanojković, Ana; Arsenijević, Dragana; Arsenijević, Aleksandar; Arzumanyan, Grigory; Mamatkulov, Kahramon; Petrović, Jelena; Nedić Vasiljević, Bojana; Bajuk-Bogdanović, Danica V.; Milojević-Rakić, Maja

(2022)

TY  - JOUR
AU  - Jevremović, Anka
AU  - Stanojković, Ana
AU  - Arsenijević, Dragana
AU  - Arsenijević, Aleksandar
AU  - Arzumanyan, Grigory
AU  - Mamatkulov, Kahramon
AU  - Petrović, Jelena
AU  - Nedić Vasiljević, Bojana
AU  - Bajuk-Bogdanović, Danica V.
AU  - Milojević-Rakić, Maja
PY  - 2022
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/10301
AB  - All remediation pathways in aqueous solutions come down to three dominant ones - physical, chemical, and combinations thereof. Materials proposed for adsorption and oxidative degradation can induce positive or negative effects on cells compared to the pollutants themselves. Present research deals with the effects different methods for pesticide remediation have and how they impact cytotoxicity. With this particular intention, Fe-modified zeolites (obtained via citrate/oxalate complexes) of three zeotypes (MFI, BEA and FAU) were prepared and tested as adsorbents and Fenton catalysts for the removal of the acetamiprid pesticide. The materials are characterized by AFM, FTIR spectroscopy and ICP-OES. A different effect of the zeolite framework and modification route was found among the samples, which leads to pronounced adsorption (FAU), efficient Fenton degradation (MFI) or synergistic effect of both mechanisms (BEA). The cytotoxic effects of acetamiprid in the presence of zeolites, in pristine and modified forms, were tested on the MRC-5 human fibroblast cell line. A complete survey of the toxicity effect behind different pesticide removal methods is presented. Since neither adsorption nor catalytic degradation is the best option for pesticide removal, the focus is shifted to a combination of these methods, which proved to be optimal for pesticide toxicity reduction.
T2  - Journal of Hazardous Materials
T1  - Mitigating toxicity of acetamiprid removal techniques – Fe modified zeolites in focus
VL  - 436
SP  - 129226
DO  - 10.1016/j.jhazmat.2022.129226
ER  - 
@article{
author = "Jevremović, Anka and Stanojković, Ana and Arsenijević, Dragana and Arsenijević, Aleksandar and Arzumanyan, Grigory and Mamatkulov, Kahramon and Petrović, Jelena and Nedić Vasiljević, Bojana and Bajuk-Bogdanović, Danica V. and Milojević-Rakić, Maja",
year = "2022",
abstract = "All remediation pathways in aqueous solutions come down to three dominant ones - physical, chemical, and combinations thereof. Materials proposed for adsorption and oxidative degradation can induce positive or negative effects on cells compared to the pollutants themselves. Present research deals with the effects different methods for pesticide remediation have and how they impact cytotoxicity. With this particular intention, Fe-modified zeolites (obtained via citrate/oxalate complexes) of three zeotypes (MFI, BEA and FAU) were prepared and tested as adsorbents and Fenton catalysts for the removal of the acetamiprid pesticide. The materials are characterized by AFM, FTIR spectroscopy and ICP-OES. A different effect of the zeolite framework and modification route was found among the samples, which leads to pronounced adsorption (FAU), efficient Fenton degradation (MFI) or synergistic effect of both mechanisms (BEA). The cytotoxic effects of acetamiprid in the presence of zeolites, in pristine and modified forms, were tested on the MRC-5 human fibroblast cell line. A complete survey of the toxicity effect behind different pesticide removal methods is presented. Since neither adsorption nor catalytic degradation is the best option for pesticide removal, the focus is shifted to a combination of these methods, which proved to be optimal for pesticide toxicity reduction.",
journal = "Journal of Hazardous Materials",
title = "Mitigating toxicity of acetamiprid removal techniques – Fe modified zeolites in focus",
volume = "436",
pages = "129226",
doi = "10.1016/j.jhazmat.2022.129226"
}
Jevremović, A., Stanojković, A., Arsenijević, D., Arsenijević, A., Arzumanyan, G., Mamatkulov, K., Petrović, J., Nedić Vasiljević, B., Bajuk-Bogdanović, D. V.,& Milojević-Rakić, M.. (2022). Mitigating toxicity of acetamiprid removal techniques – Fe modified zeolites in focus. in Journal of Hazardous Materials, 436, 129226.
https://doi.org/10.1016/j.jhazmat.2022.129226
Jevremović A, Stanojković A, Arsenijević D, Arsenijević A, Arzumanyan G, Mamatkulov K, Petrović J, Nedić Vasiljević B, Bajuk-Bogdanović DV, Milojević-Rakić M. Mitigating toxicity of acetamiprid removal techniques – Fe modified zeolites in focus. in Journal of Hazardous Materials. 2022;436:129226.
doi:10.1016/j.jhazmat.2022.129226 .
Jevremović, Anka, Stanojković, Ana, Arsenijević, Dragana, Arsenijević, Aleksandar, Arzumanyan, Grigory, Mamatkulov, Kahramon, Petrović, Jelena, Nedić Vasiljević, Bojana, Bajuk-Bogdanović, Danica V., Milojević-Rakić, Maja, "Mitigating toxicity of acetamiprid removal techniques – Fe modified zeolites in focus" in Journal of Hazardous Materials, 436 (2022):129226,
https://doi.org/10.1016/j.jhazmat.2022.129226 . .
2
8
1
6