Miljković, Miona G.

Link to this page

Authority KeyName Variants
orcid::0000-0003-2252-3438
  • Miljković, Miona G. (6)
  • Miljković, Miona (4)

Author's Bibliography

Dextran-Based Edible Coatings to Prolong the Shelf Life of Blueberries

Davidović, Slađana; Miljković, Miona; Gordić, Milan V.; Cabrera-Barjas, Gustavo; Nešić, Aleksandra; Dimitrijević-Branković, Suzana I.

(2021)

TY  - JOUR
AU  - Davidović, Slađana
AU  - Miljković, Miona
AU  - Gordić, Milan V.
AU  - Cabrera-Barjas, Gustavo
AU  - Nešić, Aleksandra
AU  - Dimitrijević-Branković, Suzana I.
PY  - 2021
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/10068
AB  - The development of edible films and coatings in the food packaging industry presents one of the modern strategies for protecting food products and ensuring their freshness and quality during their shelf lives. The application of microbial polysaccharides to the development of food package materials, as an alternative option to the commonly used plastic materials, is both economic and environmentally favorable. New edible films were developed using dextran from lactic acid bacterium Leuconostoc mesenteroides T3, and additionally plasticized by different concentrations of polyglycerol. The best tensile strength of the films was obtained using a formulation that contained 10 wt% of polyglycerol, which corresponded to a value of 4.6 MPa. The most flexible formulation, with elongation at break of 602%, was obtained with 30 wt% of polyglycerol. Water vapor permeability values of the films synthesized in this study were in the range of (3.45–8.81) ∗ 10−12 g/m s Pa. Such low values indicated that they could be efficient in preventing fruit from drying out during storage. Thus, the film formulations were used to coat blueberries in order to assess their quality during a storage time of 21 days at 8 °C. The results showed that dextran/polyglycerol films could be efficient in extending the shelf life of blueberries, which was evidenced by lower weight loss and total sugar solids values, as well as a delay in titratable acidity, in comparison to the uncoated blueberries.
T2  - Polymers
T1  - Dextran-Based Edible Coatings to Prolong the Shelf Life of Blueberries
VL  - 13
IS  - 23
SP  - 4252
DO  - 10.3390/polym13234252
ER  - 
@article{
author = "Davidović, Slađana and Miljković, Miona and Gordić, Milan V. and Cabrera-Barjas, Gustavo and Nešić, Aleksandra and Dimitrijević-Branković, Suzana I.",
year = "2021",
abstract = "The development of edible films and coatings in the food packaging industry presents one of the modern strategies for protecting food products and ensuring their freshness and quality during their shelf lives. The application of microbial polysaccharides to the development of food package materials, as an alternative option to the commonly used plastic materials, is both economic and environmentally favorable. New edible films were developed using dextran from lactic acid bacterium Leuconostoc mesenteroides T3, and additionally plasticized by different concentrations of polyglycerol. The best tensile strength of the films was obtained using a formulation that contained 10 wt% of polyglycerol, which corresponded to a value of 4.6 MPa. The most flexible formulation, with elongation at break of 602%, was obtained with 30 wt% of polyglycerol. Water vapor permeability values of the films synthesized in this study were in the range of (3.45–8.81) ∗ 10−12 g/m s Pa. Such low values indicated that they could be efficient in preventing fruit from drying out during storage. Thus, the film formulations were used to coat blueberries in order to assess their quality during a storage time of 21 days at 8 °C. The results showed that dextran/polyglycerol films could be efficient in extending the shelf life of blueberries, which was evidenced by lower weight loss and total sugar solids values, as well as a delay in titratable acidity, in comparison to the uncoated blueberries.",
journal = "Polymers",
title = "Dextran-Based Edible Coatings to Prolong the Shelf Life of Blueberries",
volume = "13",
number = "23",
pages = "4252",
doi = "10.3390/polym13234252"
}
Davidović, S., Miljković, M., Gordić, M. V., Cabrera-Barjas, G., Nešić, A.,& Dimitrijević-Branković, S. I.. (2021). Dextran-Based Edible Coatings to Prolong the Shelf Life of Blueberries. in Polymers, 13(23), 4252.
https://doi.org/10.3390/polym13234252
Davidović S, Miljković M, Gordić MV, Cabrera-Barjas G, Nešić A, Dimitrijević-Branković SI. Dextran-Based Edible Coatings to Prolong the Shelf Life of Blueberries. in Polymers. 2021;13(23):4252.
doi:10.3390/polym13234252 .
Davidović, Slađana, Miljković, Miona, Gordić, Milan V., Cabrera-Barjas, Gustavo, Nešić, Aleksandra, Dimitrijević-Branković, Suzana I., "Dextran-Based Edible Coatings to Prolong the Shelf Life of Blueberries" in Polymers, 13, no. 23 (2021):4252,
https://doi.org/10.3390/polym13234252 . .
9
8

Selective Antimicrobial Performance of Biosynthesized Silver Nanoparticles by Horsetail Extract Against E. coli

Miljković, Miona G.; Lazić, Vesna M.; Davidović, Slađana Z.; Milivojević, Ana; Papan, Jelena; Fernandes, Margarida M.; Lanceros-Mendez, Senentxu; Ahrenkiel, Scott Phillip; Nedeljković, Jovan

(2020)

TY  - JOUR
AU  - Miljković, Miona G.
AU  - Lazić, Vesna M.
AU  - Davidović, Slađana Z.
AU  - Milivojević, Ana
AU  - Papan, Jelena
AU  - Fernandes, Margarida M.
AU  - Lanceros-Mendez, Senentxu
AU  - Ahrenkiel, Scott Phillip
AU  - Nedeljković, Jovan
PY  - 2020
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/8902
AB  - The aim of this study was the development of a non-toxic, biosynthetic antimicrobial agent which selectively acts on only one type of microorganism, and preserves the microbiota. Antimicrobial performance of biosynthesized silver nanoparticles (Ag NPs) by horsetail (Equisetum arvense L.) extract was examined against Gram-negative bacteria Escherichia coli and Gram-positive bacteria Staphylococcus aureus, as well as yeasts Candida albicans and Saccharomyces boulardii. Also, the cytotoxicity of Ag NPs was examined toward pre-osteoblast cells. The synthetic conditions—concentration of extract, temperature, and pH—were optimized to prepare silver colloids with different particle size distributions and long-term stability. The obtained samples were characterized using transmission electron microscopy, X-ray diffraction analysis, and absorption spectroscopy. The smaller-sized Ag NPs (~ 10–20 nm), prepared at a lower temperature (20 °C), showed better antimicrobial performance against E. coli compared to larger ones (~ 40–60 nm), prepared at high temperature (100 °C). On the other hand, both samples did not display any toxic action against bacteria S. aureus, or yeasts C. albicans and S. boulardii. Non-cytotoxic behavior of Ag NPs toward pre-osteoblast cells was observed for the concentrations of silver ≤ 2.25 and ≤ 4.5 mg L−1 for 10–20 and 40–60 nm-sized Ag NPs, respectively. Biosynthesized Ag NPs by horsetail extract display selective toxic action against E. coli at the ecologically acceptable concentration level. © 2019, Springer Science+Business Media, LLC, part of Springer Nature.
T2  - Journal of Inorganic and Organometallic Polymers and Materials
T1  - Selective Antimicrobial Performance of Biosynthesized Silver Nanoparticles by Horsetail Extract Against E. coli
VL  - 30
IS  - 7
SP  - 2598
EP  - 2607
DO  - 10.1007/s10904-019-01402-x
ER  - 
@article{
author = "Miljković, Miona G. and Lazić, Vesna M. and Davidović, Slađana Z. and Milivojević, Ana and Papan, Jelena and Fernandes, Margarida M. and Lanceros-Mendez, Senentxu and Ahrenkiel, Scott Phillip and Nedeljković, Jovan",
year = "2020",
abstract = "The aim of this study was the development of a non-toxic, biosynthetic antimicrobial agent which selectively acts on only one type of microorganism, and preserves the microbiota. Antimicrobial performance of biosynthesized silver nanoparticles (Ag NPs) by horsetail (Equisetum arvense L.) extract was examined against Gram-negative bacteria Escherichia coli and Gram-positive bacteria Staphylococcus aureus, as well as yeasts Candida albicans and Saccharomyces boulardii. Also, the cytotoxicity of Ag NPs was examined toward pre-osteoblast cells. The synthetic conditions—concentration of extract, temperature, and pH—were optimized to prepare silver colloids with different particle size distributions and long-term stability. The obtained samples were characterized using transmission electron microscopy, X-ray diffraction analysis, and absorption spectroscopy. The smaller-sized Ag NPs (~ 10–20 nm), prepared at a lower temperature (20 °C), showed better antimicrobial performance against E. coli compared to larger ones (~ 40–60 nm), prepared at high temperature (100 °C). On the other hand, both samples did not display any toxic action against bacteria S. aureus, or yeasts C. albicans and S. boulardii. Non-cytotoxic behavior of Ag NPs toward pre-osteoblast cells was observed for the concentrations of silver ≤ 2.25 and ≤ 4.5 mg L−1 for 10–20 and 40–60 nm-sized Ag NPs, respectively. Biosynthesized Ag NPs by horsetail extract display selective toxic action against E. coli at the ecologically acceptable concentration level. © 2019, Springer Science+Business Media, LLC, part of Springer Nature.",
journal = "Journal of Inorganic and Organometallic Polymers and Materials",
title = "Selective Antimicrobial Performance of Biosynthesized Silver Nanoparticles by Horsetail Extract Against E. coli",
volume = "30",
number = "7",
pages = "2598-2607",
doi = "10.1007/s10904-019-01402-x"
}
Miljković, M. G., Lazić, V. M., Davidović, S. Z., Milivojević, A., Papan, J., Fernandes, M. M., Lanceros-Mendez, S., Ahrenkiel, S. P.,& Nedeljković, J.. (2020). Selective Antimicrobial Performance of Biosynthesized Silver Nanoparticles by Horsetail Extract Against E. coli. in Journal of Inorganic and Organometallic Polymers and Materials, 30(7), 2598-2607.
https://doi.org/10.1007/s10904-019-01402-x
Miljković MG, Lazić VM, Davidović SZ, Milivojević A, Papan J, Fernandes MM, Lanceros-Mendez S, Ahrenkiel SP, Nedeljković J. Selective Antimicrobial Performance of Biosynthesized Silver Nanoparticles by Horsetail Extract Against E. coli. in Journal of Inorganic and Organometallic Polymers and Materials. 2020;30(7):2598-2607.
doi:10.1007/s10904-019-01402-x .
Miljković, Miona G., Lazić, Vesna M., Davidović, Slađana Z., Milivojević, Ana, Papan, Jelena, Fernandes, Margarida M., Lanceros-Mendez, Senentxu, Ahrenkiel, Scott Phillip, Nedeljković, Jovan, "Selective Antimicrobial Performance of Biosynthesized Silver Nanoparticles by Horsetail Extract Against E. coli" in Journal of Inorganic and Organometallic Polymers and Materials, 30, no. 7 (2020):2598-2607,
https://doi.org/10.1007/s10904-019-01402-x . .
1
13
6
12

Antibacterial ability of immobilized silver nanoparticles in agar-agar films co-doped with magnesium ions

Davidović, Slađana Z.; Lazić, Vesna M.; Miljković, Miona G.; Gordić, Milan V.; Sekulić, Milica; Marinović-Cincović, Milena; Ratnayake, Ishara S.; Ahrenkiel, Scott Phillip; Nedeljković, Jovan

(2019)

TY  - JOUR
AU  - Davidović, Slađana Z.
AU  - Lazić, Vesna M.
AU  - Miljković, Miona G.
AU  - Gordić, Milan V.
AU  - Sekulić, Milica
AU  - Marinović-Cincović, Milena
AU  - Ratnayake, Ishara S.
AU  - Ahrenkiel, Scott Phillip
AU  - Nedeljković, Jovan
PY  - 2019
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/8452
AB  - The antibacterial ability of in situ prepared nanometer-sized silver particles, immobilized in agar-agar films, was studied as a function of the concentration of co-dopant, magnesium ions. Content of inorganic components in hybrid films was determined using inductively coupled plasma optic emission spectroscopy, and found to be low (<2 wt.-%). Morphology of prepared hybrid films, studied by transmission electron microscopy, revealed the presence of non-agglomerated and randomly distributed 10–20 nm silver nanoparticles (Ag NPs) within the agar-agar matrices. Fourier-transform infrared spectroscopy indicated the distinct chemical interaction between Ag NPs and polymer chains. Thermogravimetric analysis, as well as the determination of tensile strength, Young's modulus, and elongation at break showed improvement of thermal stability and mechanical properties of agar-agar matrices upon the incorporation of Ag NPs due to high compatibility between the hydrophilic organic component and inorganic components. The complete microbial reduction of Gram-positive bacteria Staphylococcus aureuswas observed for all agar-silver films, while satisfactory results were observed for Gram-negative bacteria Pseudomonas aeruginosa (≥99.6%). The release of Ag+ ions is suppressed by the increase of the concentration of Mg2+ ions and it was found to be significantly smaller (≤0.24 ppm) than the harmful ecological level (1 ppm). © 2019 Elsevier Ltd
T2  - Carbohydrate Polymers
T1  - Antibacterial ability of immobilized silver nanoparticles in agar-agar films co-doped with magnesium ions
VL  - 224
SP  - 115187
DO  - 10.1016/j.carbpol.2019.115187
ER  - 
@article{
author = "Davidović, Slađana Z. and Lazić, Vesna M. and Miljković, Miona G. and Gordić, Milan V. and Sekulić, Milica and Marinović-Cincović, Milena and Ratnayake, Ishara S. and Ahrenkiel, Scott Phillip and Nedeljković, Jovan",
year = "2019",
abstract = "The antibacterial ability of in situ prepared nanometer-sized silver particles, immobilized in agar-agar films, was studied as a function of the concentration of co-dopant, magnesium ions. Content of inorganic components in hybrid films was determined using inductively coupled plasma optic emission spectroscopy, and found to be low (<2 wt.-%). Morphology of prepared hybrid films, studied by transmission electron microscopy, revealed the presence of non-agglomerated and randomly distributed 10–20 nm silver nanoparticles (Ag NPs) within the agar-agar matrices. Fourier-transform infrared spectroscopy indicated the distinct chemical interaction between Ag NPs and polymer chains. Thermogravimetric analysis, as well as the determination of tensile strength, Young's modulus, and elongation at break showed improvement of thermal stability and mechanical properties of agar-agar matrices upon the incorporation of Ag NPs due to high compatibility between the hydrophilic organic component and inorganic components. The complete microbial reduction of Gram-positive bacteria Staphylococcus aureuswas observed for all agar-silver films, while satisfactory results were observed for Gram-negative bacteria Pseudomonas aeruginosa (≥99.6%). The release of Ag+ ions is suppressed by the increase of the concentration of Mg2+ ions and it was found to be significantly smaller (≤0.24 ppm) than the harmful ecological level (1 ppm). © 2019 Elsevier Ltd",
journal = "Carbohydrate Polymers",
title = "Antibacterial ability of immobilized silver nanoparticles in agar-agar films co-doped with magnesium ions",
volume = "224",
pages = "115187",
doi = "10.1016/j.carbpol.2019.115187"
}
Davidović, S. Z., Lazić, V. M., Miljković, M. G., Gordić, M. V., Sekulić, M., Marinović-Cincović, M., Ratnayake, I. S., Ahrenkiel, S. P.,& Nedeljković, J.. (2019). Antibacterial ability of immobilized silver nanoparticles in agar-agar films co-doped with magnesium ions. in Carbohydrate Polymers, 224, 115187.
https://doi.org/10.1016/j.carbpol.2019.115187
Davidović SZ, Lazić VM, Miljković MG, Gordić MV, Sekulić M, Marinović-Cincović M, Ratnayake IS, Ahrenkiel SP, Nedeljković J. Antibacterial ability of immobilized silver nanoparticles in agar-agar films co-doped with magnesium ions. in Carbohydrate Polymers. 2019;224:115187.
doi:10.1016/j.carbpol.2019.115187 .
Davidović, Slađana Z., Lazić, Vesna M., Miljković, Miona G., Gordić, Milan V., Sekulić, Milica, Marinović-Cincović, Milena, Ratnayake, Ishara S., Ahrenkiel, Scott Phillip, Nedeljković, Jovan, "Antibacterial ability of immobilized silver nanoparticles in agar-agar films co-doped with magnesium ions" in Carbohydrate Polymers, 224 (2019):115187,
https://doi.org/10.1016/j.carbpol.2019.115187 . .
1
27
8
26

Dextransucrase entrapment as an efficient alternative for increased recycling efficiency of free enzyme within agar-agar film matrix

Miljković, Miona; Davidović, Slađana; Radovanović, Neda; Gordić, Milan V.; Carević, Milica; Nešić, Aleksandra; Dimitrijević, Suzana

(2018)

TY  - CONF
AU  - Miljković, Miona
AU  - Davidović, Slađana
AU  - Radovanović, Neda
AU  - Gordić, Milan V.
AU  - Carević, Milica
AU  - Nešić, Aleksandra
AU  - Dimitrijević, Suzana
PY  - 2018
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/10723
AB  - Dextransucrase (DS), the extracellular enzyme is of immense industrial importance, due to ability to produce dextran and oligosaccharides (OS). Worldwide interest in OS has been increasing, since they have been accorded the prebiotic status. However, the industrial application of DS for OS synthesis is limited, due to low yield of enzyme production and its low catalytic activity. Hence, there is a great interest for development of new technologies that can provide improved performance of biocatalyst. Enzyme immobilization technology is considered to be a crucial step for cheaper and more efficient usage of DS. Entrapment is one of the widely investigated immobilization methods, where enzymes are enclosed or confined within the polymer matrix without altering their native structure, developing bioreactors for commercial applications. Different matrices such as polyacryl-amide gel, alginate beads and agar–agar have been used for the entrapment of different enzymes and among them agar–agar is a biocompatible, non-toxic and strong solidifying agent for immobilization of various enzymes. In this work, the entrapment of DS was initiated by different quantity (1:9, 1:4 and 1:1) of dialyzed enzyme into agar- agar solution. Agar solution was prepared in distilled water by vigorous shaking at 100°C, autoclaved and was allowed to cool to 40–45°C. Afterwards, enzyme was incorporated and mixed thoroughly. This mixture was immediately poured into a clean Petri plate and left to solidify at room temperature. Polymer films with and without immobilized DS were analyzed in terms of enzyme activity and reusability and mechanical properties (tensile strength, elongation at break and elastic modulus). In order to remove un-entrapped enzyme the films were washed with double deionized water and sodium acetate buffer (pH 5.4) three times prior to enzymatic assay. For quantitative analysis of samples for OS production a Dionex Ultimate 3000 HPLC system was used. Results showed that maximum immobilization yield (74.11%) was achieved by use of 2 % agar and (1:9) enzyme: agar ratio. HPLC analysis confirmed the similar trend of OS formation in immobilized samples compared to free enzyme. The lowest tested fraction of enzyme immobilized into polymer matrix (1:9) improved tensile strength of films in comparison with control film, whereas higher concentration of enzyme led to decrease in mechanical resistance of films. Scanning electron microscopy of agar films before and after DS entrapment revealed significant morphological change on the matrix surface. Considering the economic feasibility, the entrapped DS indicated imperative recycling efficiency up to six reaction cycles. The results of this study revealed that an easily available and inexpensive matrix could be successfully employed for DS immobilization and OS production.
C3  - PolyChar 26th annual world forum on advanced materials, September 10-13, 2018, Tbilisi, Georgia
T1  - Dextransucrase entrapment as an efficient alternative for increased recycling efficiency of free enzyme within agar-agar film matrix
SP  - 88
UR  - https://hdl.handle.net/21.15107/rcub_vinar_10723
ER  - 
@conference{
author = "Miljković, Miona and Davidović, Slađana and Radovanović, Neda and Gordić, Milan V. and Carević, Milica and Nešić, Aleksandra and Dimitrijević, Suzana",
year = "2018",
abstract = "Dextransucrase (DS), the extracellular enzyme is of immense industrial importance, due to ability to produce dextran and oligosaccharides (OS). Worldwide interest in OS has been increasing, since they have been accorded the prebiotic status. However, the industrial application of DS for OS synthesis is limited, due to low yield of enzyme production and its low catalytic activity. Hence, there is a great interest for development of new technologies that can provide improved performance of biocatalyst. Enzyme immobilization technology is considered to be a crucial step for cheaper and more efficient usage of DS. Entrapment is one of the widely investigated immobilization methods, where enzymes are enclosed or confined within the polymer matrix without altering their native structure, developing bioreactors for commercial applications. Different matrices such as polyacryl-amide gel, alginate beads and agar–agar have been used for the entrapment of different enzymes and among them agar–agar is a biocompatible, non-toxic and strong solidifying agent for immobilization of various enzymes. In this work, the entrapment of DS was initiated by different quantity (1:9, 1:4 and 1:1) of dialyzed enzyme into agar- agar solution. Agar solution was prepared in distilled water by vigorous shaking at 100°C, autoclaved and was allowed to cool to 40–45°C. Afterwards, enzyme was incorporated and mixed thoroughly. This mixture was immediately poured into a clean Petri plate and left to solidify at room temperature. Polymer films with and without immobilized DS were analyzed in terms of enzyme activity and reusability and mechanical properties (tensile strength, elongation at break and elastic modulus). In order to remove un-entrapped enzyme the films were washed with double deionized water and sodium acetate buffer (pH 5.4) three times prior to enzymatic assay. For quantitative analysis of samples for OS production a Dionex Ultimate 3000 HPLC system was used. Results showed that maximum immobilization yield (74.11%) was achieved by use of 2 % agar and (1:9) enzyme: agar ratio. HPLC analysis confirmed the similar trend of OS formation in immobilized samples compared to free enzyme. The lowest tested fraction of enzyme immobilized into polymer matrix (1:9) improved tensile strength of films in comparison with control film, whereas higher concentration of enzyme led to decrease in mechanical resistance of films. Scanning electron microscopy of agar films before and after DS entrapment revealed significant morphological change on the matrix surface. Considering the economic feasibility, the entrapped DS indicated imperative recycling efficiency up to six reaction cycles. The results of this study revealed that an easily available and inexpensive matrix could be successfully employed for DS immobilization and OS production.",
journal = "PolyChar 26th annual world forum on advanced materials, September 10-13, 2018, Tbilisi, Georgia",
title = "Dextransucrase entrapment as an efficient alternative for increased recycling efficiency of free enzyme within agar-agar film matrix",
pages = "88",
url = "https://hdl.handle.net/21.15107/rcub_vinar_10723"
}
Miljković, M., Davidović, S., Radovanović, N., Gordić, M. V., Carević, M., Nešić, A.,& Dimitrijević, S.. (2018). Dextransucrase entrapment as an efficient alternative for increased recycling efficiency of free enzyme within agar-agar film matrix. in PolyChar 26th annual world forum on advanced materials, September 10-13, 2018, Tbilisi, Georgia, 88.
https://hdl.handle.net/21.15107/rcub_vinar_10723
Miljković M, Davidović S, Radovanović N, Gordić MV, Carević M, Nešić A, Dimitrijević S. Dextransucrase entrapment as an efficient alternative for increased recycling efficiency of free enzyme within agar-agar film matrix. in PolyChar 26th annual world forum on advanced materials, September 10-13, 2018, Tbilisi, Georgia. 2018;:88.
https://hdl.handle.net/21.15107/rcub_vinar_10723 .
Miljković, Miona, Davidović, Slađana, Radovanović, Neda, Gordić, Milan V., Carević, Milica, Nešić, Aleksandra, Dimitrijević, Suzana, "Dextransucrase entrapment as an efficient alternative for increased recycling efficiency of free enzyme within agar-agar film matrix" in PolyChar 26th annual world forum on advanced materials, September 10-13, 2018, Tbilisi, Georgia (2018):88,
https://hdl.handle.net/21.15107/rcub_vinar_10723 .

Immobilization of dextransucrase on functionalized TiO2 supports

Miljković, Miona G.; Lazić, Vesna M.; Banjanac, Katarina; Davidović, Slađana Z.; Bezbradica, Dejan I.; Marinković, Aleksandar D.; Sredojević, Dušan; Nedeljković, Jovan; Dimitrijević-Branković, Suzana I.

(2018)

TY  - JOUR
AU  - Miljković, Miona G.
AU  - Lazić, Vesna M.
AU  - Banjanac, Katarina
AU  - Davidović, Slađana Z.
AU  - Bezbradica, Dejan I.
AU  - Marinković, Aleksandar D.
AU  - Sredojević, Dušan
AU  - Nedeljković, Jovan
AU  - Dimitrijević-Branković, Suzana I.
PY  - 2018
UR  - http://linkinghub.elsevier.com/retrieve/pii/S0141813018302952
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/7776
AB  - The TiO2 based hybrid supports with different functional groups (amino, glutaraldehyde or epoxy) were prepared and their influence on immobilization of dextransucrase (DS) was studied. Novel synthetic route for surface modification of TiO2 with amino and glutaraldehyde groups was developed taking advantage of charge transfer complex (CTC) formation between surface Ti atoms and salicylate-type of ligand (5 aminosalicylic acid (5-ASA)). The proposed coordination of 5-ASA to the surface of TiO2 powder and optical properties of CTC was presented. The pristine TiO2 and amino functionalized TiO2 have higher sorption capacity for DS (12.6 and 12.0 mg g(-1), respectively) compared to glutaraldehyde and epoxy activated supports (9.6 and 9.8 mg g(-1) respectively). However, immobilized enzyme to either glutaraldehyde or epoxy functionalized TiO2 have almost two times higher expressed activities compared to pristine TiO2 support (258, 235 and 142 IU g(-1), respectively). Thermal stability of enzyme immobilized on glutaraldehyde and epoxy functionalized supports was studied at 40 degrees C, as well as operational stability under long-run working conditions in repeated cycles. After five cycles, DS imobilized on glutaraldehyde activated support retained almost 70% of its initial expressed activity, while, after five cycles, performance of DS immobilized on epoxy activated support was significantly lower (15%).
T2  - International Journal of Biological Macromolecules
T1  - Immobilization of dextransucrase on functionalized TiO2 supports
VL  - 114
SP  - 1216
EP  - 1223
DO  - 10.1016/j.ijbiomac.2018.04.027
ER  - 
@article{
author = "Miljković, Miona G. and Lazić, Vesna M. and Banjanac, Katarina and Davidović, Slađana Z. and Bezbradica, Dejan I. and Marinković, Aleksandar D. and Sredojević, Dušan and Nedeljković, Jovan and Dimitrijević-Branković, Suzana I.",
year = "2018",
abstract = "The TiO2 based hybrid supports with different functional groups (amino, glutaraldehyde or epoxy) were prepared and their influence on immobilization of dextransucrase (DS) was studied. Novel synthetic route for surface modification of TiO2 with amino and glutaraldehyde groups was developed taking advantage of charge transfer complex (CTC) formation between surface Ti atoms and salicylate-type of ligand (5 aminosalicylic acid (5-ASA)). The proposed coordination of 5-ASA to the surface of TiO2 powder and optical properties of CTC was presented. The pristine TiO2 and amino functionalized TiO2 have higher sorption capacity for DS (12.6 and 12.0 mg g(-1), respectively) compared to glutaraldehyde and epoxy activated supports (9.6 and 9.8 mg g(-1) respectively). However, immobilized enzyme to either glutaraldehyde or epoxy functionalized TiO2 have almost two times higher expressed activities compared to pristine TiO2 support (258, 235 and 142 IU g(-1), respectively). Thermal stability of enzyme immobilized on glutaraldehyde and epoxy functionalized supports was studied at 40 degrees C, as well as operational stability under long-run working conditions in repeated cycles. After five cycles, DS imobilized on glutaraldehyde activated support retained almost 70% of its initial expressed activity, while, after five cycles, performance of DS immobilized on epoxy activated support was significantly lower (15%).",
journal = "International Journal of Biological Macromolecules",
title = "Immobilization of dextransucrase on functionalized TiO2 supports",
volume = "114",
pages = "1216-1223",
doi = "10.1016/j.ijbiomac.2018.04.027"
}
Miljković, M. G., Lazić, V. M., Banjanac, K., Davidović, S. Z., Bezbradica, D. I., Marinković, A. D., Sredojević, D., Nedeljković, J.,& Dimitrijević-Branković, S. I.. (2018). Immobilization of dextransucrase on functionalized TiO2 supports. in International Journal of Biological Macromolecules, 114, 1216-1223.
https://doi.org/10.1016/j.ijbiomac.2018.04.027
Miljković MG, Lazić VM, Banjanac K, Davidović SZ, Bezbradica DI, Marinković AD, Sredojević D, Nedeljković J, Dimitrijević-Branković SI. Immobilization of dextransucrase on functionalized TiO2 supports. in International Journal of Biological Macromolecules. 2018;114:1216-1223.
doi:10.1016/j.ijbiomac.2018.04.027 .
Miljković, Miona G., Lazić, Vesna M., Banjanac, Katarina, Davidović, Slađana Z., Bezbradica, Dejan I., Marinković, Aleksandar D., Sredojević, Dušan, Nedeljković, Jovan, Dimitrijević-Branković, Suzana I., "Immobilization of dextransucrase on functionalized TiO2 supports" in International Journal of Biological Macromolecules, 114 (2018):1216-1223,
https://doi.org/10.1016/j.ijbiomac.2018.04.027 . .
18
12
18

Active agar mineralized composite films intended for food packaging

Radovanović, Neda; Miljković, Miona; Davidović, Slađana; Malagurski, Ivana; Gordić, Milan V.; Nešić, Aleksandra; Dimitrijević-Branković, Suzana I.

(2018)

TY  - CONF
AU  - Radovanović, Neda
AU  - Miljković, Miona
AU  - Davidović, Slađana
AU  - Malagurski, Ivana
AU  - Gordić, Milan V.
AU  - Nešić, Aleksandra
AU  - Dimitrijević-Branković, Suzana I.
PY  - 2018
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/10724
AB  - Polysaccharide-based materials represent an attractive alternative to plastics, due to their biodegradability, compatibility and great film forming properties1. As they are usually characterized by poor mechanical and barrier properties and lack of functionality, different components must be incorporated into these biopolymer materials in order to improve their properties. In this study, new mineralized, agar-based composite films with increasing Cu-phosphate mineral phase loadings (1, 2.5 and 5 mM) were prepared by in situ mineralization and solvent casting method. The presence of mineral significantly influenced the morphology, properties and fun- ctionality of the obtained composite films. Reinforcement with the Cu-phosphate phase improved in a concentration-dependent manner, optical, mechanical and water vapor barrier properties of the obtained mine- ralized films. In addition Cu-phosphate mineralized agar films exhibited antimicrobial activity against both, Gram positive and Gram negative bacteria, Staphylococcus aureus and Escherichia coli, respectively. The res- ults of this study suggest that agar films mineralized with Cu-phosphate could be potentially used as affordable, eco-friendly and functional food packaging materials with tunable properties. Production procedure offers possibilities for increasing Cu-mineral phase content without compromising properties of the composite films.
C3  - PolyChar 26th annual world forum on advanced materials, September 10-13, 2018, Tbilisi, Georgia
T1  - Active agar mineralized composite films intended for food packaging
SP  - 94
UR  - https://hdl.handle.net/21.15107/rcub_vinar_10724
ER  - 
@conference{
author = "Radovanović, Neda and Miljković, Miona and Davidović, Slađana and Malagurski, Ivana and Gordić, Milan V. and Nešić, Aleksandra and Dimitrijević-Branković, Suzana I.",
year = "2018",
abstract = "Polysaccharide-based materials represent an attractive alternative to plastics, due to their biodegradability, compatibility and great film forming properties1. As they are usually characterized by poor mechanical and barrier properties and lack of functionality, different components must be incorporated into these biopolymer materials in order to improve their properties. In this study, new mineralized, agar-based composite films with increasing Cu-phosphate mineral phase loadings (1, 2.5 and 5 mM) were prepared by in situ mineralization and solvent casting method. The presence of mineral significantly influenced the morphology, properties and fun- ctionality of the obtained composite films. Reinforcement with the Cu-phosphate phase improved in a concentration-dependent manner, optical, mechanical and water vapor barrier properties of the obtained mine- ralized films. In addition Cu-phosphate mineralized agar films exhibited antimicrobial activity against both, Gram positive and Gram negative bacteria, Staphylococcus aureus and Escherichia coli, respectively. The res- ults of this study suggest that agar films mineralized with Cu-phosphate could be potentially used as affordable, eco-friendly and functional food packaging materials with tunable properties. Production procedure offers possibilities for increasing Cu-mineral phase content without compromising properties of the composite films.",
journal = "PolyChar 26th annual world forum on advanced materials, September 10-13, 2018, Tbilisi, Georgia",
title = "Active agar mineralized composite films intended for food packaging",
pages = "94",
url = "https://hdl.handle.net/21.15107/rcub_vinar_10724"
}
Radovanović, N., Miljković, M., Davidović, S., Malagurski, I., Gordić, M. V., Nešić, A.,& Dimitrijević-Branković, S. I.. (2018). Active agar mineralized composite films intended for food packaging. in PolyChar 26th annual world forum on advanced materials, September 10-13, 2018, Tbilisi, Georgia, 94.
https://hdl.handle.net/21.15107/rcub_vinar_10724
Radovanović N, Miljković M, Davidović S, Malagurski I, Gordić MV, Nešić A, Dimitrijević-Branković SI. Active agar mineralized composite films intended for food packaging. in PolyChar 26th annual world forum on advanced materials, September 10-13, 2018, Tbilisi, Georgia. 2018;:94.
https://hdl.handle.net/21.15107/rcub_vinar_10724 .
Radovanović, Neda, Miljković, Miona, Davidović, Slađana, Malagurski, Ivana, Gordić, Milan V., Nešić, Aleksandra, Dimitrijević-Branković, Suzana I., "Active agar mineralized composite films intended for food packaging" in PolyChar 26th annual world forum on advanced materials, September 10-13, 2018, Tbilisi, Georgia (2018):94,
https://hdl.handle.net/21.15107/rcub_vinar_10724 .

Response surface methodology for optimisation of edible coatings based on dextran from Leuconostoc mesenteroides T3

Davidović, Slađana Z.; Miljković, Miona G.; Tomić, Miloš; Gordić, Milan V.; Nešić, Aleksandra; Dimitrijević, Suzana I.

(2018)

TY  - JOUR
AU  - Davidović, Slađana Z.
AU  - Miljković, Miona G.
AU  - Tomić, Miloš
AU  - Gordić, Milan V.
AU  - Nešić, Aleksandra
AU  - Dimitrijević, Suzana I.
PY  - 2018
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/1932
AB  - The aim of this study was to develop dextran-based edible films plasticized by sorbitol. In order to optimise the film-forming formulation, response surface methodology was used. The influence of dextran and sorbitol concentration on the mechanical and water vapour barrier properties of obtained films was investigated. The results showed that both parameters exhibited significant effect on the water vapour permeability of a film. Both dextran and sorbitol concentration had significant influence on tensile strength and elongation at break, whereas only sorbitol concentration had significant effect on Youngs modulus. After optimisation by desirability approach, it was found that a film made of 3.40 wt% of dextran and 20.43 wt% of sorbitol showed the lowest water vapour permeability and the highest tensile strength and elasticity.
T2  - Carbohydrate Polymers
T1  - Response surface methodology for optimisation of edible coatings based on dextran from Leuconostoc mesenteroides T3
VL  - 184
SP  - 207
EP  - 213
DO  - 10.1016/j.carbpol.2017.12.061
ER  - 
@article{
author = "Davidović, Slađana Z. and Miljković, Miona G. and Tomić, Miloš and Gordić, Milan V. and Nešić, Aleksandra and Dimitrijević, Suzana I.",
year = "2018",
abstract = "The aim of this study was to develop dextran-based edible films plasticized by sorbitol. In order to optimise the film-forming formulation, response surface methodology was used. The influence of dextran and sorbitol concentration on the mechanical and water vapour barrier properties of obtained films was investigated. The results showed that both parameters exhibited significant effect on the water vapour permeability of a film. Both dextran and sorbitol concentration had significant influence on tensile strength and elongation at break, whereas only sorbitol concentration had significant effect on Youngs modulus. After optimisation by desirability approach, it was found that a film made of 3.40 wt% of dextran and 20.43 wt% of sorbitol showed the lowest water vapour permeability and the highest tensile strength and elasticity.",
journal = "Carbohydrate Polymers",
title = "Response surface methodology for optimisation of edible coatings based on dextran from Leuconostoc mesenteroides T3",
volume = "184",
pages = "207-213",
doi = "10.1016/j.carbpol.2017.12.061"
}
Davidović, S. Z., Miljković, M. G., Tomić, M., Gordić, M. V., Nešić, A.,& Dimitrijević, S. I.. (2018). Response surface methodology for optimisation of edible coatings based on dextran from Leuconostoc mesenteroides T3. in Carbohydrate Polymers, 184, 207-213.
https://doi.org/10.1016/j.carbpol.2017.12.061
Davidović SZ, Miljković MG, Tomić M, Gordić MV, Nešić A, Dimitrijević SI. Response surface methodology for optimisation of edible coatings based on dextran from Leuconostoc mesenteroides T3. in Carbohydrate Polymers. 2018;184:207-213.
doi:10.1016/j.carbpol.2017.12.061 .
Davidović, Slađana Z., Miljković, Miona G., Tomić, Miloš, Gordić, Milan V., Nešić, Aleksandra, Dimitrijević, Suzana I., "Response surface methodology for optimisation of edible coatings based on dextran from Leuconostoc mesenteroides T3" in Carbohydrate Polymers, 184 (2018):207-213,
https://doi.org/10.1016/j.carbpol.2017.12.061 . .
33
13
31

Antioxidant and antimicrobial edible films based on dextran containing polyphenols from yarrow extract

Davidović, Slađana; Miljković, Miona; Radovanović, Neda; Gordić, Milan V.; Nešić, Aleksandra; Dimitrijević, Suzana

(2018)

TY  - CONF
AU  - Davidović, Slađana
AU  - Miljković, Miona
AU  - Radovanović, Neda
AU  - Gordić, Milan V.
AU  - Nešić, Aleksandra
AU  - Dimitrijević, Suzana
PY  - 2018
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/10722
AB  - Current trends in food biotechnology are focused on replacing synthetic polymers used for food packages by the natural ones. Biopolymers are made by sustainable processes in a cheap way. Moreover, they are nontoxic and can serve as a good alternative to traditional (petroleum) food packaging, due to great film-formation properties in a form of edible films and coatings for food products. Various polysaccharides, proteins, and lipids have been intensively investigated as edible materials that could improve the food quality, freshness, and provide food safety. However, natural polymers usually lack of antioxidative and/or antimicrobial properties. Therefore, many synthetic and natural additives can be incorporated into edible films. Among them, extracts of medicinal plants are giving more attention due to their safeness and proved health benefits. The aim of this study was to obtain edible films based on dextran, with antioxidative and antimicrobial pro- perties. Dextran obtained in our lab was used for preparing edible film with sorbitol as a plasticizer, while pulverized waste biomass obtained from the processing of medicinal herb yarrow (Achillea millefolium) was used as a source of polyphenols. It has previously been shown 1 that dextran-based films had excellent mecha- nical and water vapor barrier properties. In this work, spray dried ethanol extract of Achillea millefolium dust (AME) was incorporated into dextran films in concentrations 2, 3, and 4% (w/v). The composite films were analyzed regarding antioxidative, antimicrobial, and mechanical properties. All films showed high antioxidative activity (90% reduction of DPPH radical). However, to obtain high antimicrobial activity (higher than 50%), 4% of AME was required. Composite films showed antimicrobial activity against three Gram-positive bacteria (Staphylococcus aureus, Listeria monocytogenes and Enterococcus faecalis and one Gram-negative bacterium (Pseudomonas aeruginosa). Incorporation of AME into dextran film showed positive effect on tensile strength and negative effect on elongation. Composite film with the best mechanical properties (tensile strength 3.5 MPa and elongation at break 37%) was the film containing 4% AME.
C3  - PolyChar 26th annual world forum on advanced materials, September 10-13, 2018, Tbilisi, Georgia
T1  - Antioxidant and antimicrobial edible films based on dextran containing polyphenols from yarrow extract
SP  - 72
UR  - https://hdl.handle.net/21.15107/rcub_vinar_10722
ER  - 
@conference{
author = "Davidović, Slađana and Miljković, Miona and Radovanović, Neda and Gordić, Milan V. and Nešić, Aleksandra and Dimitrijević, Suzana",
year = "2018",
abstract = "Current trends in food biotechnology are focused on replacing synthetic polymers used for food packages by the natural ones. Biopolymers are made by sustainable processes in a cheap way. Moreover, they are nontoxic and can serve as a good alternative to traditional (petroleum) food packaging, due to great film-formation properties in a form of edible films and coatings for food products. Various polysaccharides, proteins, and lipids have been intensively investigated as edible materials that could improve the food quality, freshness, and provide food safety. However, natural polymers usually lack of antioxidative and/or antimicrobial properties. Therefore, many synthetic and natural additives can be incorporated into edible films. Among them, extracts of medicinal plants are giving more attention due to their safeness and proved health benefits. The aim of this study was to obtain edible films based on dextran, with antioxidative and antimicrobial pro- perties. Dextran obtained in our lab was used for preparing edible film with sorbitol as a plasticizer, while pulverized waste biomass obtained from the processing of medicinal herb yarrow (Achillea millefolium) was used as a source of polyphenols. It has previously been shown 1 that dextran-based films had excellent mecha- nical and water vapor barrier properties. In this work, spray dried ethanol extract of Achillea millefolium dust (AME) was incorporated into dextran films in concentrations 2, 3, and 4% (w/v). The composite films were analyzed regarding antioxidative, antimicrobial, and mechanical properties. All films showed high antioxidative activity (90% reduction of DPPH radical). However, to obtain high antimicrobial activity (higher than 50%), 4% of AME was required. Composite films showed antimicrobial activity against three Gram-positive bacteria (Staphylococcus aureus, Listeria monocytogenes and Enterococcus faecalis and one Gram-negative bacterium (Pseudomonas aeruginosa). Incorporation of AME into dextran film showed positive effect on tensile strength and negative effect on elongation. Composite film with the best mechanical properties (tensile strength 3.5 MPa and elongation at break 37%) was the film containing 4% AME.",
journal = "PolyChar 26th annual world forum on advanced materials, September 10-13, 2018, Tbilisi, Georgia",
title = "Antioxidant and antimicrobial edible films based on dextran containing polyphenols from yarrow extract",
pages = "72",
url = "https://hdl.handle.net/21.15107/rcub_vinar_10722"
}
Davidović, S., Miljković, M., Radovanović, N., Gordić, M. V., Nešić, A.,& Dimitrijević, S.. (2018). Antioxidant and antimicrobial edible films based on dextran containing polyphenols from yarrow extract. in PolyChar 26th annual world forum on advanced materials, September 10-13, 2018, Tbilisi, Georgia, 72.
https://hdl.handle.net/21.15107/rcub_vinar_10722
Davidović S, Miljković M, Radovanović N, Gordić MV, Nešić A, Dimitrijević S. Antioxidant and antimicrobial edible films based on dextran containing polyphenols from yarrow extract. in PolyChar 26th annual world forum on advanced materials, September 10-13, 2018, Tbilisi, Georgia. 2018;:72.
https://hdl.handle.net/21.15107/rcub_vinar_10722 .
Davidović, Slađana, Miljković, Miona, Radovanović, Neda, Gordić, Milan V., Nešić, Aleksandra, Dimitrijević, Suzana, "Antioxidant and antimicrobial edible films based on dextran containing polyphenols from yarrow extract" in PolyChar 26th annual world forum on advanced materials, September 10-13, 2018, Tbilisi, Georgia (2018):72,
https://hdl.handle.net/21.15107/rcub_vinar_10722 .

Chitosan-triclosan films for potential use as bio-antimicrobial bags in healthcare sector

Nešić, Aleksandra; Gordić, Milan V.; Onjia, Antonije E.; Davidović, Slađana Z.; Miljković, Miona G.; Dimitrijević-Branković, Suzana I.

(2017)

TY  - JOUR
AU  - Nešić, Aleksandra
AU  - Gordić, Milan V.
AU  - Onjia, Antonije E.
AU  - Davidović, Slađana Z.
AU  - Miljković, Miona G.
AU  - Dimitrijević-Branković, Suzana I.
PY  - 2017
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/1344
AB  - In this work, antimicrobial bioinspired films made from chitosan incorporated with triclosan were investigated. The tensile strenght of these films were in the range of 33 and 39 MPa, which presented satisfied mechanical stability comparable to the synthetic-based packages commonly used in industry. The addition of triclosan enhanced thermal stability and antimicrobial activity of chitosan films against Escherichia coli and Staphylococus aureus. Results obtained in this work demonstrated that chitosan/triclosan films could be potentially used as an eco-sustainable package in healthcare sector to prevent infections/contaminations.
T2  - Materials Letters
T1  - Chitosan-triclosan films for potential use as bio-antimicrobial bags in healthcare sector
VL  - 186
SP  - 368
EP  - 371
DO  - 10.1016/j.matlet.2016.10.028
ER  - 
@article{
author = "Nešić, Aleksandra and Gordić, Milan V. and Onjia, Antonije E. and Davidović, Slađana Z. and Miljković, Miona G. and Dimitrijević-Branković, Suzana I.",
year = "2017",
abstract = "In this work, antimicrobial bioinspired films made from chitosan incorporated with triclosan were investigated. The tensile strenght of these films were in the range of 33 and 39 MPa, which presented satisfied mechanical stability comparable to the synthetic-based packages commonly used in industry. The addition of triclosan enhanced thermal stability and antimicrobial activity of chitosan films against Escherichia coli and Staphylococus aureus. Results obtained in this work demonstrated that chitosan/triclosan films could be potentially used as an eco-sustainable package in healthcare sector to prevent infections/contaminations.",
journal = "Materials Letters",
title = "Chitosan-triclosan films for potential use as bio-antimicrobial bags in healthcare sector",
volume = "186",
pages = "368-371",
doi = "10.1016/j.matlet.2016.10.028"
}
Nešić, A., Gordić, M. V., Onjia, A. E., Davidović, S. Z., Miljković, M. G.,& Dimitrijević-Branković, S. I.. (2017). Chitosan-triclosan films for potential use as bio-antimicrobial bags in healthcare sector. in Materials Letters, 186, 368-371.
https://doi.org/10.1016/j.matlet.2016.10.028
Nešić A, Gordić MV, Onjia AE, Davidović SZ, Miljković MG, Dimitrijević-Branković SI. Chitosan-triclosan films for potential use as bio-antimicrobial bags in healthcare sector. in Materials Letters. 2017;186:368-371.
doi:10.1016/j.matlet.2016.10.028 .
Nešić, Aleksandra, Gordić, Milan V., Onjia, Antonije E., Davidović, Slađana Z., Miljković, Miona G., Dimitrijević-Branković, Suzana I., "Chitosan-triclosan films for potential use as bio-antimicrobial bags in healthcare sector" in Materials Letters, 186 (2017):368-371,
https://doi.org/10.1016/j.matlet.2016.10.028 . .
8
7
10

Interaction of amino acid-functionalized silver nanoparticles and Candida albicans polymorphs: A deep-UV fluorescence imaging study

Dojčilović, Radovan; Pajović, Jelena D.; Božanić, Dušan K.; Bogdanović, Una; Vodnik, Vesna; Dimitrijević-Branković, Suzana I.; Miljković, Miona G.; Kaščakova, Slavka; Refregiers, Matthieu; Đoković, Vladimir

(2017)

TY  - JOUR
AU  - Dojčilović, Radovan
AU  - Pajović, Jelena D.
AU  - Božanić, Dušan K.
AU  - Bogdanović, Una
AU  - Vodnik, Vesna
AU  - Dimitrijević-Branković, Suzana I.
AU  - Miljković, Miona G.
AU  - Kaščakova, Slavka
AU  - Refregiers, Matthieu
AU  - Đoković, Vladimir
PY  - 2017
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/1608
AB  - The interaction of the tryptophan functionalized Ag nanoparticles and live Candida albicans cells was studied by synchrotron excitation deep-ultraviolet (DUV) fluorescence imaging at the DISCO beamline of Synchrotron SOLEIL. DUV imaging showed that incubation of the fungus with functionalized nanoparticles results in significant increase in the fluorescence signal. The analysis of the images revealed that the interaction of the nanoparticles with (pseudo)hyphae polymorphs of the diploid fungus was less pronounced than in the case of yeast cells or budding spores. The changes in the intensity of the fluorescence signals of the cells after incubation were followed in [327-353 nm] and [370-410 nm] spectral ranges that correspond to the fluorescence of tryptophan in non-polar and polar environment, respectively. As a consequence of the environmental sensitivity of the silver-tryptophan fluorescent nanoprobe, we were able to determine the possible accumulation sites of the nanoparticles. The analysis of the intensity decay kinetics showed that the photobleaching effects were more pronounced in the case of the functionalized nanoparticle treated cells. The results of time-integrated emission in the mentioned spectral ranges suggested that the nanoparticles penetrate the cells, but that the majority of the nanoparticles attach to the cells surfaces. (C) 2017 Elsevier B.V. All rights reserved.
T2  - Colloids and Surfaces. B: Biointerfaces
T1  - Interaction of amino acid-functionalized silver nanoparticles and Candida albicans polymorphs: A deep-UV fluorescence imaging study
VL  - 155
SP  - 341
EP  - 348
DO  - 10.1016/j.colsurfb.2017.04.044
ER  - 
@article{
author = "Dojčilović, Radovan and Pajović, Jelena D. and Božanić, Dušan K. and Bogdanović, Una and Vodnik, Vesna and Dimitrijević-Branković, Suzana I. and Miljković, Miona G. and Kaščakova, Slavka and Refregiers, Matthieu and Đoković, Vladimir",
year = "2017",
abstract = "The interaction of the tryptophan functionalized Ag nanoparticles and live Candida albicans cells was studied by synchrotron excitation deep-ultraviolet (DUV) fluorescence imaging at the DISCO beamline of Synchrotron SOLEIL. DUV imaging showed that incubation of the fungus with functionalized nanoparticles results in significant increase in the fluorescence signal. The analysis of the images revealed that the interaction of the nanoparticles with (pseudo)hyphae polymorphs of the diploid fungus was less pronounced than in the case of yeast cells or budding spores. The changes in the intensity of the fluorescence signals of the cells after incubation were followed in [327-353 nm] and [370-410 nm] spectral ranges that correspond to the fluorescence of tryptophan in non-polar and polar environment, respectively. As a consequence of the environmental sensitivity of the silver-tryptophan fluorescent nanoprobe, we were able to determine the possible accumulation sites of the nanoparticles. The analysis of the intensity decay kinetics showed that the photobleaching effects were more pronounced in the case of the functionalized nanoparticle treated cells. The results of time-integrated emission in the mentioned spectral ranges suggested that the nanoparticles penetrate the cells, but that the majority of the nanoparticles attach to the cells surfaces. (C) 2017 Elsevier B.V. All rights reserved.",
journal = "Colloids and Surfaces. B: Biointerfaces",
title = "Interaction of amino acid-functionalized silver nanoparticles and Candida albicans polymorphs: A deep-UV fluorescence imaging study",
volume = "155",
pages = "341-348",
doi = "10.1016/j.colsurfb.2017.04.044"
}
Dojčilović, R., Pajović, J. D., Božanić, D. K., Bogdanović, U., Vodnik, V., Dimitrijević-Branković, S. I., Miljković, M. G., Kaščakova, S., Refregiers, M.,& Đoković, V.. (2017). Interaction of amino acid-functionalized silver nanoparticles and Candida albicans polymorphs: A deep-UV fluorescence imaging study. in Colloids and Surfaces. B: Biointerfaces, 155, 341-348.
https://doi.org/10.1016/j.colsurfb.2017.04.044
Dojčilović R, Pajović JD, Božanić DK, Bogdanović U, Vodnik V, Dimitrijević-Branković SI, Miljković MG, Kaščakova S, Refregiers M, Đoković V. Interaction of amino acid-functionalized silver nanoparticles and Candida albicans polymorphs: A deep-UV fluorescence imaging study. in Colloids and Surfaces. B: Biointerfaces. 2017;155:341-348.
doi:10.1016/j.colsurfb.2017.04.044 .
Dojčilović, Radovan, Pajović, Jelena D., Božanić, Dušan K., Bogdanović, Una, Vodnik, Vesna, Dimitrijević-Branković, Suzana I., Miljković, Miona G., Kaščakova, Slavka, Refregiers, Matthieu, Đoković, Vladimir, "Interaction of amino acid-functionalized silver nanoparticles and Candida albicans polymorphs: A deep-UV fluorescence imaging study" in Colloids and Surfaces. B: Biointerfaces, 155 (2017):341-348,
https://doi.org/10.1016/j.colsurfb.2017.04.044 . .
5
11
5
9