Asanović, Vanja

Link to this page

Authority KeyName Variants
13e500f5-999d-47a1-acc8-9fa405df5d94
  • Asanović, Vanja (2)
Projects

Author's Bibliography

Kinetic behavior of MgH2-transition metal composites: towards hydrogen storage

Sekulić, Zorana; Babić, Bojana; Prvulović, Milica; Milanović, Igor; Tošić, Katarina; Asanović, Vanja; Novaković, Nikola; Milošević Govedarović, Sanja; Grbović Novaković, Jasmina

(2023)

TY  - CONF
AU  - Sekulić, Zorana
AU  - Babić, Bojana
AU  - Prvulović, Milica
AU  - Milanović, Igor
AU  - Tošić, Katarina
AU  - Asanović, Vanja
AU  - Novaković, Nikola
AU  - Milošević Govedarović, Sanja
AU  - Grbović Novaković, Jasmina
PY  - 2023
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/12737
AB  - Hydrogen as an energy vector represents great potential, due to its high gravimetric density and low mass, as well as the fact that combustion does not emit harmful chemical byproducts. Hydrogen has the highest energy density per unit mass compared to any other fuel but a rather low energy density per unit volume. Further, hydrogen storage is a key technology for developing a hydrogen and fuel cell-based economy [1]. Metal hydrides as alternative hydrogen carriers have a wide range of performance parameters such as operating temperature, sorption kinetics, activation conditions, cyclic options, and equilibrium hydrogen pressure. These parameters can be improved or adjusted to meet the technical requirements of different applications. The most commonly used method for hydride destabilization is nanostructuring by mechanical milling which leads to a reduction in the particle and crystallite size of the MgH2 powder. Nanostructuring is often combined with catalyst addition and composite formation [2,3]. The most of research is focused on the morphological, structural, and thermodynamic effects typical for long milling times, while in this work we have followed the changes taking place under short milling times. The thermal stability of magnesium hydride is related to - changes in the crystallites and powder particle size. The analysis also considered the changes in activation energy. MgH2-M composites were prepared by mechanical milling of the as-received MgH2 powder (Alfa Aesar, 98% purity) with the addition of 2 and 5 wt.% of M (M= V, W, Mo). Mechanical milling was performed in s SPEX 5100 Mixer Mill using 8mm diameter milling ball. Samples were milled for 15-45 minutes under the inert atmosphere of argon and a ball-to-powder ratio 10:1 Figure 1. shows the kinetic curves obtained for composites with 5wt% of vanadium. To investigate the desorption process in detail, different models of solid-state kinetics were used as implemented in the code developed in our group. The ratelimiting step of the desorption reaction was determined using the iso-conversional kinetic method due to better accuracy of obtained apparent activation energies. As shown in Table 1 a decrease in apparent activation energies has been observed. It is obvious that the sorption kinetics is affected by material preparation because the reactivity of magnesium with hydrogen is strongly modified by changes in several surface parameters that govern the chemisorption, the dissociation of molecular hydrogen, and hydride nucleation
C3  - 7th MESC-IS 2023 : International Symposium on Materials for Energy Storage and Conversion
T1  - Kinetic behavior of MgH2-transition metal composites: towards hydrogen storage
UR  - https://hdl.handle.net/21.15107/rcub_vinar_12737
ER  - 
@conference{
author = "Sekulić, Zorana and Babić, Bojana and Prvulović, Milica and Milanović, Igor and Tošić, Katarina and Asanović, Vanja and Novaković, Nikola and Milošević Govedarović, Sanja and Grbović Novaković, Jasmina",
year = "2023",
abstract = "Hydrogen as an energy vector represents great potential, due to its high gravimetric density and low mass, as well as the fact that combustion does not emit harmful chemical byproducts. Hydrogen has the highest energy density per unit mass compared to any other fuel but a rather low energy density per unit volume. Further, hydrogen storage is a key technology for developing a hydrogen and fuel cell-based economy [1]. Metal hydrides as alternative hydrogen carriers have a wide range of performance parameters such as operating temperature, sorption kinetics, activation conditions, cyclic options, and equilibrium hydrogen pressure. These parameters can be improved or adjusted to meet the technical requirements of different applications. The most commonly used method for hydride destabilization is nanostructuring by mechanical milling which leads to a reduction in the particle and crystallite size of the MgH2 powder. Nanostructuring is often combined with catalyst addition and composite formation [2,3]. The most of research is focused on the morphological, structural, and thermodynamic effects typical for long milling times, while in this work we have followed the changes taking place under short milling times. The thermal stability of magnesium hydride is related to - changes in the crystallites and powder particle size. The analysis also considered the changes in activation energy. MgH2-M composites were prepared by mechanical milling of the as-received MgH2 powder (Alfa Aesar, 98% purity) with the addition of 2 and 5 wt.% of M (M= V, W, Mo). Mechanical milling was performed in s SPEX 5100 Mixer Mill using 8mm diameter milling ball. Samples were milled for 15-45 minutes under the inert atmosphere of argon and a ball-to-powder ratio 10:1 Figure 1. shows the kinetic curves obtained for composites with 5wt% of vanadium. To investigate the desorption process in detail, different models of solid-state kinetics were used as implemented in the code developed in our group. The ratelimiting step of the desorption reaction was determined using the iso-conversional kinetic method due to better accuracy of obtained apparent activation energies. As shown in Table 1 a decrease in apparent activation energies has been observed. It is obvious that the sorption kinetics is affected by material preparation because the reactivity of magnesium with hydrogen is strongly modified by changes in several surface parameters that govern the chemisorption, the dissociation of molecular hydrogen, and hydride nucleation",
journal = "7th MESC-IS 2023 : International Symposium on Materials for Energy Storage and Conversion",
title = "Kinetic behavior of MgH2-transition metal composites: towards hydrogen storage",
url = "https://hdl.handle.net/21.15107/rcub_vinar_12737"
}
Sekulić, Z., Babić, B., Prvulović, M., Milanović, I., Tošić, K., Asanović, V., Novaković, N., Milošević Govedarović, S.,& Grbović Novaković, J.. (2023). Kinetic behavior of MgH2-transition metal composites: towards hydrogen storage. in 7th MESC-IS 2023 : International Symposium on Materials for Energy Storage and Conversion.
https://hdl.handle.net/21.15107/rcub_vinar_12737
Sekulić Z, Babić B, Prvulović M, Milanović I, Tošić K, Asanović V, Novaković N, Milošević Govedarović S, Grbović Novaković J. Kinetic behavior of MgH2-transition metal composites: towards hydrogen storage. in 7th MESC-IS 2023 : International Symposium on Materials for Energy Storage and Conversion. 2023;.
https://hdl.handle.net/21.15107/rcub_vinar_12737 .
Sekulić, Zorana, Babić, Bojana, Prvulović, Milica, Milanović, Igor, Tošić, Katarina, Asanović, Vanja, Novaković, Nikola, Milošević Govedarović, Sanja, Grbović Novaković, Jasmina, "Kinetic behavior of MgH2-transition metal composites: towards hydrogen storage" in 7th MESC-IS 2023 : International Symposium on Materials for Energy Storage and Conversion (2023),
https://hdl.handle.net/21.15107/rcub_vinar_12737 .

The Catalytic Effect of Vanadium on Sorption Properties of MgH2-Based Nanocomposites Obtained Using Low Milling Time

Sekulić, Zorana; Grbović Novaković, Jasmina; Babić, Bojana; Prvulović, Milica; Milanović, Igor; Novaković, Nikola; Rajnović, Dragan; Filipović, Nenad; Asanović, Vanja

(2023)

TY  - JOUR
AU  - Sekulić, Zorana
AU  - Grbović Novaković, Jasmina
AU  - Babić, Bojana
AU  - Prvulović, Milica
AU  - Milanović, Igor
AU  - Novaković, Nikola
AU  - Rajnović, Dragan
AU  - Filipović, Nenad
AU  - Asanović, Vanja
PY  - 2023
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/11436
AB  - The effects of catalysis using vanadium as an additive (2 and 5 wt.%) in a high-energy ball mill on composite desorption properties were examined. The influence of microstructure on the dehydration temperature and hydrogen desorption kinetics was monitored. Morphological and microstructural studies of the synthesized sample were performed by X-ray diffraction (XRD), laser particle size distribution (PSD), and scanning electron microscopy (SEM) methods, while differential scanning calorimetry (DSC) determined thermal properties. To further access amorph species in the milling blend, the absorption spectra were obtained by FTIR-ATR analysis (Fourier transform infrared spectroscopy attenuated total reflection). The results show lower apparent activation energy (Eapp) and H2 desorption temperature are obtained for milling bland with 5 wt.% added vanadium. The best explanation of hydrogen desorption reaction shows the Avrami-Erofeev model for parameter n = 4. Since the obtained value of apparent activation energy is close to the Mg-H bond-breaking energy, one can conclude that breaking this bond would be the rate-limiting step of the process.
T2  - Materials
T1  - The Catalytic Effect of Vanadium on Sorption Properties of MgH2-Based Nanocomposites Obtained Using Low Milling Time
VL  - 16
IS  - 15
SP  - 5480
DO  - 10.3390/ma16155480
ER  - 
@article{
author = "Sekulić, Zorana and Grbović Novaković, Jasmina and Babić, Bojana and Prvulović, Milica and Milanović, Igor and Novaković, Nikola and Rajnović, Dragan and Filipović, Nenad and Asanović, Vanja",
year = "2023",
abstract = "The effects of catalysis using vanadium as an additive (2 and 5 wt.%) in a high-energy ball mill on composite desorption properties were examined. The influence of microstructure on the dehydration temperature and hydrogen desorption kinetics was monitored. Morphological and microstructural studies of the synthesized sample were performed by X-ray diffraction (XRD), laser particle size distribution (PSD), and scanning electron microscopy (SEM) methods, while differential scanning calorimetry (DSC) determined thermal properties. To further access amorph species in the milling blend, the absorption spectra were obtained by FTIR-ATR analysis (Fourier transform infrared spectroscopy attenuated total reflection). The results show lower apparent activation energy (Eapp) and H2 desorption temperature are obtained for milling bland with 5 wt.% added vanadium. The best explanation of hydrogen desorption reaction shows the Avrami-Erofeev model for parameter n = 4. Since the obtained value of apparent activation energy is close to the Mg-H bond-breaking energy, one can conclude that breaking this bond would be the rate-limiting step of the process.",
journal = "Materials",
title = "The Catalytic Effect of Vanadium on Sorption Properties of MgH2-Based Nanocomposites Obtained Using Low Milling Time",
volume = "16",
number = "15",
pages = "5480",
doi = "10.3390/ma16155480"
}
Sekulić, Z., Grbović Novaković, J., Babić, B., Prvulović, M., Milanović, I., Novaković, N., Rajnović, D., Filipović, N.,& Asanović, V.. (2023). The Catalytic Effect of Vanadium on Sorption Properties of MgH2-Based Nanocomposites Obtained Using Low Milling Time. in Materials, 16(15), 5480.
https://doi.org/10.3390/ma16155480
Sekulić Z, Grbović Novaković J, Babić B, Prvulović M, Milanović I, Novaković N, Rajnović D, Filipović N, Asanović V. The Catalytic Effect of Vanadium on Sorption Properties of MgH2-Based Nanocomposites Obtained Using Low Milling Time. in Materials. 2023;16(15):5480.
doi:10.3390/ma16155480 .
Sekulić, Zorana, Grbović Novaković, Jasmina, Babić, Bojana, Prvulović, Milica, Milanović, Igor, Novaković, Nikola, Rajnović, Dragan, Filipović, Nenad, Asanović, Vanja, "The Catalytic Effect of Vanadium on Sorption Properties of MgH2-Based Nanocomposites Obtained Using Low Milling Time" in Materials, 16, no. 15 (2023):5480,
https://doi.org/10.3390/ma16155480 . .