Mladenović, Ivana O.

Link to this page

Authority KeyName Variants
b8beec7b-d4ea-4692-85f2-edbdd123e572
  • Mladenović, Ivana O. (4)
  • Mladenović, Ivana (1)

Author's Bibliography

Dental material based on poly(methyl methacrylate) with magnesium-aluminum layered double hydroxide (MgAl-LDH) on bio-silica particles

Alazreg, Asma; Vuksanović, Marija M.; Mladenović, Ivana O.; Egelja, Adela; Janković-Mandić, Ljiljana; Marinković, Aleksandar; Jančić-Heinemann, Radmila

(2024)

TY  - JOUR
AU  - Alazreg, Asma
AU  - Vuksanović, Marija M.
AU  - Mladenović, Ivana O.
AU  - Egelja, Adela
AU  - Janković-Mandić, Ljiljana
AU  - Marinković, Aleksandar
AU  - Jančić-Heinemann, Radmila
PY  - 2024
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/11720
AB  - The MgAl-LDH@SiO2 particles are prepared by the coprecipitation of LDH on silica originating from plants.Particles are of submicron size and are well dispersed in the matrix. Composites consisting of PMMA reinforcedwith MgAl-LDH@SiO2 particles have improved hardness and resistance to viscoelastic deformation, as tested bymicrohardness measurements.
T2  - Materials Letters
T1  - Dental material based on poly(methyl methacrylate) with magnesium-aluminum layered double hydroxide (MgAl-LDH) on bio-silica particles
VL  - 354
SP  - 135354
DO  - 10.1016/j.matlet.2023.135354
ER  - 
@article{
author = "Alazreg, Asma and Vuksanović, Marija M. and Mladenović, Ivana O. and Egelja, Adela and Janković-Mandić, Ljiljana and Marinković, Aleksandar and Jančić-Heinemann, Radmila",
year = "2024",
abstract = "The MgAl-LDH@SiO2 particles are prepared by the coprecipitation of LDH on silica originating from plants.Particles are of submicron size and are well dispersed in the matrix. Composites consisting of PMMA reinforcedwith MgAl-LDH@SiO2 particles have improved hardness and resistance to viscoelastic deformation, as tested bymicrohardness measurements.",
journal = "Materials Letters",
title = "Dental material based on poly(methyl methacrylate) with magnesium-aluminum layered double hydroxide (MgAl-LDH) on bio-silica particles",
volume = "354",
pages = "135354",
doi = "10.1016/j.matlet.2023.135354"
}
Alazreg, A., Vuksanović, M. M., Mladenović, I. O., Egelja, A., Janković-Mandić, L., Marinković, A.,& Jančić-Heinemann, R.. (2024). Dental material based on poly(methyl methacrylate) with magnesium-aluminum layered double hydroxide (MgAl-LDH) on bio-silica particles. in Materials Letters, 354, 135354.
https://doi.org/10.1016/j.matlet.2023.135354
Alazreg A, Vuksanović MM, Mladenović IO, Egelja A, Janković-Mandić L, Marinković A, Jančić-Heinemann R. Dental material based on poly(methyl methacrylate) with magnesium-aluminum layered double hydroxide (MgAl-LDH) on bio-silica particles. in Materials Letters. 2024;354:135354.
doi:10.1016/j.matlet.2023.135354 .
Alazreg, Asma, Vuksanović, Marija M., Mladenović, Ivana O., Egelja, Adela, Janković-Mandić, Ljiljana, Marinković, Aleksandar, Jančić-Heinemann, Radmila, "Dental material based on poly(methyl methacrylate) with magnesium-aluminum layered double hydroxide (MgAl-LDH) on bio-silica particles" in Materials Letters, 354 (2024):135354,
https://doi.org/10.1016/j.matlet.2023.135354 . .

Mechanical properties of acrylate matrix composite reinforced with manganese‐aluminum layered double hydroxide

Alazreg, Asma; Vuksanović, Marija M.; Egelja, Adela; Mladenović, Ivana O.; Radovanović, Željko; Petrović, Miloš; Marinković, Aleksandar; Jančić-Heinemann, Radmila

(2023)

TY  - JOUR
AU  - Alazreg, Asma
AU  - Vuksanović, Marija M.
AU  - Egelja, Adela
AU  - Mladenović, Ivana O.
AU  - Radovanović, Željko
AU  - Petrović, Miloš
AU  - Marinković, Aleksandar
AU  - Jančić-Heinemann, Radmila
PY  - 2023
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/11392
AB  - Acrylate polymers are used in several applications such as dentistry, medicine, and industry. The modification of their properties using the reinforcement is of key importance for the possible applications. Layered double hydroxides are materials that are easily synthesized by several techniques giving the possibility to modulate the chemical composition and morphology of the reinforcement and they consist of a divalent and a trivalent anion hydroxide and the layers can be exfoliated and thus provide a material interesting for composite reinforcement. In this paper, Mn was used as a divalent and Al as a trivalent cation. The obtained particles were used as reinforcement for the preparation of composites in 1, 3, and 5 wt% quantities and prepared samples were compared to the matrix consisting of PMMA. Physical mechanical properties of the sample having the best mechanical properties (with 3 wt% of MnAl-LDH filers) exhibited 6.38% modulus of elasticity, 27% hardness, and 10% tensile strength improved values compared to the clear PMMA matrix. Toughness was lowered in this sort of composite compared to the pure matrix. Highlights: MnAl-LDH-PMMA composites improved modulus, strength, hardness Loss of toughness is tolerable for 3 wt% reinforcement Viscoelastic properties are improved for composites compared to matrix.
T2  - Polymer Composites
T1  - Mechanical properties of acrylate matrix composite reinforced with manganese‐aluminum layered double hydroxide
DO  - 10.1002/pc.27597
ER  - 
@article{
author = "Alazreg, Asma and Vuksanović, Marija M. and Egelja, Adela and Mladenović, Ivana O. and Radovanović, Željko and Petrović, Miloš and Marinković, Aleksandar and Jančić-Heinemann, Radmila",
year = "2023",
abstract = "Acrylate polymers are used in several applications such as dentistry, medicine, and industry. The modification of their properties using the reinforcement is of key importance for the possible applications. Layered double hydroxides are materials that are easily synthesized by several techniques giving the possibility to modulate the chemical composition and morphology of the reinforcement and they consist of a divalent and a trivalent anion hydroxide and the layers can be exfoliated and thus provide a material interesting for composite reinforcement. In this paper, Mn was used as a divalent and Al as a trivalent cation. The obtained particles were used as reinforcement for the preparation of composites in 1, 3, and 5 wt% quantities and prepared samples were compared to the matrix consisting of PMMA. Physical mechanical properties of the sample having the best mechanical properties (with 3 wt% of MnAl-LDH filers) exhibited 6.38% modulus of elasticity, 27% hardness, and 10% tensile strength improved values compared to the clear PMMA matrix. Toughness was lowered in this sort of composite compared to the pure matrix. Highlights: MnAl-LDH-PMMA composites improved modulus, strength, hardness Loss of toughness is tolerable for 3 wt% reinforcement Viscoelastic properties are improved for composites compared to matrix.",
journal = "Polymer Composites",
title = "Mechanical properties of acrylate matrix composite reinforced with manganese‐aluminum layered double hydroxide",
doi = "10.1002/pc.27597"
}
Alazreg, A., Vuksanović, M. M., Egelja, A., Mladenović, I. O., Radovanović, Ž., Petrović, M., Marinković, A.,& Jančić-Heinemann, R.. (2023). Mechanical properties of acrylate matrix composite reinforced with manganese‐aluminum layered double hydroxide. in Polymer Composites.
https://doi.org/10.1002/pc.27597
Alazreg A, Vuksanović MM, Egelja A, Mladenović IO, Radovanović Ž, Petrović M, Marinković A, Jančić-Heinemann R. Mechanical properties of acrylate matrix composite reinforced with manganese‐aluminum layered double hydroxide. in Polymer Composites. 2023;.
doi:10.1002/pc.27597 .
Alazreg, Asma, Vuksanović, Marija M., Egelja, Adela, Mladenović, Ivana O., Radovanović, Željko, Petrović, Miloš, Marinković, Aleksandar, Jančić-Heinemann, Radmila, "Mechanical properties of acrylate matrix composite reinforced with manganese‐aluminum layered double hydroxide" in Polymer Composites (2023),
https://doi.org/10.1002/pc.27597 . .
1
1

Synthesis, Characterization and Application of Biobased Unsaturated Polyester Resin Reinforced with Unmodified/Modified Biosilica Nanoparticles

Salah Adeen Embirsh, Hifa; Stajčić, Ivana; Gržetić, Jelena; Mladenović, Ivana O.; Anđelković, Boban; Marinković, Aleksandar; Vuksanović, Marija M.

(2023)

TY  - JOUR
AU  - Salah Adeen Embirsh, Hifa
AU  - Stajčić, Ivana
AU  - Gržetić, Jelena
AU  - Mladenović, Ivana O.
AU  - Anđelković, Boban
AU  - Marinković, Aleksandar
AU  - Vuksanović, Marija M.
PY  - 2023
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/11638
AB  - This paper presents sustainable technology for environmentally friendly composite production. Biobased unsaturated polyester resin (b-UPR), synthesized from waste polyethylene terephthalate (PET) glycosylate and renewable origin maleic anhydride (MAnh) and propylene glycol(PG), was reinforced with unmodified and vinyl-modified biosilica nanoparticles obtained fromrice husk. The structural and morphological properties of the obtained particles, b-UPR, as well ascomposites, were characterized by Fourier-transform infrared spectroscopy (FTIR), nuclear magneticresonance spectroscopy (NMR), scanning electron microscopy (SEM), and transmission electronmicroscopy (TEM) techniques. The study of the influence of biosilica modification on the mechanicalproperties of composites was supported by hardness modeling. Improvement of the tensile strengthof the b-UPR-based composite at 2.5 wt.% addition of biosilica modified with vinyl silane, named“b-UPR/SiO2-V” composite, has been achieved with 88% increase. The thermal aging process appliedto the b-UPR/SiO2-V composite, which simulates use over the product’s lifetime, leads to the deterioration of composites that were used as fillers in commercial unsaturated polyester resin (c-UPR).The grinded artificially aged b-UPR composites were used as filler in c-UPR for the production of atable top layer with outstanding mechanical properties, i.e., impact resistance and microhardness, aswell as fire resistance rated in the V-0 category according to the UL-94 test. Developing sustainablecomposites that are chemically synthesized from renewable sources is important from the aspect ofpreserving the environment and existing resources as well as the extending their life cycle.
T2  - Polymers
T1  - Synthesis, Characterization and Application of Biobased Unsaturated Polyester Resin Reinforced with Unmodified/Modified Biosilica Nanoparticles
VL  - 15
IS  - 18
SP  - 3756
DO  - 10.3390/polym15183756
ER  - 
@article{
author = "Salah Adeen Embirsh, Hifa and Stajčić, Ivana and Gržetić, Jelena and Mladenović, Ivana O. and Anđelković, Boban and Marinković, Aleksandar and Vuksanović, Marija M.",
year = "2023",
abstract = "This paper presents sustainable technology for environmentally friendly composite production. Biobased unsaturated polyester resin (b-UPR), synthesized from waste polyethylene terephthalate (PET) glycosylate and renewable origin maleic anhydride (MAnh) and propylene glycol(PG), was reinforced with unmodified and vinyl-modified biosilica nanoparticles obtained fromrice husk. The structural and morphological properties of the obtained particles, b-UPR, as well ascomposites, were characterized by Fourier-transform infrared spectroscopy (FTIR), nuclear magneticresonance spectroscopy (NMR), scanning electron microscopy (SEM), and transmission electronmicroscopy (TEM) techniques. The study of the influence of biosilica modification on the mechanicalproperties of composites was supported by hardness modeling. Improvement of the tensile strengthof the b-UPR-based composite at 2.5 wt.% addition of biosilica modified with vinyl silane, named“b-UPR/SiO2-V” composite, has been achieved with 88% increase. The thermal aging process appliedto the b-UPR/SiO2-V composite, which simulates use over the product’s lifetime, leads to the deterioration of composites that were used as fillers in commercial unsaturated polyester resin (c-UPR).The grinded artificially aged b-UPR composites were used as filler in c-UPR for the production of atable top layer with outstanding mechanical properties, i.e., impact resistance and microhardness, aswell as fire resistance rated in the V-0 category according to the UL-94 test. Developing sustainablecomposites that are chemically synthesized from renewable sources is important from the aspect ofpreserving the environment and existing resources as well as the extending their life cycle.",
journal = "Polymers",
title = "Synthesis, Characterization and Application of Biobased Unsaturated Polyester Resin Reinforced with Unmodified/Modified Biosilica Nanoparticles",
volume = "15",
number = "18",
pages = "3756",
doi = "10.3390/polym15183756"
}
Salah Adeen Embirsh, H., Stajčić, I., Gržetić, J., Mladenović, I. O., Anđelković, B., Marinković, A.,& Vuksanović, M. M.. (2023). Synthesis, Characterization and Application of Biobased Unsaturated Polyester Resin Reinforced with Unmodified/Modified Biosilica Nanoparticles. in Polymers, 15(18), 3756.
https://doi.org/10.3390/polym15183756
Salah Adeen Embirsh H, Stajčić I, Gržetić J, Mladenović IO, Anđelković B, Marinković A, Vuksanović MM. Synthesis, Characterization and Application of Biobased Unsaturated Polyester Resin Reinforced with Unmodified/Modified Biosilica Nanoparticles. in Polymers. 2023;15(18):3756.
doi:10.3390/polym15183756 .
Salah Adeen Embirsh, Hifa, Stajčić, Ivana, Gržetić, Jelena, Mladenović, Ivana O., Anđelković, Boban, Marinković, Aleksandar, Vuksanović, Marija M., "Synthesis, Characterization and Application of Biobased Unsaturated Polyester Resin Reinforced with Unmodified/Modified Biosilica Nanoparticles" in Polymers, 15, no. 18 (2023):3756,
https://doi.org/10.3390/polym15183756 . .
3
2

Mechanical Properties of Biomass-derived Silica Nanoparticles Reinforced PMMA Composite Material

Vuksanović, Marija M.; Mladenović, Ivana O.; Tomić, Nataša Z.; Petrović, Miloš; Radojević, Vesna J.; Marinković, Aleksandar D.; Jančić-Heinemann, Radmila

(2022)

TY  - JOUR
AU  - Vuksanović, Marija M.
AU  - Mladenović, Ivana O.
AU  - Tomić, Nataša Z.
AU  - Petrović, Miloš
AU  - Radojević, Vesna J.
AU  - Marinković, Aleksandar D.
AU  - Jančić-Heinemann, Radmila
PY  - 2022
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/10340
AB  - Rice husk was used to produce silica particles, which were then used to reinforce the polymer matrix. The synthesized SiO2 particles were characterized using X-ray diffraction, Fourier transforms infrared spectroscopy (FTIR) and scanning electron microscopy with EDS. In a PMMA matrix, prepared SiO2 particles in amounts of 1, 3, and 5 wt.% were used as reinforcing agents. The goal of this research was to see if SiO2 particles had any effect on the mechanical properties of polymer composite materials. The morphology of the composites was examined using a field emission scanning electron microscope (FE-SEM). Vickers microindentation hardness and impact testing were used to determine the mechanical properties of the obtained composites. The indentation creep’s behavior of a polymethylmetacrylate (PMMA) composite material with varying amounts of nanoparticles (SiO2) was investigated and analyzed.
T2  - Science of Sintering
T1  - Mechanical Properties of Biomass-derived Silica Nanoparticles Reinforced PMMA Composite Material
VL  - 54
IS  - 2
SP  - 211
EP  - 221
DO  - 10.2298/SOS2202211V
ER  - 
@article{
author = "Vuksanović, Marija M. and Mladenović, Ivana O. and Tomić, Nataša Z. and Petrović, Miloš and Radojević, Vesna J. and Marinković, Aleksandar D. and Jančić-Heinemann, Radmila",
year = "2022",
abstract = "Rice husk was used to produce silica particles, which were then used to reinforce the polymer matrix. The synthesized SiO2 particles were characterized using X-ray diffraction, Fourier transforms infrared spectroscopy (FTIR) and scanning electron microscopy with EDS. In a PMMA matrix, prepared SiO2 particles in amounts of 1, 3, and 5 wt.% were used as reinforcing agents. The goal of this research was to see if SiO2 particles had any effect on the mechanical properties of polymer composite materials. The morphology of the composites was examined using a field emission scanning electron microscope (FE-SEM). Vickers microindentation hardness and impact testing were used to determine the mechanical properties of the obtained composites. The indentation creep’s behavior of a polymethylmetacrylate (PMMA) composite material with varying amounts of nanoparticles (SiO2) was investigated and analyzed.",
journal = "Science of Sintering",
title = "Mechanical Properties of Biomass-derived Silica Nanoparticles Reinforced PMMA Composite Material",
volume = "54",
number = "2",
pages = "211-221",
doi = "10.2298/SOS2202211V"
}
Vuksanović, M. M., Mladenović, I. O., Tomić, N. Z., Petrović, M., Radojević, V. J., Marinković, A. D.,& Jančić-Heinemann, R.. (2022). Mechanical Properties of Biomass-derived Silica Nanoparticles Reinforced PMMA Composite Material. in Science of Sintering, 54(2), 211-221.
https://doi.org/10.2298/SOS2202211V
Vuksanović MM, Mladenović IO, Tomić NZ, Petrović M, Radojević VJ, Marinković AD, Jančić-Heinemann R. Mechanical Properties of Biomass-derived Silica Nanoparticles Reinforced PMMA Composite Material. in Science of Sintering. 2022;54(2):211-221.
doi:10.2298/SOS2202211V .
Vuksanović, Marija M., Mladenović, Ivana O., Tomić, Nataša Z., Petrović, Miloš, Radojević, Vesna J., Marinković, Aleksandar D., Jančić-Heinemann, Radmila, "Mechanical Properties of Biomass-derived Silica Nanoparticles Reinforced PMMA Composite Material" in Science of Sintering, 54, no. 2 (2022):211-221,
https://doi.org/10.2298/SOS2202211V . .
6
3

Mechanical Properties of Composite Material Reinforced With Silica Particles Obtained from Biomass Modified With Double-Layered Hydroxides

Vuksanović, Marija M.; Egelja, Adela; Savić, Andrija; Milošević, Milena; Mladenović, Ivana; Marinković, Aleksandar D.; Jančić Heinemann, Radmila M.

(Banja Luka : University PIM, 2022)

TY  - CONF
AU  - Vuksanović, Marija M.
AU  - Egelja, Adela
AU  - Savić, Andrija
AU  - Milošević, Milena
AU  - Mladenović, Ivana
AU  - Marinković, Aleksandar D.
AU  - Jančić Heinemann, Radmila M.
PY  - 2022
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/10663
AB  - Silica particles were produced form rice husk and used as reinforcement in the polymer matrix. The obtained silica particles' surfaces were modified with layered double hydroxides, which enabled better reinforcement in the PMMA matrix. Coprecipitation was used to synthetize Fe Al layered double hydroxides (LDH) with a Fe:Al cation content of 3:1 and an FeAl-LDH: silica ratio of 1:1. X-ray diffraction, Fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy with EDS were used to characterize the synthesized particles. The prepared particle amounts in the PMMA matrix were 1, 3, and 5 wt. %. The purpose of this study was to see if the obtained SiO2 particles, as well as their modification with FeAl-LDH, had any effect on the mechanical properties of polymer composite materials. The mechanical characterization of obtained composites was done using Vickers microindentation tests and impact testing. The Vickers micro-hardness test showed that the addition of reinforcement increases the hardness of the composite. When compared to the matrix, the toughness of the composite material with a higher content of particles (5 wt. %) in the energy absorbed in this impact test was three times higher.
PB  - Banja Luka : University PIM
C3  - XI International conference on social and technological development - STED 2022 : book of abstracts, Trebinje, June 2-5, 2022
T1  - Mechanical Properties of Composite Material Reinforced With Silica Particles Obtained from Biomass Modified With Double-Layered Hydroxides
SP  - 108
UR  - https://hdl.handle.net/21.15107/rcub_vinar_10663
ER  - 
@conference{
author = "Vuksanović, Marija M. and Egelja, Adela and Savić, Andrija and Milošević, Milena and Mladenović, Ivana and Marinković, Aleksandar D. and Jančić Heinemann, Radmila M.",
year = "2022",
abstract = "Silica particles were produced form rice husk and used as reinforcement in the polymer matrix. The obtained silica particles' surfaces were modified with layered double hydroxides, which enabled better reinforcement in the PMMA matrix. Coprecipitation was used to synthetize Fe Al layered double hydroxides (LDH) with a Fe:Al cation content of 3:1 and an FeAl-LDH: silica ratio of 1:1. X-ray diffraction, Fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy with EDS were used to characterize the synthesized particles. The prepared particle amounts in the PMMA matrix were 1, 3, and 5 wt. %. The purpose of this study was to see if the obtained SiO2 particles, as well as their modification with FeAl-LDH, had any effect on the mechanical properties of polymer composite materials. The mechanical characterization of obtained composites was done using Vickers microindentation tests and impact testing. The Vickers micro-hardness test showed that the addition of reinforcement increases the hardness of the composite. When compared to the matrix, the toughness of the composite material with a higher content of particles (5 wt. %) in the energy absorbed in this impact test was three times higher.",
publisher = "Banja Luka : University PIM",
journal = "XI International conference on social and technological development - STED 2022 : book of abstracts, Trebinje, June 2-5, 2022",
title = "Mechanical Properties of Composite Material Reinforced With Silica Particles Obtained from Biomass Modified With Double-Layered Hydroxides",
pages = "108",
url = "https://hdl.handle.net/21.15107/rcub_vinar_10663"
}
Vuksanović, M. M., Egelja, A., Savić, A., Milošević, M., Mladenović, I., Marinković, A. D.,& Jančić Heinemann, R. M.. (2022). Mechanical Properties of Composite Material Reinforced With Silica Particles Obtained from Biomass Modified With Double-Layered Hydroxides. in XI International conference on social and technological development - STED 2022 : book of abstracts, Trebinje, June 2-5, 2022
Banja Luka : University PIM., 108.
https://hdl.handle.net/21.15107/rcub_vinar_10663
Vuksanović MM, Egelja A, Savić A, Milošević M, Mladenović I, Marinković AD, Jančić Heinemann RM. Mechanical Properties of Composite Material Reinforced With Silica Particles Obtained from Biomass Modified With Double-Layered Hydroxides. in XI International conference on social and technological development - STED 2022 : book of abstracts, Trebinje, June 2-5, 2022. 2022;:108.
https://hdl.handle.net/21.15107/rcub_vinar_10663 .
Vuksanović, Marija M., Egelja, Adela, Savić, Andrija, Milošević, Milena, Mladenović, Ivana, Marinković, Aleksandar D., Jančić Heinemann, Radmila M., "Mechanical Properties of Composite Material Reinforced With Silica Particles Obtained from Biomass Modified With Double-Layered Hydroxides" in XI International conference on social and technological development - STED 2022 : book of abstracts, Trebinje, June 2-5, 2022 (2022):108,
https://hdl.handle.net/21.15107/rcub_vinar_10663 .