Ptasinska, Sylwia

Link to this page

Authority KeyName Variants
62b11b02-6da6-4a7d-98c2-2d5a530c4fb8
  • Ptasinska, Sylwia (2)
Projects

Author's Bibliography

Direct Probing of Water Adsorption on Liquid-Phase Exfoliated WS2 Films Formed by the Langmuir-Schaefer Technique

Vujin, Jasna; Huang, Weixin; Ciganović, Jovan; Ptasinska, Sylwia; Panajotović, Radmila

(2023)

TY  - JOUR
AU  - Vujin, Jasna
AU  - Huang, Weixin
AU  - Ciganović, Jovan
AU  - Ptasinska, Sylwia
AU  - Panajotović, Radmila
PY  - 2023
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/11213
AB  - Tungsten disulfide, a transition metal dichalcogenide, has numerous applications as active components in gas- and chemical-sensing devices, photovoltaic sources, photocatalyst substrates, etc. In such devices, the presence of water in the sensing environment is a factor whose role has not been well-understood. To address this problem, the in situ probing of H2O molecule adsorption on WS2 films supported on solid substrates has been performed in a near-ambient pressure X-ray photoelectron spectroscopy (NAP-XPS) setup. Instead, on the individual nanoflakes or spray-coated samples, the measurements were performed on highly transparent, homogeneous, thin films of WS2 nanosheets self-assembled at the interface of two immiscible liquids, water and toluene, transferred onto a solid substrate by the Langmuir-Schaefer technique. This experiment shows that edge defects in nanoflakes, tungsten dangling bond ensuing the exfoliation in the liquid phase, represent active sites for the WO3, WO3-x, and WO3·nH2O formation under ambient conditions. These oxides interact with water molecules when the WS2 films are exposed to water vapor in the NAP-XPS reaction cell. However, water molecules do not influence the W-S chemical bond, thus indicating the physisorption of H2O molecules at the WS2 film surface. © 2023 American Chemical Society.
T2  - Langmuir
T1  - Direct Probing of Water Adsorption on Liquid-Phase Exfoliated WS2 Films Formed by the Langmuir-Schaefer Technique
VL  - 39
IS  - 23
SP  - 8055
EP  - 8064
DO  - 10.1021/acs.langmuir.3c00107
ER  - 
@article{
author = "Vujin, Jasna and Huang, Weixin and Ciganović, Jovan and Ptasinska, Sylwia and Panajotović, Radmila",
year = "2023",
abstract = "Tungsten disulfide, a transition metal dichalcogenide, has numerous applications as active components in gas- and chemical-sensing devices, photovoltaic sources, photocatalyst substrates, etc. In such devices, the presence of water in the sensing environment is a factor whose role has not been well-understood. To address this problem, the in situ probing of H2O molecule adsorption on WS2 films supported on solid substrates has been performed in a near-ambient pressure X-ray photoelectron spectroscopy (NAP-XPS) setup. Instead, on the individual nanoflakes or spray-coated samples, the measurements were performed on highly transparent, homogeneous, thin films of WS2 nanosheets self-assembled at the interface of two immiscible liquids, water and toluene, transferred onto a solid substrate by the Langmuir-Schaefer technique. This experiment shows that edge defects in nanoflakes, tungsten dangling bond ensuing the exfoliation in the liquid phase, represent active sites for the WO3, WO3-x, and WO3·nH2O formation under ambient conditions. These oxides interact with water molecules when the WS2 films are exposed to water vapor in the NAP-XPS reaction cell. However, water molecules do not influence the W-S chemical bond, thus indicating the physisorption of H2O molecules at the WS2 film surface. © 2023 American Chemical Society.",
journal = "Langmuir",
title = "Direct Probing of Water Adsorption on Liquid-Phase Exfoliated WS2 Films Formed by the Langmuir-Schaefer Technique",
volume = "39",
number = "23",
pages = "8055-8064",
doi = "10.1021/acs.langmuir.3c00107"
}
Vujin, J., Huang, W., Ciganović, J., Ptasinska, S.,& Panajotović, R.. (2023). Direct Probing of Water Adsorption on Liquid-Phase Exfoliated WS2 Films Formed by the Langmuir-Schaefer Technique. in Langmuir, 39(23), 8055-8064.
https://doi.org/10.1021/acs.langmuir.3c00107
Vujin J, Huang W, Ciganović J, Ptasinska S, Panajotović R. Direct Probing of Water Adsorption on Liquid-Phase Exfoliated WS2 Films Formed by the Langmuir-Schaefer Technique. in Langmuir. 2023;39(23):8055-8064.
doi:10.1021/acs.langmuir.3c00107 .
Vujin, Jasna, Huang, Weixin, Ciganović, Jovan, Ptasinska, Sylwia, Panajotović, Radmila, "Direct Probing of Water Adsorption on Liquid-Phase Exfoliated WS2 Films Formed by the Langmuir-Schaefer Technique" in Langmuir, 39, no. 23 (2023):8055-8064,
https://doi.org/10.1021/acs.langmuir.3c00107 . .

2D silver-bismuth-iodide rudorffitenanomaterials for photovoltaic devices: a novel route for chemical synthesis of Ag3BiI6nanosheets

Danilović, Danijela; Božanić, Dušan K.; Milosavljević, Aleksandar R.; Dojčilović, Radovan; Tošić, Dragana; Đoković, Vladimir; Sapkota, Pitambar; Ptasinska, Sylwia; Vukmirović, Nenad

(Belgrade : Institute of Physics Belgrade, 2021)

TY  - CONF
AU  - Danilović, Danijela
AU  - Božanić, Dušan K.
AU  - Milosavljević, Aleksandar R.
AU  - Dojčilović, Radovan
AU  - Tošić, Dragana
AU  - Đoković, Vladimir
AU  - Sapkota, Pitambar
AU  - Ptasinska, Sylwia
AU  - Vukmirović, Nenad
PY  - 2021
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/10902
AB  - Silver-bismuth-iodide (Ag-Bi-I) rudorffite hybrid materials havegained an immense interest in the research for a lead-free, chemically stable and low-cost absorber material in photovoltaic devices [1].These materials can be fabricated in the form of macroscopic crystals or as thin films,in which case they can be integrated into solar cells that show good photoconversion efficiency[2]. Fabricating AgBi-I in nanocrystal form couldfacilitate further their integration in the photovoltaic devices and enhance device performance due to size confinement effects. In our previous study, we successfully fabricated ligand-free Ag3BiI6nanoparticles in the form of aerosols [3]. Here, we report on thefabricationprocedure of 2D Ag-Bi-I nanomaterials in the colloidal form. The results of the structural and morphological investigation of the nanosheets will be presented, as well as reconstruction of the electronic levels of the Ag3BiI6nanoparticles from the combined UV-vis absorption andX-ray photoelectron spectroscopy data.In addition, an analysis that shows the relation between the positions of the bands in the Ag3BiI6nanosheet absorption spectra and the thickness of the nanosheet will be discussed.
PB  - Belgrade : Institute of Physics Belgrade
C3  - PHOTONICA2021 : 8th International School and Conference on Photonics and HEMMAGINERO workshop : Abstracts of Tutorial, Keynote, Invited Lectures, Progress Reports and Contributed Papers; August 23-27, 2021; Belgrade
T1  - 2D silver-bismuth-iodide rudorffitenanomaterials for photovoltaic devices: a novel route for chemical synthesis of Ag3BiI6nanosheets
SP  - 76
UR  - https://hdl.handle.net/21.15107/rcub_vinar_10902
ER  - 
@conference{
author = "Danilović, Danijela and Božanić, Dušan K. and Milosavljević, Aleksandar R. and Dojčilović, Radovan and Tošić, Dragana and Đoković, Vladimir and Sapkota, Pitambar and Ptasinska, Sylwia and Vukmirović, Nenad",
year = "2021",
abstract = "Silver-bismuth-iodide (Ag-Bi-I) rudorffite hybrid materials havegained an immense interest in the research for a lead-free, chemically stable and low-cost absorber material in photovoltaic devices [1].These materials can be fabricated in the form of macroscopic crystals or as thin films,in which case they can be integrated into solar cells that show good photoconversion efficiency[2]. Fabricating AgBi-I in nanocrystal form couldfacilitate further their integration in the photovoltaic devices and enhance device performance due to size confinement effects. In our previous study, we successfully fabricated ligand-free Ag3BiI6nanoparticles in the form of aerosols [3]. Here, we report on thefabricationprocedure of 2D Ag-Bi-I nanomaterials in the colloidal form. The results of the structural and morphological investigation of the nanosheets will be presented, as well as reconstruction of the electronic levels of the Ag3BiI6nanoparticles from the combined UV-vis absorption andX-ray photoelectron spectroscopy data.In addition, an analysis that shows the relation between the positions of the bands in the Ag3BiI6nanosheet absorption spectra and the thickness of the nanosheet will be discussed.",
publisher = "Belgrade : Institute of Physics Belgrade",
journal = "PHOTONICA2021 : 8th International School and Conference on Photonics and HEMMAGINERO workshop : Abstracts of Tutorial, Keynote, Invited Lectures, Progress Reports and Contributed Papers; August 23-27, 2021; Belgrade",
title = "2D silver-bismuth-iodide rudorffitenanomaterials for photovoltaic devices: a novel route for chemical synthesis of Ag3BiI6nanosheets",
pages = "76",
url = "https://hdl.handle.net/21.15107/rcub_vinar_10902"
}
Danilović, D., Božanić, D. K., Milosavljević, A. R., Dojčilović, R., Tošić, D., Đoković, V., Sapkota, P., Ptasinska, S.,& Vukmirović, N.. (2021). 2D silver-bismuth-iodide rudorffitenanomaterials for photovoltaic devices: a novel route for chemical synthesis of Ag3BiI6nanosheets. in PHOTONICA2021 : 8th International School and Conference on Photonics and HEMMAGINERO workshop : Abstracts of Tutorial, Keynote, Invited Lectures, Progress Reports and Contributed Papers; August 23-27, 2021; Belgrade
Belgrade : Institute of Physics Belgrade., 76.
https://hdl.handle.net/21.15107/rcub_vinar_10902
Danilović D, Božanić DK, Milosavljević AR, Dojčilović R, Tošić D, Đoković V, Sapkota P, Ptasinska S, Vukmirović N. 2D silver-bismuth-iodide rudorffitenanomaterials for photovoltaic devices: a novel route for chemical synthesis of Ag3BiI6nanosheets. in PHOTONICA2021 : 8th International School and Conference on Photonics and HEMMAGINERO workshop : Abstracts of Tutorial, Keynote, Invited Lectures, Progress Reports and Contributed Papers; August 23-27, 2021; Belgrade. 2021;:76.
https://hdl.handle.net/21.15107/rcub_vinar_10902 .
Danilović, Danijela, Božanić, Dušan K., Milosavljević, Aleksandar R., Dojčilović, Radovan, Tošić, Dragana, Đoković, Vladimir, Sapkota, Pitambar, Ptasinska, Sylwia, Vukmirović, Nenad, "2D silver-bismuth-iodide rudorffitenanomaterials for photovoltaic devices: a novel route for chemical synthesis of Ag3BiI6nanosheets" in PHOTONICA2021 : 8th International School and Conference on Photonics and HEMMAGINERO workshop : Abstracts of Tutorial, Keynote, Invited Lectures, Progress Reports and Contributed Papers; August 23-27, 2021; Belgrade (2021):76,
https://hdl.handle.net/21.15107/rcub_vinar_10902 .