Ma, Chong-Geng

Link to this page

Authority KeyName Variants
orcid::0000-0001-8090-1738
  • Ma, Chong-Geng (4)
  • Ma, Chonggeng (1)
  • Ma, Chong‐Geng (1)
Projects
European Regional Development Fund [TK141] National Recruitment Program of High-end Foreign Experts [GDT20185200479]
National Recruitment Program of High-end Foreign Experts [GDW20145200225] Programme for the Foreign Experts [W2017011]
Research Training Program for Undergraduates of CQUPT [A2018-39] Wenfeng High-end Talents Project [W2016-01]
China-Poland Intergovernmental Science and Technology Cooperation Program [Grant No. 2020[15]/10] Chinese Ministry [[2014] 167]
Chinese National Foreign Experts Program for “Belt and Road Initiative” Innovative Talent Ex- change [Grant No. DL2021035001 L] Chinese National Foreign Experts Program for “Belt and Road Initiative” Innovative Talent Exchange [Grant No. DL2021035001L]
Chongqing Bureau of Human Resources and Social Security [CX2018125] Chongqing Bureau of Human Resources and Social Security [CX2019055]
Chongqing Natural Science Foundation [cstc2017jcyjAX0418] Chongqing Natural Science Foundation [cstc2018jcyjAX0569]
Chongqing Recruitment Program for 100 Overseas Innovative Talents [2015013] Chongqing University of Posts and Telecommunications, Estonian Research Council [Grant No. PUT PRG111]
CQUPT Program for Foreign Ex- perts [Grant No. W2017011] Doctoral Scientific Research Foundation of CQUPT [A2008-59]
Doctoral Scientific Research Foundation of CQUPT [A2008-71] Estonian Research Council [grant PUT PRG111]
Estonian Research Council grant [PUT PRG111] Estonian Research Council [PRG111]
Estonian Research Council [PUT PRG111] European Commission [TK141]
Materials of Reduced Dimensions for Efficient Light Harvesting and Energy conversion Innovation and Entrepreneurship Program for Returned Overseas Chinese Scholars [[2014] 167]
Joint Funds of the National Natural Science Foundation of China (NSFC) and Yunnan Province [U1702254] Ministry of Education, China [201410617001]
Ministry of Education, Science, and Technological Development of the Republic of Serbia Ministry of Education, Science and Technological Development of the Republic of Serbia and the sup- port from the Chinese National Foreign Experts Program for “Belt and Road Initiative” Innovative Talent Exchange [Grant No. DL2021035001L]

Author's Bibliography

Intensity of the Eu3+ hypersensitive transition in isostructural phosphate and vanadate compounds

Srivastava, Alok M.; Brik, Mikhail G.; Beers, William W.; Ma, Chong-Geng; Piasecki, Michal; Cohen, William E.

(2023)

TY  - JOUR
AU  - Srivastava, Alok M.
AU  - Brik, Mikhail G.
AU  - Beers, William W.
AU  - Ma, Chong-Geng
AU  - Piasecki, Michal
AU  - Cohen, William E.
PY  - 2023
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/10610
AB  - A comparative study of Eu3+ luminescence in an isostructural series of phosphate and vanadate compounds correlates the hypersensitivity of the 5D0→7F2 transition to the covalence and polarizability of the (XO4)3- (X = P, V) polyanion. The intensity of this transition, as measured by the ratio, [Formula presented], is always higher in the vanadate system [R (PO4)3-« R (VO4)3-]. Electronic energy band structure of these systems establishes higher covalence and polarizability of the (VO4)3- polyanion, which is due to strong V 3 d - O 2p covalent interaction via hybridization. The difference in the intensity of the hypersensitive transition between the phosphate and vanadate systems is consistent with the prediction of the ligand dipolar polarization model for the 4f-4f dipolar intensities. Our analysis supports the polarizability of (XO4)3- (X = P, V) over local site distortion effects as the intensity enhancing mechanism of the 5D0→7F2 transition. It is pointed out that the hybridization effect that serves as the source of the intensity of hypersensitive transition also accounts for the origin of second harmonic generation (SHG) in Li3VO4 and its absence in Li3PO4. © 2023 Elsevier B.V.
T2  - Journal of Luminescence
T1  - Intensity of the Eu3+ hypersensitive transition in isostructural phosphate and vanadate compounds
VL  - 257
DO  - 10.1016/j.jlumin.2023.119709
ER  - 
@article{
author = "Srivastava, Alok M. and Brik, Mikhail G. and Beers, William W. and Ma, Chong-Geng and Piasecki, Michal and Cohen, William E.",
year = "2023",
abstract = "A comparative study of Eu3+ luminescence in an isostructural series of phosphate and vanadate compounds correlates the hypersensitivity of the 5D0→7F2 transition to the covalence and polarizability of the (XO4)3- (X = P, V) polyanion. The intensity of this transition, as measured by the ratio, [Formula presented], is always higher in the vanadate system [R (PO4)3-« R (VO4)3-]. Electronic energy band structure of these systems establishes higher covalence and polarizability of the (VO4)3- polyanion, which is due to strong V 3 d - O 2p covalent interaction via hybridization. The difference in the intensity of the hypersensitive transition between the phosphate and vanadate systems is consistent with the prediction of the ligand dipolar polarization model for the 4f-4f dipolar intensities. Our analysis supports the polarizability of (XO4)3- (X = P, V) over local site distortion effects as the intensity enhancing mechanism of the 5D0→7F2 transition. It is pointed out that the hybridization effect that serves as the source of the intensity of hypersensitive transition also accounts for the origin of second harmonic generation (SHG) in Li3VO4 and its absence in Li3PO4. © 2023 Elsevier B.V.",
journal = "Journal of Luminescence",
title = "Intensity of the Eu3+ hypersensitive transition in isostructural phosphate and vanadate compounds",
volume = "257",
doi = "10.1016/j.jlumin.2023.119709"
}
Srivastava, A. M., Brik, M. G., Beers, W. W., Ma, C., Piasecki, M.,& Cohen, W. E.. (2023). Intensity of the Eu3+ hypersensitive transition in isostructural phosphate and vanadate compounds. in Journal of Luminescence, 257.
https://doi.org/10.1016/j.jlumin.2023.119709
Srivastava AM, Brik MG, Beers WW, Ma C, Piasecki M, Cohen WE. Intensity of the Eu3+ hypersensitive transition in isostructural phosphate and vanadate compounds. in Journal of Luminescence. 2023;257.
doi:10.1016/j.jlumin.2023.119709 .
Srivastava, Alok M., Brik, Mikhail G., Beers, William W., Ma, Chong-Geng, Piasecki, Michal, Cohen, William E., "Intensity of the Eu3+ hypersensitive transition in isostructural phosphate and vanadate compounds" in Journal of Luminescence, 257 (2023),
https://doi.org/10.1016/j.jlumin.2023.119709 . .
3
3

Thermal history forensics using the emission intensity ratio of YVO4:Eu3+ phosphor

Gavrilović, Tamara V.; Periša, Jovana; Ristić, Zoran; Elzbieciak-Piecka, Karolina; Marciniak, Lukasz; Ma, Chong-Geng; Antić, Željka; Dramićanin, Miroslav

(2022)

TY  - JOUR
AU  - Gavrilović, Tamara V.
AU  - Periša, Jovana
AU  - Ristić, Zoran
AU  - Elzbieciak-Piecka, Karolina
AU  - Marciniak, Lukasz
AU  - Ma, Chong-Geng
AU  - Antić, Željka
AU  - Dramićanin, Miroslav
PY  - 2022
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/10429
AB  - We demonstrate the thermal history forensic measurements founded on the emission intensity ratio of Eu3+-doped yttrium vanadate. An increase in phosphor’s crystallite size with annealing temperature is observed, causing a significant and permanent increase in the emission intensity and symmetry ratio (ratio of Eu3+ 5D0 → 7F1 and 5D0 → 7F2 emissions). This ratio is used as a forensic indicator of the maximal temperature to which phosphor was exposed. Additionally, we demonstrated that irreversible change in the symmetry ratio after exposure to high temperatures is insensitive to the exposure time. Finally, it is shown that thermal history readings can be performed at any temperature. The applicative potential of the proposed approach was confirmed in the proof-of-concept experiment on a steel plate covered with phosphor and exposed to high temperatures.
T2  - Measurement
T1  - Thermal history forensics using the emission intensity ratio of YVO4:Eu3+ phosphor
VL  - 202
SP  - 111942
DO  - 10.1016/j.measurement.2022.111942
ER  - 
@article{
author = "Gavrilović, Tamara V. and Periša, Jovana and Ristić, Zoran and Elzbieciak-Piecka, Karolina and Marciniak, Lukasz and Ma, Chong-Geng and Antić, Željka and Dramićanin, Miroslav",
year = "2022",
abstract = "We demonstrate the thermal history forensic measurements founded on the emission intensity ratio of Eu3+-doped yttrium vanadate. An increase in phosphor’s crystallite size with annealing temperature is observed, causing a significant and permanent increase in the emission intensity and symmetry ratio (ratio of Eu3+ 5D0 → 7F1 and 5D0 → 7F2 emissions). This ratio is used as a forensic indicator of the maximal temperature to which phosphor was exposed. Additionally, we demonstrated that irreversible change in the symmetry ratio after exposure to high temperatures is insensitive to the exposure time. Finally, it is shown that thermal history readings can be performed at any temperature. The applicative potential of the proposed approach was confirmed in the proof-of-concept experiment on a steel plate covered with phosphor and exposed to high temperatures.",
journal = "Measurement",
title = "Thermal history forensics using the emission intensity ratio of YVO4:Eu3+ phosphor",
volume = "202",
pages = "111942",
doi = "10.1016/j.measurement.2022.111942"
}
Gavrilović, T. V., Periša, J., Ristić, Z., Elzbieciak-Piecka, K., Marciniak, L., Ma, C., Antić, Ž.,& Dramićanin, M.. (2022). Thermal history forensics using the emission intensity ratio of YVO4:Eu3+ phosphor. in Measurement, 202, 111942.
https://doi.org/10.1016/j.measurement.2022.111942
Gavrilović TV, Periša J, Ristić Z, Elzbieciak-Piecka K, Marciniak L, Ma C, Antić Ž, Dramićanin M. Thermal history forensics using the emission intensity ratio of YVO4:Eu3+ phosphor. in Measurement. 2022;202:111942.
doi:10.1016/j.measurement.2022.111942 .
Gavrilović, Tamara V., Periša, Jovana, Ristić, Zoran, Elzbieciak-Piecka, Karolina, Marciniak, Lukasz, Ma, Chong-Geng, Antić, Željka, Dramićanin, Miroslav, "Thermal history forensics using the emission intensity ratio of YVO4:Eu3+ phosphor" in Measurement, 202 (2022):111942,
https://doi.org/10.1016/j.measurement.2022.111942 . .
5
5

Mn5+-activated Ca6Ba(PO4)4O near-infrared phosphor and its application in luminescence thermometry

Dramićanin, Miroslav; Marciniak, Lukasz; Kuzman, Sanja; Piotrowski, Wojciech; Ristić, Zoran; Periša, Jovana; Evans, Ivana; Mitrić, Jelena; Đorđević, Vesna; Tadić, Julijana D.; Brik, Mikhail G.; Ma, Chong-Geng

(2022)

TY  - JOUR
AU  - Dramićanin, Miroslav
AU  - Marciniak, Lukasz
AU  - Kuzman, Sanja
AU  - Piotrowski, Wojciech
AU  - Ristić, Zoran
AU  - Periša, Jovana
AU  - Evans, Ivana
AU  - Mitrić, Jelena
AU  - Đorđević, Vesna
AU  - Tadić, Julijana D.
AU  - Brik, Mikhail G.
AU  - Ma, Chong-Geng
PY  - 2022
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/10439
AB  - The near-infrared luminescence of Ca6Ba(PO4)4O:Mn5+ is demonstrated and explained. When excited into the broad and strong absorption band that spans the 500–1000 nm spectral range, this phosphor provides an ultranarrow (FWHM = 5 nm) emission centered at 1140 nm that originates from a spin-forbidden 1E → 3A2 transition with a 37.5% internal quantum efficiency and an excited-state lifetime of about 350 μs. We derived the crystal field and Racah parameters and calculated the appropriate Tanabe–Sugano diagram for this phosphor. We found that 1E emission quenches due to the thermally-assisted cross-over with the 3T2 state and that the relatively high Debye temperature of 783 K of Ca6Ba(PO4)4O facilitates efficient emission. Since Ca6Ba(PO4)4O also provides efficient yellow emission of the Eu2+ dopant, we calculated and explained its electronic band structure, the partial and total density of states, effective Mulliken charges of all ions, elastic constants, Debye temperature, and vibrational spectra. Finally, we demonstrated the application of phosphor in a luminescence intensity ratio thermometry and obtained a relative sensitivity of 1.92%K−1 and a temperature resolution of 0.2 K in the range of physiological temperatures.
T2  - Light: Science & Applications
T1  - Mn5+-activated Ca6Ba(PO4)4O near-infrared phosphor and its application in luminescence thermometry
VL  - 11
IS  - 1
SP  - 279
DO  - 10.1038/s41377-022-00958-7
ER  - 
@article{
author = "Dramićanin, Miroslav and Marciniak, Lukasz and Kuzman, Sanja and Piotrowski, Wojciech and Ristić, Zoran and Periša, Jovana and Evans, Ivana and Mitrić, Jelena and Đorđević, Vesna and Tadić, Julijana D. and Brik, Mikhail G. and Ma, Chong-Geng",
year = "2022",
abstract = "The near-infrared luminescence of Ca6Ba(PO4)4O:Mn5+ is demonstrated and explained. When excited into the broad and strong absorption band that spans the 500–1000 nm spectral range, this phosphor provides an ultranarrow (FWHM = 5 nm) emission centered at 1140 nm that originates from a spin-forbidden 1E → 3A2 transition with a 37.5% internal quantum efficiency and an excited-state lifetime of about 350 μs. We derived the crystal field and Racah parameters and calculated the appropriate Tanabe–Sugano diagram for this phosphor. We found that 1E emission quenches due to the thermally-assisted cross-over with the 3T2 state and that the relatively high Debye temperature of 783 K of Ca6Ba(PO4)4O facilitates efficient emission. Since Ca6Ba(PO4)4O also provides efficient yellow emission of the Eu2+ dopant, we calculated and explained its electronic band structure, the partial and total density of states, effective Mulliken charges of all ions, elastic constants, Debye temperature, and vibrational spectra. Finally, we demonstrated the application of phosphor in a luminescence intensity ratio thermometry and obtained a relative sensitivity of 1.92%K−1 and a temperature resolution of 0.2 K in the range of physiological temperatures.",
journal = "Light: Science & Applications",
title = "Mn5+-activated Ca6Ba(PO4)4O near-infrared phosphor and its application in luminescence thermometry",
volume = "11",
number = "1",
pages = "279",
doi = "10.1038/s41377-022-00958-7"
}
Dramićanin, M., Marciniak, L., Kuzman, S., Piotrowski, W., Ristić, Z., Periša, J., Evans, I., Mitrić, J., Đorđević, V., Tadić, J. D., Brik, M. G.,& Ma, C.. (2022). Mn5+-activated Ca6Ba(PO4)4O near-infrared phosphor and its application in luminescence thermometry. in Light: Science & Applications, 11(1), 279.
https://doi.org/10.1038/s41377-022-00958-7
Dramićanin M, Marciniak L, Kuzman S, Piotrowski W, Ristić Z, Periša J, Evans I, Mitrić J, Đorđević V, Tadić JD, Brik MG, Ma C. Mn5+-activated Ca6Ba(PO4)4O near-infrared phosphor and its application in luminescence thermometry. in Light: Science & Applications. 2022;11(1):279.
doi:10.1038/s41377-022-00958-7 .
Dramićanin, Miroslav, Marciniak, Lukasz, Kuzman, Sanja, Piotrowski, Wojciech, Ristić, Zoran, Periša, Jovana, Evans, Ivana, Mitrić, Jelena, Đorđević, Vesna, Tadić, Julijana D., Brik, Mikhail G., Ma, Chong-Geng, "Mn5+-activated Ca6Ba(PO4)4O near-infrared phosphor and its application in luminescence thermometry" in Light: Science & Applications, 11, no. 1 (2022):279,
https://doi.org/10.1038/s41377-022-00958-7 . .
4
33
31

Effects of chemical composition on the structural stability, elastic, vibrational, and electronic properties of Cs2NaLnX6 (Ln = La…Lu, X = F, Cl, Br, I) elpasolites

Wu, Bing; Yang, Menglin; Yan, Yanci; Ma, Chonggeng; Zhang, Hongwu; Brik, Mikhail G.; Dramićanin, Miroslav; Valiev, Uygun V.; Piasecki, Michał M.

(2021)

TY  - JOUR
AU  - Wu, Bing
AU  - Yang, Menglin
AU  - Yan, Yanci
AU  - Ma, Chonggeng
AU  - Zhang, Hongwu
AU  - Brik, Mikhail G.
AU  - Dramićanin, Miroslav
AU  - Valiev, Uygun V.
AU  - Piasecki, Michał M.
PY  - 2021
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/9758
AB  - Elpasolite crystals are very important materials, both from the applied and fundamental points of view. Those elpasolites, which contain rare earth ions with a high atomic number Z, are very much suitable for the low-cost high-performance gamma-ray detection, applications in medicine, food industry, nuclear energy production, processing, and detection of nuclear proliferation. The thermal and structural stabilities are important parameters required for detecting applications, because the performance conditions for such devices are usually very harsh. Since it is widely believed that elpasolites may have even better detection properties, the lack of systematic studies on the elpasolites and thus the unavailability of reliable data on their physical properties and trends in their variation caused by chemical composition considerably hinders search for more efficient new materials. Therefore, to fill in this gap and provide with all essential information about a large number of elpasolites crystals, for the first time, the structural stability, elastic, vibrational, and electronic properties of 60 cubic elpasolite Cs2NaLnX6 (Ln = La, …, Lu, X = F, Cl, Br, I) crystals were consistently calculated in the framework of the same computational approach based on the density functional theory (DFT). Variation of all calculated parameters (such as the lattice constants, elastic constants, Debye temperature, normal vibrational modes frequencies, Mulliken effective charges, bond populations, and band gaps) across the considered groups of crystals was analyzed and several trends, which are important for the search and preparation of new stable materials with improved performance, were identified. © 2020 The American Ceramic Society (ACERS)
T2  - Journal of the American Ceramic Society
T1  - Effects of chemical composition on the structural stability, elastic, vibrational, and electronic properties of Cs2NaLnX6 (Ln = La…Lu, X = F, Cl, Br, I) elpasolites
VL  - 104
IS  - 3
SP  - 1489
EP  - 1500
DO  - 10.1111/jace.17565
ER  - 
@article{
author = "Wu, Bing and Yang, Menglin and Yan, Yanci and Ma, Chonggeng and Zhang, Hongwu and Brik, Mikhail G. and Dramićanin, Miroslav and Valiev, Uygun V. and Piasecki, Michał M.",
year = "2021",
abstract = "Elpasolite crystals are very important materials, both from the applied and fundamental points of view. Those elpasolites, which contain rare earth ions with a high atomic number Z, are very much suitable for the low-cost high-performance gamma-ray detection, applications in medicine, food industry, nuclear energy production, processing, and detection of nuclear proliferation. The thermal and structural stabilities are important parameters required for detecting applications, because the performance conditions for such devices are usually very harsh. Since it is widely believed that elpasolites may have even better detection properties, the lack of systematic studies on the elpasolites and thus the unavailability of reliable data on their physical properties and trends in their variation caused by chemical composition considerably hinders search for more efficient new materials. Therefore, to fill in this gap and provide with all essential information about a large number of elpasolites crystals, for the first time, the structural stability, elastic, vibrational, and electronic properties of 60 cubic elpasolite Cs2NaLnX6 (Ln = La, …, Lu, X = F, Cl, Br, I) crystals were consistently calculated in the framework of the same computational approach based on the density functional theory (DFT). Variation of all calculated parameters (such as the lattice constants, elastic constants, Debye temperature, normal vibrational modes frequencies, Mulliken effective charges, bond populations, and band gaps) across the considered groups of crystals was analyzed and several trends, which are important for the search and preparation of new stable materials with improved performance, were identified. © 2020 The American Ceramic Society (ACERS)",
journal = "Journal of the American Ceramic Society",
title = "Effects of chemical composition on the structural stability, elastic, vibrational, and electronic properties of Cs2NaLnX6 (Ln = La…Lu, X = F, Cl, Br, I) elpasolites",
volume = "104",
number = "3",
pages = "1489-1500",
doi = "10.1111/jace.17565"
}
Wu, B., Yang, M., Yan, Y., Ma, C., Zhang, H., Brik, M. G., Dramićanin, M., Valiev, U. V.,& Piasecki, M. M.. (2021). Effects of chemical composition on the structural stability, elastic, vibrational, and electronic properties of Cs2NaLnX6 (Ln = La…Lu, X = F, Cl, Br, I) elpasolites. in Journal of the American Ceramic Society, 104(3), 1489-1500.
https://doi.org/10.1111/jace.17565
Wu B, Yang M, Yan Y, Ma C, Zhang H, Brik MG, Dramićanin M, Valiev UV, Piasecki MM. Effects of chemical composition on the structural stability, elastic, vibrational, and electronic properties of Cs2NaLnX6 (Ln = La…Lu, X = F, Cl, Br, I) elpasolites. in Journal of the American Ceramic Society. 2021;104(3):1489-1500.
doi:10.1111/jace.17565 .
Wu, Bing, Yang, Menglin, Yan, Yanci, Ma, Chonggeng, Zhang, Hongwu, Brik, Mikhail G., Dramićanin, Miroslav, Valiev, Uygun V., Piasecki, Michał M., "Effects of chemical composition on the structural stability, elastic, vibrational, and electronic properties of Cs2NaLnX6 (Ln = La…Lu, X = F, Cl, Br, I) elpasolites" in Journal of the American Ceramic Society, 104, no. 3 (2021):1489-1500,
https://doi.org/10.1111/jace.17565 . .
8
2
7

Li2TiO3:Mn4+ Deep‐Red Phosphor for the Lifetime‐Based Luminescence Thermometry

Dramićanin, Miroslav; Milićević, Bojana R.; Đorđević, Vesna R.; Ristić, Zoran; Zhou, Jianbang; Milivojević, Dušan; Papan, Jelena; Brik, Mikhail G.; Ma, Chong‐Geng; Srivastava, Alok M; Wu, Mingmei

(2019)

TY  - JOUR
AU  - Dramićanin, Miroslav
AU  - Milićević, Bojana R.
AU  - Đorđević, Vesna R.
AU  - Ristić, Zoran
AU  - Zhou, Jianbang
AU  - Milivojević, Dušan
AU  - Papan, Jelena
AU  - Brik, Mikhail G.
AU  - Ma, Chong‐Geng
AU  - Srivastava, Alok M
AU  - Wu, Mingmei
PY  - 2019
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/8360
AB  - Luminescence of monoclinic lithium metatitanate (Li2TiO3) powders activated with different quantities of Mn4+ is studied in detail. Its strong deep-red emission arising from the Mn4+ 2Eg → 4A2g spin forbidden transition is centered at around 688 nm and is suitable for luminescence thermometry. Structural and electron paramagnetic resonance analyses show that Mn4+ ions are equally distributed in two almost identical Ti4+ sites in which they are octahedrally coordinated by six oxygen ions. Calculations based on the exchange charge model of the crystal field provided values of Racah parameters (B=760 cm−1, C= 2993 cm−1), crystal-field splitting Dq= 2043 cm−1, and the nephelauxetic parameter β1=0.9775. The maximal quantum efficiency of 24.1% at room temperature is found for 0.126% Mn4+ concentration. Temperature quenching of emission occurs by a cross-over via 4T2 excited state of the Mn4+ ions with T1/2=262 K and is quite favorable for the application in the lifetime-based luminescence thermometry since relative changes in emission decay values are exceptionally-large (around 3.21% at room temperature). We derived theoretical expressions for the temperature dependence of the absolute and relative sensitivities and discuss the influence of host material properties on lifetime sensitivities. © 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
T2  - ChemistrySelect
T1  - Li2TiO3:Mn4+ Deep‐Red Phosphor for the Lifetime‐Based Luminescence Thermometry
VL  - 4
IS  - 24
SP  - 7067
EP  - 7075
DO  - 10.1002/slct.201901590
ER  - 
@article{
author = "Dramićanin, Miroslav and Milićević, Bojana R. and Đorđević, Vesna R. and Ristić, Zoran and Zhou, Jianbang and Milivojević, Dušan and Papan, Jelena and Brik, Mikhail G. and Ma, Chong‐Geng and Srivastava, Alok M and Wu, Mingmei",
year = "2019",
abstract = "Luminescence of monoclinic lithium metatitanate (Li2TiO3) powders activated with different quantities of Mn4+ is studied in detail. Its strong deep-red emission arising from the Mn4+ 2Eg → 4A2g spin forbidden transition is centered at around 688 nm and is suitable for luminescence thermometry. Structural and electron paramagnetic resonance analyses show that Mn4+ ions are equally distributed in two almost identical Ti4+ sites in which they are octahedrally coordinated by six oxygen ions. Calculations based on the exchange charge model of the crystal field provided values of Racah parameters (B=760 cm−1, C= 2993 cm−1), crystal-field splitting Dq= 2043 cm−1, and the nephelauxetic parameter β1=0.9775. The maximal quantum efficiency of 24.1% at room temperature is found for 0.126% Mn4+ concentration. Temperature quenching of emission occurs by a cross-over via 4T2 excited state of the Mn4+ ions with T1/2=262 K and is quite favorable for the application in the lifetime-based luminescence thermometry since relative changes in emission decay values are exceptionally-large (around 3.21% at room temperature). We derived theoretical expressions for the temperature dependence of the absolute and relative sensitivities and discuss the influence of host material properties on lifetime sensitivities. © 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim",
journal = "ChemistrySelect",
title = "Li2TiO3:Mn4+ Deep‐Red Phosphor for the Lifetime‐Based Luminescence Thermometry",
volume = "4",
number = "24",
pages = "7067-7075",
doi = "10.1002/slct.201901590"
}
Dramićanin, M., Milićević, B. R., Đorđević, V. R., Ristić, Z., Zhou, J., Milivojević, D., Papan, J., Brik, M. G., Ma, C., Srivastava, A. M.,& Wu, M.. (2019). Li2TiO3:Mn4+ Deep‐Red Phosphor for the Lifetime‐Based Luminescence Thermometry. in ChemistrySelect, 4(24), 7067-7075.
https://doi.org/10.1002/slct.201901590
Dramićanin M, Milićević BR, Đorđević VR, Ristić Z, Zhou J, Milivojević D, Papan J, Brik MG, Ma C, Srivastava AM, Wu M. Li2TiO3:Mn4+ Deep‐Red Phosphor for the Lifetime‐Based Luminescence Thermometry. in ChemistrySelect. 2019;4(24):7067-7075.
doi:10.1002/slct.201901590 .
Dramićanin, Miroslav, Milićević, Bojana R., Đorđević, Vesna R., Ristić, Zoran, Zhou, Jianbang, Milivojević, Dušan, Papan, Jelena, Brik, Mikhail G., Ma, Chong‐Geng, Srivastava, Alok M, Wu, Mingmei, "Li2TiO3:Mn4+ Deep‐Red Phosphor for the Lifetime‐Based Luminescence Thermometry" in ChemistrySelect, 4, no. 24 (2019):7067-7075,
https://doi.org/10.1002/slct.201901590 . .
1
43
27
45

High-throughput first-principles calculations as a powerful guiding tool for materials engineering: Case study of the AB2X4 (A = Be, Mg, Ca, Sr, ba; B = Al, Ga, in; X = O, S) spinel compounds

Wang, Y.; Chen, Wenbo; Liu, Feilong; Yang, D. W.; Tian, Ya; Ma, Chong-Geng; Dramićanin, Miroslav; Brik, Mikhail G.

(2019)

TY  - JOUR
AU  - Wang, Y.
AU  - Chen, Wenbo
AU  - Liu, Feilong
AU  - Yang, D. W.
AU  - Tian, Ya
AU  - Ma, Chong-Geng
AU  - Dramićanin, Miroslav
AU  - Brik, Mikhail G.
PY  - 2019
UR  - https://linkinghub.elsevier.com/retrieve/pii/S2211379719305327
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/8091
AB  - Modern methods of theoretical and experimental materials engineering can be greatly facilitated by reliably established guiding trends that set directions for a smart search for new materials with enhanced performance. Those trends can be derived from a thorough analysis of large arrays of the experimental data, obtained both experimentally and theoretically. In the present paper, the structural, elastic, and electronic properties of 30 spinel compounds AB 2 X 4 (A = Be, Mg, Ca, Sr, Ba; B = Al, Ga, In; X = O, S) were investigated using the CRYSTAL14 program. For the first time the lattice constants, bulk moduli, band gaps and density of states for these 30 spinels were systematically calculated and analyzed. Influence of the cation and anion variation on the above-mentioned properties was highlighted. Several relations between lattice constants, bulk modulus and ionic radii, electronegativities of constituting ions were found. Several linear equations are proposed, which provide a convenient way to predict the lattice constants and bulk moduli of isostructural spinels. © 2019
T2  - Results in Physics
T1  - High-throughput first-principles calculations as a powerful guiding tool for materials engineering: Case study of the AB2X4 (A = Be, Mg, Ca, Sr, ba; B = Al, Ga, in; X = O, S) spinel compounds
VL  - 13
SP  - 102180
DO  - 10.1016/j.rinp.2019.102180
ER  - 
@article{
author = "Wang, Y. and Chen, Wenbo and Liu, Feilong and Yang, D. W. and Tian, Ya and Ma, Chong-Geng and Dramićanin, Miroslav and Brik, Mikhail G.",
year = "2019",
abstract = "Modern methods of theoretical and experimental materials engineering can be greatly facilitated by reliably established guiding trends that set directions for a smart search for new materials with enhanced performance. Those trends can be derived from a thorough analysis of large arrays of the experimental data, obtained both experimentally and theoretically. In the present paper, the structural, elastic, and electronic properties of 30 spinel compounds AB 2 X 4 (A = Be, Mg, Ca, Sr, Ba; B = Al, Ga, In; X = O, S) were investigated using the CRYSTAL14 program. For the first time the lattice constants, bulk moduli, band gaps and density of states for these 30 spinels were systematically calculated and analyzed. Influence of the cation and anion variation on the above-mentioned properties was highlighted. Several relations between lattice constants, bulk modulus and ionic radii, electronegativities of constituting ions were found. Several linear equations are proposed, which provide a convenient way to predict the lattice constants and bulk moduli of isostructural spinels. © 2019",
journal = "Results in Physics",
title = "High-throughput first-principles calculations as a powerful guiding tool for materials engineering: Case study of the AB2X4 (A = Be, Mg, Ca, Sr, ba; B = Al, Ga, in; X = O, S) spinel compounds",
volume = "13",
pages = "102180",
doi = "10.1016/j.rinp.2019.102180"
}
Wang, Y., Chen, W., Liu, F., Yang, D. W., Tian, Y., Ma, C., Dramićanin, M.,& Brik, M. G.. (2019). High-throughput first-principles calculations as a powerful guiding tool for materials engineering: Case study of the AB2X4 (A = Be, Mg, Ca, Sr, ba; B = Al, Ga, in; X = O, S) spinel compounds. in Results in Physics, 13, 102180.
https://doi.org/10.1016/j.rinp.2019.102180
Wang Y, Chen W, Liu F, Yang DW, Tian Y, Ma C, Dramićanin M, Brik MG. High-throughput first-principles calculations as a powerful guiding tool for materials engineering: Case study of the AB2X4 (A = Be, Mg, Ca, Sr, ba; B = Al, Ga, in; X = O, S) spinel compounds. in Results in Physics. 2019;13:102180.
doi:10.1016/j.rinp.2019.102180 .
Wang, Y., Chen, Wenbo, Liu, Feilong, Yang, D. W., Tian, Ya, Ma, Chong-Geng, Dramićanin, Miroslav, Brik, Mikhail G., "High-throughput first-principles calculations as a powerful guiding tool for materials engineering: Case study of the AB2X4 (A = Be, Mg, Ca, Sr, ba; B = Al, Ga, in; X = O, S) spinel compounds" in Results in Physics, 13 (2019):102180,
https://doi.org/10.1016/j.rinp.2019.102180 . .
1
20
8
22