Žunič, Vojka

Link to this page

Authority KeyName Variants
30e2f24b-76f0-45a4-a5a3-bafb22bc7946
  • Žunič, Vojka (3)
Projects

Author's Bibliography

Antimicrobial activity of copper-polyaniline nanocomposite

Bogdanović, Una; Vodnik, Vesna; Mitrić, Miodrag; Dimitrijević, Suzana I.; Škapin, Srečo Davor; Žunič, Vojka; Budimir, Milica; Stoiljković, Milovan

(Society of Physical Chemists of Serbia, 2016)

TY  - CONF
AU  - Bogdanović, Una
AU  - Vodnik, Vesna
AU  - Mitrić, Miodrag
AU  - Dimitrijević, Suzana I.
AU  - Škapin, Srečo Davor
AU  - Žunič, Vojka
AU  - Budimir, Milica
AU  - Stoiljković, Milovan
PY  - 2016
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/9257
AB  - By combining copper nanoparticles (CuNPs) as a good antimicrobial agent
with polyaniline (PANI), which also shows some degree of antimicrobial
activity, we were able to synthesize a novel promising antimicrobial
material – copper-polyaniline (Cu-PANI) nanocomposite. It was prepared
by simple in situ polymerization method, when thepolymer and metal
nanoparticles (dav= 6 nm)are produced simultaneously.Quantitative
(antimicrobial assay) and qualitative (atomic force microscopy – AFM)
analyses showed that synergestic effect of CuNPs and PANI against
bacteriaE. coli andS. aureus,and fungusC. albicans, provides its faster
andhigher antimicrobial activity than any component acting alone.This
makes it a great candidate for fast waste water treatment.
PB  - Society of Physical Chemists of Serbia
C3  - Physical chemistry 2016 : 13th international conference on fundamental and applied aspects of physical chemistry
T1  - Antimicrobial activity of copper-polyaniline nanocomposite
SP  - 653
EP  - 656
UR  - https://hdl.handle.net/21.15107/rcub_vinar_9257
ER  - 
@conference{
author = "Bogdanović, Una and Vodnik, Vesna and Mitrić, Miodrag and Dimitrijević, Suzana I. and Škapin, Srečo Davor and Žunič, Vojka and Budimir, Milica and Stoiljković, Milovan",
year = "2016",
abstract = "By combining copper nanoparticles (CuNPs) as a good antimicrobial agent
with polyaniline (PANI), which also shows some degree of antimicrobial
activity, we were able to synthesize a novel promising antimicrobial
material – copper-polyaniline (Cu-PANI) nanocomposite. It was prepared
by simple in situ polymerization method, when thepolymer and metal
nanoparticles (dav= 6 nm)are produced simultaneously.Quantitative
(antimicrobial assay) and qualitative (atomic force microscopy – AFM)
analyses showed that synergestic effect of CuNPs and PANI against
bacteriaE. coli andS. aureus,and fungusC. albicans, provides its faster
andhigher antimicrobial activity than any component acting alone.This
makes it a great candidate for fast waste water treatment.",
publisher = "Society of Physical Chemists of Serbia",
journal = "Physical chemistry 2016 : 13th international conference on fundamental and applied aspects of physical chemistry",
title = "Antimicrobial activity of copper-polyaniline nanocomposite",
pages = "653-656",
url = "https://hdl.handle.net/21.15107/rcub_vinar_9257"
}
Bogdanović, U., Vodnik, V., Mitrić, M., Dimitrijević, S. I., Škapin, S. D., Žunič, V., Budimir, M.,& Stoiljković, M.. (2016). Antimicrobial activity of copper-polyaniline nanocomposite. in Physical chemistry 2016 : 13th international conference on fundamental and applied aspects of physical chemistry
Society of Physical Chemists of Serbia., 653-656.
https://hdl.handle.net/21.15107/rcub_vinar_9257
Bogdanović U, Vodnik V, Mitrić M, Dimitrijević SI, Škapin SD, Žunič V, Budimir M, Stoiljković M. Antimicrobial activity of copper-polyaniline nanocomposite. in Physical chemistry 2016 : 13th international conference on fundamental and applied aspects of physical chemistry. 2016;:653-656.
https://hdl.handle.net/21.15107/rcub_vinar_9257 .
Bogdanović, Una, Vodnik, Vesna, Mitrić, Miodrag, Dimitrijević, Suzana I., Škapin, Srečo Davor, Žunič, Vojka, Budimir, Milica, Stoiljković, Milovan, "Antimicrobial activity of copper-polyaniline nanocomposite" in Physical chemistry 2016 : 13th international conference on fundamental and applied aspects of physical chemistry (2016):653-656,
https://hdl.handle.net/21.15107/rcub_vinar_9257 .

Hydrothermally processed 1D hydroxyapatite: Mechanism of formation and biocompatibility studies

Stojanović, Zoran S.; Ignjatović, Nenad L.; Wu, Victoria; Žunič, Vojka; Veselinović, Ljiljana M.; Škapin, Srečo Davor; Miljković, Miroslav; Uskoković, Vuk; Uskoković, Dragan

(2016)

TY  - JOUR
AU  - Stojanović, Zoran S.
AU  - Ignjatović, Nenad L.
AU  - Wu, Victoria
AU  - Žunič, Vojka
AU  - Veselinović, Ljiljana M.
AU  - Škapin, Srečo Davor
AU  - Miljković, Miroslav
AU  - Uskoković, Vuk
AU  - Uskoković, Dragan
PY  - 2016
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/7575
AB  - Recent developments in bone tissue engineering have led to an increased interest in one-dimensional (1D) hydroxyapatite (HA) nano- and micro-structures such as wires, ribbons and tubes. They have been proposed for use as cell substrates, reinforcing phases in composites and carriers for biologically active substances. Here we demonstrate the synthesis of 1D HA structures using an optimized, urea-assisted, high-yield hydrothermal batch process. The one-pot process, yielding HA structures composed of bundles of ribbons and wires, was typified by the simultaneous occurrence of a multitude of intermediate reactions, failing to meet the uniformity criteria over particle morphology and size. To overcome these issues, the preparation procedure was divided to two stages: dicalcium phosphate platelets synthesized in the first step were used as a precursor for the synthesis of 1D HA in the second stage. Despite the elongated particle morphologies, both the precursor and the final product exhibited excellent biocompatibility and caused no reduction of viability when tested against osteoblastic MC3T3-E1 cells in 2D culture up to the concentration of 2.6 mg/cm2. X-ray powder diffraction combined with a range of electron microscopies and laser diffraction analyses was used to elucidate the formation mechanism and the microstructure of the final particles. The two-step synthesis involved a more direct transformation of DCP to 1D HA with the average diameter of 37 nm and the aspect ratio exceeding 100:1. The comparison of crystalline domain sizes along different crystallographic directions showed no signs of significant anisotropy, while indicating that individual nanowires are ordered in bundles in the b crystallographic direction of the P63/m space group of HA. Intermediate processes, e.g., dehydration of dicalcium phosphate, are critical for the formation of 1D HA alongside other key aspects of this phase transformation, it must be investigated in more detail in the continuous design of smart HA micro- and nano-structures with advanced therapeutic potentials.
T2  - Materials Science and Engineering: C
T1  - Hydrothermally processed 1D hydroxyapatite: Mechanism of formation and biocompatibility studies
VL  - 68
SP  - 746
EP  - 757
DO  - 10.1016/j.msec.2016.06.047
ER  - 
@article{
author = "Stojanović, Zoran S. and Ignjatović, Nenad L. and Wu, Victoria and Žunič, Vojka and Veselinović, Ljiljana M. and Škapin, Srečo Davor and Miljković, Miroslav and Uskoković, Vuk and Uskoković, Dragan",
year = "2016",
abstract = "Recent developments in bone tissue engineering have led to an increased interest in one-dimensional (1D) hydroxyapatite (HA) nano- and micro-structures such as wires, ribbons and tubes. They have been proposed for use as cell substrates, reinforcing phases in composites and carriers for biologically active substances. Here we demonstrate the synthesis of 1D HA structures using an optimized, urea-assisted, high-yield hydrothermal batch process. The one-pot process, yielding HA structures composed of bundles of ribbons and wires, was typified by the simultaneous occurrence of a multitude of intermediate reactions, failing to meet the uniformity criteria over particle morphology and size. To overcome these issues, the preparation procedure was divided to two stages: dicalcium phosphate platelets synthesized in the first step were used as a precursor for the synthesis of 1D HA in the second stage. Despite the elongated particle morphologies, both the precursor and the final product exhibited excellent biocompatibility and caused no reduction of viability when tested against osteoblastic MC3T3-E1 cells in 2D culture up to the concentration of 2.6 mg/cm2. X-ray powder diffraction combined with a range of electron microscopies and laser diffraction analyses was used to elucidate the formation mechanism and the microstructure of the final particles. The two-step synthesis involved a more direct transformation of DCP to 1D HA with the average diameter of 37 nm and the aspect ratio exceeding 100:1. The comparison of crystalline domain sizes along different crystallographic directions showed no signs of significant anisotropy, while indicating that individual nanowires are ordered in bundles in the b crystallographic direction of the P63/m space group of HA. Intermediate processes, e.g., dehydration of dicalcium phosphate, are critical for the formation of 1D HA alongside other key aspects of this phase transformation, it must be investigated in more detail in the continuous design of smart HA micro- and nano-structures with advanced therapeutic potentials.",
journal = "Materials Science and Engineering: C",
title = "Hydrothermally processed 1D hydroxyapatite: Mechanism of formation and biocompatibility studies",
volume = "68",
pages = "746-757",
doi = "10.1016/j.msec.2016.06.047"
}
Stojanović, Z. S., Ignjatović, N. L., Wu, V., Žunič, V., Veselinović, L. M., Škapin, S. D., Miljković, M., Uskoković, V.,& Uskoković, D.. (2016). Hydrothermally processed 1D hydroxyapatite: Mechanism of formation and biocompatibility studies. in Materials Science and Engineering: C, 68, 746-757.
https://doi.org/10.1016/j.msec.2016.06.047
Stojanović ZS, Ignjatović NL, Wu V, Žunič V, Veselinović LM, Škapin SD, Miljković M, Uskoković V, Uskoković D. Hydrothermally processed 1D hydroxyapatite: Mechanism of formation and biocompatibility studies. in Materials Science and Engineering: C. 2016;68:746-757.
doi:10.1016/j.msec.2016.06.047 .
Stojanović, Zoran S., Ignjatović, Nenad L., Wu, Victoria, Žunič, Vojka, Veselinović, Ljiljana M., Škapin, Srečo Davor, Miljković, Miroslav, Uskoković, Vuk, Uskoković, Dragan, "Hydrothermally processed 1D hydroxyapatite: Mechanism of formation and biocompatibility studies" in Materials Science and Engineering: C, 68 (2016):746-757,
https://doi.org/10.1016/j.msec.2016.06.047 . .
32
24
32

Hydrothermally processed 1D hydroxyapatite: Mechanism of formation and biocompatibility studies

Stojanović, Zoran S.; Ignjatović, Nenad L.; Wu, Victoria; Žunič, Vojka; Veselinović, Ljiljana M.; Škapin, Srečo Davor; Miljković, Miroslav; Uskoković, Vuk; Uskoković, Dragan

(Elsevier, 2016)

TY  - JOUR
AU  - Stojanović, Zoran S.
AU  - Ignjatović, Nenad L.
AU  - Wu, Victoria
AU  - Žunič, Vojka
AU  - Veselinović, Ljiljana M.
AU  - Škapin, Srečo Davor
AU  - Miljković, Miroslav
AU  - Uskoković, Vuk
AU  - Uskoković, Dragan
PY  - 2016
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/7576
AB  - Recent developments in bone tissue engineering have led to an increased interest in one-dimensional (1D) hydroxyapatite (HA) nano- and micro-structures such as wires, ribbons and tubes. They have been proposed for use as cell substrates, reinforcing phases in composites and carriers for biologically active substances. Here we demonstrate the synthesis of 1D HA structures using an optimized, urea-assisted, high-yield hydrothermal batch process. The one-pot process, yielding HA structures composed of bundles of ribbons and wires, was typified by the simultaneous occurrence of a multitude of intermediate reactions, failing to meet the uniformity criteria over particle morphology and size. To overcome these issues, the preparation procedure was divided to two stages: dicalcium phosphate platelets synthesized in the first step were used as a precursor for the synthesis of 1D HA in the second stage. Despite the elongated particle morphologies, both the precursor and the final product exhibited excellent biocompatibility and caused no reduction of viability when tested against osteoblastic MC3T3-E1 cells in 2D culture up to the concentration of 2.6 mg/cm2. X-ray powder diffraction combined with a range of electron microscopies and laser diffraction analyses was used to elucidate the formation mechanism and the microstructure of the final particles. The two-step synthesis involved a more direct transformation of DCP to 1D HA with the average diameter of 37 nm and the aspect ratio exceeding 100:1. The comparison of crystalline domain sizes along different crystallographic directions showed no signs of significant anisotropy, while indicating that individual nanowires are ordered in bundles in the b crystallographic direction of the P63/m space group of HA. Intermediate processes, e.g., dehydration of dicalcium phosphate, are critical for the formation of 1D HA alongside other key aspects of this phase transformation, it must be investigated in more detail in the continuous design of smart HA micro- and nano-structures with advanced therapeutic potentials.
PB  - Elsevier
T2  - Materials Science and Engineering: C
T1  - Hydrothermally processed 1D hydroxyapatite: Mechanism of formation and biocompatibility studies
VL  - 68
SP  - 746
EP  - 757
DO  - 10.1016/j.msec.2016.06.047
ER  - 
@article{
author = "Stojanović, Zoran S. and Ignjatović, Nenad L. and Wu, Victoria and Žunič, Vojka and Veselinović, Ljiljana M. and Škapin, Srečo Davor and Miljković, Miroslav and Uskoković, Vuk and Uskoković, Dragan",
year = "2016",
abstract = "Recent developments in bone tissue engineering have led to an increased interest in one-dimensional (1D) hydroxyapatite (HA) nano- and micro-structures such as wires, ribbons and tubes. They have been proposed for use as cell substrates, reinforcing phases in composites and carriers for biologically active substances. Here we demonstrate the synthesis of 1D HA structures using an optimized, urea-assisted, high-yield hydrothermal batch process. The one-pot process, yielding HA structures composed of bundles of ribbons and wires, was typified by the simultaneous occurrence of a multitude of intermediate reactions, failing to meet the uniformity criteria over particle morphology and size. To overcome these issues, the preparation procedure was divided to two stages: dicalcium phosphate platelets synthesized in the first step were used as a precursor for the synthesis of 1D HA in the second stage. Despite the elongated particle morphologies, both the precursor and the final product exhibited excellent biocompatibility and caused no reduction of viability when tested against osteoblastic MC3T3-E1 cells in 2D culture up to the concentration of 2.6 mg/cm2. X-ray powder diffraction combined with a range of electron microscopies and laser diffraction analyses was used to elucidate the formation mechanism and the microstructure of the final particles. The two-step synthesis involved a more direct transformation of DCP to 1D HA with the average diameter of 37 nm and the aspect ratio exceeding 100:1. The comparison of crystalline domain sizes along different crystallographic directions showed no signs of significant anisotropy, while indicating that individual nanowires are ordered in bundles in the b crystallographic direction of the P63/m space group of HA. Intermediate processes, e.g., dehydration of dicalcium phosphate, are critical for the formation of 1D HA alongside other key aspects of this phase transformation, it must be investigated in more detail in the continuous design of smart HA micro- and nano-structures with advanced therapeutic potentials.",
publisher = "Elsevier",
journal = "Materials Science and Engineering: C",
title = "Hydrothermally processed 1D hydroxyapatite: Mechanism of formation and biocompatibility studies",
volume = "68",
pages = "746-757",
doi = "10.1016/j.msec.2016.06.047"
}
Stojanović, Z. S., Ignjatović, N. L., Wu, V., Žunič, V., Veselinović, L. M., Škapin, S. D., Miljković, M., Uskoković, V.,& Uskoković, D.. (2016). Hydrothermally processed 1D hydroxyapatite: Mechanism of formation and biocompatibility studies. in Materials Science and Engineering: C
Elsevier., 68, 746-757.
https://doi.org/10.1016/j.msec.2016.06.047
Stojanović ZS, Ignjatović NL, Wu V, Žunič V, Veselinović LM, Škapin SD, Miljković M, Uskoković V, Uskoković D. Hydrothermally processed 1D hydroxyapatite: Mechanism of formation and biocompatibility studies. in Materials Science and Engineering: C. 2016;68:746-757.
doi:10.1016/j.msec.2016.06.047 .
Stojanović, Zoran S., Ignjatović, Nenad L., Wu, Victoria, Žunič, Vojka, Veselinović, Ljiljana M., Škapin, Srečo Davor, Miljković, Miroslav, Uskoković, Vuk, Uskoković, Dragan, "Hydrothermally processed 1D hydroxyapatite: Mechanism of formation and biocompatibility studies" in Materials Science and Engineering: C, 68 (2016):746-757,
https://doi.org/10.1016/j.msec.2016.06.047 . .
32
24
33