Bugarin, Mile

Link to this page

Authority KeyName Variants
db79e25a-92a1-4280-9af1-637997afac83
  • Bugarin, Mile (2)
Projects

Author's Bibliography

Influence of the Shape of Copper Powder Particles on the Crystal Structure and Some Decisive Characteristics of the Metal Powders

Avramović, Ljiljana; Maksimović, Vesna; Baščarević, Zvezdana D.; Ignjatović, Nenad L.; Bugarin, Mile; Marković, Radmila; Nikolić, Nebojša D.

(Basel : MDPI, 2019)

TY  - JOUR
AU  - Avramović, Ljiljana
AU  - Maksimović, Vesna
AU  - Baščarević, Zvezdana D.
AU  - Ignjatović, Nenad L.
AU  - Bugarin, Mile
AU  - Marković, Radmila
AU  - Nikolić, Nebojša D.
PY  - 2019
UR  - http://www.mdpi.com/2075-4701/9/1/56
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/8037
AB  - Three different forms of Cu powder particles obtained by either galvanostatic electrolysis or a non-electrolytic method were analyzed by a scanning electron microscope (SEM), X-ray diffraction (XRD) and particle size distribution (PSD). Electrolytic procedures were performed under different hydrogen evolution conditions, leading to the formation of either 3D branched dendrites or disperse cauliflower-like particles. The third type of particles were compact agglomerates of the Cu grains, whose structural characteristics indicated that they were formed by a non-electrolytic method. Unlike the sharp tips that characterize the usual form of Cu dendrites, the ends of both the trunk and branches were globules in the formed dendrites, indicating that a novel type of Cu dendrites was formed in this investigation. Although the macro structures of the particles were extremely varied, they had very similar micro structures because they were constructed by spherical grains. The Cu crystallites were randomly oriented in the dendrites and compact agglomerates of the Cu grains, while the disperse cauliflower-like particles showed (220) and (311) preferred orientation. This indicates that the applied current density affects not only the morphology of the particles, but also their crystal structure. The best performance, defined by the largest specific surface area and the smallest particle size, was by the galvanostatically produced powder consisting of disperse cauliflower-like particles.
PB  - Basel : MDPI
T2  - Metals
T1  - Influence of the Shape of Copper Powder Particles on the Crystal Structure and Some Decisive Characteristics of the Metal Powders
VL  - 9
IS  - 1
SP  - 56
DO  - 10.3390/met9010056
ER  - 
@article{
author = "Avramović, Ljiljana and Maksimović, Vesna and Baščarević, Zvezdana D. and Ignjatović, Nenad L. and Bugarin, Mile and Marković, Radmila and Nikolić, Nebojša D.",
year = "2019",
abstract = "Three different forms of Cu powder particles obtained by either galvanostatic electrolysis or a non-electrolytic method were analyzed by a scanning electron microscope (SEM), X-ray diffraction (XRD) and particle size distribution (PSD). Electrolytic procedures were performed under different hydrogen evolution conditions, leading to the formation of either 3D branched dendrites or disperse cauliflower-like particles. The third type of particles were compact agglomerates of the Cu grains, whose structural characteristics indicated that they were formed by a non-electrolytic method. Unlike the sharp tips that characterize the usual form of Cu dendrites, the ends of both the trunk and branches were globules in the formed dendrites, indicating that a novel type of Cu dendrites was formed in this investigation. Although the macro structures of the particles were extremely varied, they had very similar micro structures because they were constructed by spherical grains. The Cu crystallites were randomly oriented in the dendrites and compact agglomerates of the Cu grains, while the disperse cauliflower-like particles showed (220) and (311) preferred orientation. This indicates that the applied current density affects not only the morphology of the particles, but also their crystal structure. The best performance, defined by the largest specific surface area and the smallest particle size, was by the galvanostatically produced powder consisting of disperse cauliflower-like particles.",
publisher = "Basel : MDPI",
journal = "Metals",
title = "Influence of the Shape of Copper Powder Particles on the Crystal Structure and Some Decisive Characteristics of the Metal Powders",
volume = "9",
number = "1",
pages = "56",
doi = "10.3390/met9010056"
}
Avramović, L., Maksimović, V., Baščarević, Z. D., Ignjatović, N. L., Bugarin, M., Marković, R.,& Nikolić, N. D.. (2019). Influence of the Shape of Copper Powder Particles on the Crystal Structure and Some Decisive Characteristics of the Metal Powders. in Metals
Basel : MDPI., 9(1), 56.
https://doi.org/10.3390/met9010056
Avramović L, Maksimović V, Baščarević ZD, Ignjatović NL, Bugarin M, Marković R, Nikolić ND. Influence of the Shape of Copper Powder Particles on the Crystal Structure and Some Decisive Characteristics of the Metal Powders. in Metals. 2019;9(1):56.
doi:10.3390/met9010056 .
Avramović, Ljiljana, Maksimović, Vesna, Baščarević, Zvezdana D., Ignjatović, Nenad L., Bugarin, Mile, Marković, Radmila, Nikolić, Nebojša D., "Influence of the Shape of Copper Powder Particles on the Crystal Structure and Some Decisive Characteristics of the Metal Powders" in Metals, 9, no. 1 (2019):56,
https://doi.org/10.3390/met9010056 . .
25
15
26

Comparative Morphological and Crystallographic Analysis of Electrochemically- and Chemically-Produced Silver Powder Particles

Avramović, Ljiljana; Pavlović, Miroslav M.; Maksimović, Vesna; Vuković, Marina; Stevanović, Jasmina S.; Bugarin, Mile; Nikolić, Nebojša D.

(2017)

TY  - JOUR
AU  - Avramović, Ljiljana
AU  - Pavlović, Miroslav M.
AU  - Maksimović, Vesna
AU  - Vuković, Marina
AU  - Stevanović, Jasmina S.
AU  - Bugarin, Mile
AU  - Nikolić, Nebojša D.
PY  - 2017
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/1612
AB  - Silver powders chemically synthesized by reduction with hydrazine and those produced by electrolysis from the basic ( nitrate) and complex ( ammonium) electrolytes were examined by X-ray diffraction (XRD) and scanning electron microscopic (SEM) analysis of the produced particles. Morphologies of the obtained particles were very different at the macro level. The needle-like dendrites, as well as the mixture of irregular and regular crystals, were formed from the nitrate electrolyte, while the highly-branched pine-like dendrites with clearly noticeable spherical grains were formed from the ammonium electrolyte. The agglomerates of spherical grains were formed by reduction with hydrazine. In the particles obtained from the nitrate electrolyte, Ag crystallites were strongly oriented in the (111) plane. Although morphologies of Ag particles were very different at the macro level, the similarity at the micro level was observed between chemically-synthesized particles and those obtained by electrolysis from the ammonium electrolyte. Both types of particles were constructed from the spherical grains. This similarity at the micro level was accompanied by the similar XRD patterns, which were very close to the Ag standard with a random orientation of Ag crystallites. For the first time, morphologies of powder particles were correlated with their crystal structure.
T2  - Metals
T1  - Comparative Morphological and Crystallographic Analysis of Electrochemically- and Chemically-Produced Silver Powder Particles
VL  - 7
IS  - 5
DO  - 10.3390/met7050160
ER  - 
@article{
author = "Avramović, Ljiljana and Pavlović, Miroslav M. and Maksimović, Vesna and Vuković, Marina and Stevanović, Jasmina S. and Bugarin, Mile and Nikolić, Nebojša D.",
year = "2017",
abstract = "Silver powders chemically synthesized by reduction with hydrazine and those produced by electrolysis from the basic ( nitrate) and complex ( ammonium) electrolytes were examined by X-ray diffraction (XRD) and scanning electron microscopic (SEM) analysis of the produced particles. Morphologies of the obtained particles were very different at the macro level. The needle-like dendrites, as well as the mixture of irregular and regular crystals, were formed from the nitrate electrolyte, while the highly-branched pine-like dendrites with clearly noticeable spherical grains were formed from the ammonium electrolyte. The agglomerates of spherical grains were formed by reduction with hydrazine. In the particles obtained from the nitrate electrolyte, Ag crystallites were strongly oriented in the (111) plane. Although morphologies of Ag particles were very different at the macro level, the similarity at the micro level was observed between chemically-synthesized particles and those obtained by electrolysis from the ammonium electrolyte. Both types of particles were constructed from the spherical grains. This similarity at the micro level was accompanied by the similar XRD patterns, which were very close to the Ag standard with a random orientation of Ag crystallites. For the first time, morphologies of powder particles were correlated with their crystal structure.",
journal = "Metals",
title = "Comparative Morphological and Crystallographic Analysis of Electrochemically- and Chemically-Produced Silver Powder Particles",
volume = "7",
number = "5",
doi = "10.3390/met7050160"
}
Avramović, L., Pavlović, M. M., Maksimović, V., Vuković, M., Stevanović, J. S., Bugarin, M.,& Nikolić, N. D.. (2017). Comparative Morphological and Crystallographic Analysis of Electrochemically- and Chemically-Produced Silver Powder Particles. in Metals, 7(5).
https://doi.org/10.3390/met7050160
Avramović L, Pavlović MM, Maksimović V, Vuković M, Stevanović JS, Bugarin M, Nikolić ND. Comparative Morphological and Crystallographic Analysis of Electrochemically- and Chemically-Produced Silver Powder Particles. in Metals. 2017;7(5).
doi:10.3390/met7050160 .
Avramović, Ljiljana, Pavlović, Miroslav M., Maksimović, Vesna, Vuković, Marina, Stevanović, Jasmina S., Bugarin, Mile, Nikolić, Nebojša D., "Comparative Morphological and Crystallographic Analysis of Electrochemically- and Chemically-Produced Silver Powder Particles" in Metals, 7, no. 5 (2017),
https://doi.org/10.3390/met7050160 . .
1
22
13
21