Miletić, Mirjana

Link to this page

Authority KeyName Variants
840b7420-9249-4dde-b87e-8404c1868a36
  • Miletić, Mirjana (2)
Projects

Author's Bibliography

Spectroscopic signature of ZnO NP-induced cell death modalities assessed by non-negative PCA

Miletić, Mirjana; Vilotić, Aleksandra; Korićanac, Lela; Žakula, Jelena; Jovanović Krivokuća, Milica; Dohčević-Mitrović, Zorana; Aškrabić, Sonja

(2023)

TY  - JOUR
AU  - Miletić, Mirjana
AU  - Vilotić, Aleksandra
AU  - Korićanac, Lela
AU  - Žakula, Jelena
AU  - Jovanović Krivokuća, Milica
AU  - Dohčević-Mitrović, Zorana
AU  - Aškrabić, Sonja
PY  - 2023
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/10542
AB  - Selective cytotoxicity of ZnO nanoparticles among different cell types and cancer and non-cancerous cells has been demonstrated earlier. In the view of anticancer potential of ZnO nanoparticles and their presence in numerous industrial products, it is of great importance to carefully evaluate their effects and mechanisms of action in both cancerous and healthy cells. In this paper, the effects of ZnO nanoparticles on cancerous HeLa and non-cancerous MRC-5 cells are investigated by studying the changes in the vibrational properties of the cells using Raman spectroscopy. Both types of cells were incubated with ZnO nanoparticles of average size 40 nm in the doses from the range 10–40 µg/ml for the period of 48 h, after which Raman spectra were collected. Raman modes’ intensity ratios I1659/I1444, I2855/I2933 and I1337/I1305 were determined as spectral markers of the cytotoxic effect of ZnO in both cell types. Non-negative principal component analysis was used instead of standard one for analysis and detection of spectral features characteristic for nanoparticle-treated cells. The first several non-negative loading vectors obtained in this analysis coincided remarkably well with the Raman spectra of particular biomolecules, showing increase of lipid and decrease of nucleic acids and protein content. Our study pointed out that Raman spectral markers of lipid unsaturation, especially I1270/I1300, are relevant for tracing the cytotoxic effect of ZnO nanoparticles on both cancerous and non-cancerous cells. The change of these spectral markers is correlated to the dose of applied nanoparticles and to the degree of cellular damage. Furthermore, great similarity of spectral features of increasing lipids to spectral features of phosphatidylserine, one of the main apoptotic markers, was recognized in treated cells. Finally, the results strongly indicated that the degree of lipid saturation, presented in the cells, plays an important role in the interaction of cells with nanoparticles.
T2  - Spectrochimica Acta. Part A: Molecular and Biomolecular Spectroscopy
T1  - Spectroscopic signature of ZnO NP-induced cell death modalities assessed by non-negative PCA
VL  - 288
SP  - 122180
DO  - 10.1016/j.saa.2022.122180
ER  - 
@article{
author = "Miletić, Mirjana and Vilotić, Aleksandra and Korićanac, Lela and Žakula, Jelena and Jovanović Krivokuća, Milica and Dohčević-Mitrović, Zorana and Aškrabić, Sonja",
year = "2023",
abstract = "Selective cytotoxicity of ZnO nanoparticles among different cell types and cancer and non-cancerous cells has been demonstrated earlier. In the view of anticancer potential of ZnO nanoparticles and their presence in numerous industrial products, it is of great importance to carefully evaluate their effects and mechanisms of action in both cancerous and healthy cells. In this paper, the effects of ZnO nanoparticles on cancerous HeLa and non-cancerous MRC-5 cells are investigated by studying the changes in the vibrational properties of the cells using Raman spectroscopy. Both types of cells were incubated with ZnO nanoparticles of average size 40 nm in the doses from the range 10–40 µg/ml for the period of 48 h, after which Raman spectra were collected. Raman modes’ intensity ratios I1659/I1444, I2855/I2933 and I1337/I1305 were determined as spectral markers of the cytotoxic effect of ZnO in both cell types. Non-negative principal component analysis was used instead of standard one for analysis and detection of spectral features characteristic for nanoparticle-treated cells. The first several non-negative loading vectors obtained in this analysis coincided remarkably well with the Raman spectra of particular biomolecules, showing increase of lipid and decrease of nucleic acids and protein content. Our study pointed out that Raman spectral markers of lipid unsaturation, especially I1270/I1300, are relevant for tracing the cytotoxic effect of ZnO nanoparticles on both cancerous and non-cancerous cells. The change of these spectral markers is correlated to the dose of applied nanoparticles and to the degree of cellular damage. Furthermore, great similarity of spectral features of increasing lipids to spectral features of phosphatidylserine, one of the main apoptotic markers, was recognized in treated cells. Finally, the results strongly indicated that the degree of lipid saturation, presented in the cells, plays an important role in the interaction of cells with nanoparticles.",
journal = "Spectrochimica Acta. Part A: Molecular and Biomolecular Spectroscopy",
title = "Spectroscopic signature of ZnO NP-induced cell death modalities assessed by non-negative PCA",
volume = "288",
pages = "122180",
doi = "10.1016/j.saa.2022.122180"
}
Miletić, M., Vilotić, A., Korićanac, L., Žakula, J., Jovanović Krivokuća, M., Dohčević-Mitrović, Z.,& Aškrabić, S.. (2023). Spectroscopic signature of ZnO NP-induced cell death modalities assessed by non-negative PCA. in Spectrochimica Acta. Part A: Molecular and Biomolecular Spectroscopy, 288, 122180.
https://doi.org/10.1016/j.saa.2022.122180
Miletić M, Vilotić A, Korićanac L, Žakula J, Jovanović Krivokuća M, Dohčević-Mitrović Z, Aškrabić S. Spectroscopic signature of ZnO NP-induced cell death modalities assessed by non-negative PCA. in Spectrochimica Acta. Part A: Molecular and Biomolecular Spectroscopy. 2023;288:122180.
doi:10.1016/j.saa.2022.122180 .
Miletić, Mirjana, Vilotić, Aleksandra, Korićanac, Lela, Žakula, Jelena, Jovanović Krivokuća, Milica, Dohčević-Mitrović, Zorana, Aškrabić, Sonja, "Spectroscopic signature of ZnO NP-induced cell death modalities assessed by non-negative PCA" in Spectrochimica Acta. Part A: Molecular and Biomolecular Spectroscopy, 288 (2023):122180,
https://doi.org/10.1016/j.saa.2022.122180 . .

Prooxidative and antimigratory effects of cerium oxide nanoparticles on melanoma and pancreatic cancer cells

Žakula, Jelena; Miletić, Mirjana; Aškrabić, Sonja; Pejić, Snežana; Korićanac, Lela

(Belgrade : Faculty of Chemistry : Serbian Biochemical Society, 2022)

TY  - CONF
AU  - Žakula, Jelena
AU  - Miletić, Mirjana
AU  - Aškrabić, Sonja
AU  - Pejić, Snežana
AU  - Korićanac, Lela
PY  - 2022
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/11008
AB  - The development of new types of nanoparticles has become the focus of biomedical research in recent years. Cerium oxide nanoparticles (CONP) have shown particularly promising results as antitumor agents with a selective effect on tumor and normal cells. On the other side, melanoma and pancreatic carcinoma are among the most aggressive types of cancer with no satisfactory therapy1,2 . Considering that, they represent important model systems for studying new treatment approaches. In this study, the antitumor potential of CONP (size below 10 nm) was studied on human A375 melanoma and PANC-1 pancreatic carcinoma cells. The obtained results indicated that analyzed CONP significantly inhibited clonogenic survival, with the number of colonies reduced on ~30% in A375 cells, while treated PANC-1 cells didn’t form colonies. Growth inhibition was followed by G 2 cell cycle arrest (9% for A375, 17% for PANC-1). Percent of apoptotic PANC-1 cells was 38%, whereas ROS production increased for 78%. CONP significantly reduced metastatic potential through the decrease in cell migration and the increase in cell adhesiveness (up to 30 and 40% for A375 and PANC-1 respectively). These findings emphasize the significant CONP antitumor potential, based on the increase in ROS production, as well as a reduction of A375 and PANC-1 metastatic potential.
PB  - Belgrade : Faculty of Chemistry : Serbian Biochemical Society
C3  - Serbian Biochemical Society : 11th conference - "Amazing Biochemistry" : proceedings ; September 22-23, 2022; Novi Sad, Serbia
T1  - Prooxidative and antimigratory effects of cerium oxide nanoparticles on melanoma and pancreatic cancer cells
SP  - 85
UR  - https://hdl.handle.net/21.15107/rcub_vinar_11008
ER  - 
@conference{
author = "Žakula, Jelena and Miletić, Mirjana and Aškrabić, Sonja and Pejić, Snežana and Korićanac, Lela",
year = "2022",
abstract = "The development of new types of nanoparticles has become the focus of biomedical research in recent years. Cerium oxide nanoparticles (CONP) have shown particularly promising results as antitumor agents with a selective effect on tumor and normal cells. On the other side, melanoma and pancreatic carcinoma are among the most aggressive types of cancer with no satisfactory therapy1,2 . Considering that, they represent important model systems for studying new treatment approaches. In this study, the antitumor potential of CONP (size below 10 nm) was studied on human A375 melanoma and PANC-1 pancreatic carcinoma cells. The obtained results indicated that analyzed CONP significantly inhibited clonogenic survival, with the number of colonies reduced on ~30% in A375 cells, while treated PANC-1 cells didn’t form colonies. Growth inhibition was followed by G 2 cell cycle arrest (9% for A375, 17% for PANC-1). Percent of apoptotic PANC-1 cells was 38%, whereas ROS production increased for 78%. CONP significantly reduced metastatic potential through the decrease in cell migration and the increase in cell adhesiveness (up to 30 and 40% for A375 and PANC-1 respectively). These findings emphasize the significant CONP antitumor potential, based on the increase in ROS production, as well as a reduction of A375 and PANC-1 metastatic potential.",
publisher = "Belgrade : Faculty of Chemistry : Serbian Biochemical Society",
journal = "Serbian Biochemical Society : 11th conference - "Amazing Biochemistry" : proceedings ; September 22-23, 2022; Novi Sad, Serbia",
title = "Prooxidative and antimigratory effects of cerium oxide nanoparticles on melanoma and pancreatic cancer cells",
pages = "85",
url = "https://hdl.handle.net/21.15107/rcub_vinar_11008"
}
Žakula, J., Miletić, M., Aškrabić, S., Pejić, S.,& Korićanac, L.. (2022). Prooxidative and antimigratory effects of cerium oxide nanoparticles on melanoma and pancreatic cancer cells. in Serbian Biochemical Society : 11th conference - "Amazing Biochemistry" : proceedings ; September 22-23, 2022; Novi Sad, Serbia
Belgrade : Faculty of Chemistry : Serbian Biochemical Society., 85.
https://hdl.handle.net/21.15107/rcub_vinar_11008
Žakula J, Miletić M, Aškrabić S, Pejić S, Korićanac L. Prooxidative and antimigratory effects of cerium oxide nanoparticles on melanoma and pancreatic cancer cells. in Serbian Biochemical Society : 11th conference - "Amazing Biochemistry" : proceedings ; September 22-23, 2022; Novi Sad, Serbia. 2022;:85.
https://hdl.handle.net/21.15107/rcub_vinar_11008 .
Žakula, Jelena, Miletić, Mirjana, Aškrabić, Sonja, Pejić, Snežana, Korićanac, Lela, "Prooxidative and antimigratory effects of cerium oxide nanoparticles on melanoma and pancreatic cancer cells" in Serbian Biochemical Society : 11th conference - "Amazing Biochemistry" : proceedings ; September 22-23, 2022; Novi Sad, Serbia (2022):85,
https://hdl.handle.net/21.15107/rcub_vinar_11008 .