Milenović, Predrag

Link to this page

Authority KeyName Variants
orcid::0000-0001-7132-3550
  • Milenović, Predrag (680)
Projects
BMWF (Austria), FWF (Austria), FNRS (Belgium), FWO (Belgium), CNPq (Brazil), CAPES (Brazil), FAPERJ (Brazil), FAPESP (Brazil), MEYS (Bulgaria), CERN, CAS (China), MoST (China), NSFC (China), COLCIENCIAS (Colombia), MSES (Croatia), RPF (Cyprus), MoER (Estonia) [SF0690030s09], ERDF (Estonia), Academy of Finland, MEC (Finland), HIP (Finland), CEA (France), CNRS/IN2P3 (France), BMBF, Germany, DFG (Germany), HGF (Germany), GSRT (Greece), OTKA (Hungary), NKTH (Hungary), DAE (India), DST (India), IPM (Iran), SFI (Ireland), INFN (Italy), NRF (Republic of Korea), WCU (Republic of Korea), LAS (Lithuania), CINVESTAV (Mexico), CONACYT (Mexico), SEP (Mexico), UASLP-FAI (Mexico), MSI (New Zealand), PAEC (Pakistan), MSHE (Poland), NSC (Poland), FCT (Portugal), JINR (Armenia), JINR (Belarus), JINR (Georgia), JINR (Ukraine), JINR (Uzbekistan), MON (Russia), RosAtom (Russia), RAS (Russia), RFBR (Russia), MSTD (Serbia), SEIDI (Spain), CPAN (Spain), Swiss Funding Agencies (Switzerland), NSC (Taipei), ThEPCenter (Thailand), IPST (Thailand), NSTDA (Thailand), TUBITAK (Turkey), TAEK (Turkey), NASU (Ukraine), STFC (United Kingdom), DOE (USA), NSF (USA) FMSR (Austria), FNRS (Belgium), FWO (Belgium), CNPq (Brazil), CAPES (Brazil), FAPERJ (Brazil), FAPESP (Brazil), MES (Bulgaria), CERN, CAS (China), MoST (China), NSFC (China), COLCIENCIAS (Colombia), MSES (Croatia), RPF (Cyprus), Academy of Sciences (Estonia), NICPB (Estonia), Academy of Finland, ME (Finland), HIP (Finland), CEA (France), CNRS/IN2P3 (France), BMBF, Germany, DFG (Germany), HGF (Germany), GSRT (Greece), OTKA (Hungary), NKTH (Hungary), DAE (India), DST (India), IPM (Iran), SFI (Ireland), INFN (Italy), NRF (Korea), WCU (Korea), LAS (Lithuania), CINVESTAV (Mexico), CONACYT (Mexico), SEP (Mexico), UASLP-FAI (Mexico), PAEC (Pakistan), SCSR (Poland), FCT (Portugal), JINR (Armenia), JINR (Belarus), JINR (Georgia), JINR (Ukraine), JINR (Uzbekistan), MST (Russia), MAE (Russia), MSTD (Serbia), MICINN (Spain), CPAN (Spain), Swiss Funding Agencies (Switzerland), NSC (Taipei), TUBITAK (Turkey), TAEK (Turkey), STFC (United Kingdom), DOE (USA), NSF (USA)
FMSR (Austria), FNRS (Belgium), FWO (Belgium), CNPq (Brazil), CAPES (Brazil), FAPERJ (Brazil), FAPESP (Brazil), MES (Bulgaria), CERN (China), CAS (China), MoST (China), NSFC (China), COLCIEN-CIAS (Colombia), MSES (Croatia), RPF (Cyprus), Academy of Sciences (Estonia), NICPB (Estonia), Academy of Finland, ME (Finland), HIP (Finland), CEA (France), CNRS/IN2P3 (France), BMBF, Germany, DFG (Germany), HGF (Germany), GSRT (Greece), OTKA (Hungary), NKTH (Hungary), DAE (India), DST (India), IPM (Iran), SFI (Ireland), INFN (Italy), NRF (Korea), LAS (Lithuania), CINVESTAV (Mexico), CONACYT (Mexico), SEP (Mexico), UASLP-FAI (Mexico), PAEC (Pakistan), SCSR (Poland), FCT (Portugal), JINR (Armenia), JINR (Belarus), JINR (Georgia), JINR (Ukraine), JINR (Uzbekistan), MST (Russia), MAE (Russia), MSTDS (Serbia), MICINN (Spain), CPAN (Spain), Swiss Funding Agencies (Switzerland), NSC (Taipei), TUBITAK (Turkey), TAEK (Turkey), STFC (United Kingdom), DOE (USA), NSF (USA), European Union, Leventis Foundation, A.P. Sloan Foundation, Alexander von Humboldt Foundation BMWFW (Austria), FWF (Austria), FNRS (Belgium), FWO (Belgium), CNPq (Brazil), CAPES (Brazil), FAPERJ (Brazil), FAPESP (Brazil), MES (Bulgaria), CERN, CAS (China), MoST (China), NSFC (China), COLCIENCIAS (Colombia), MSES (Croatia), CSF (Croatia), RPF (Cyprus), MoER (Estonia), ERC IUT (Estonia), ERDF (Estonia), Academy of Finland, MEC (Finland), HIP (Finland), CEA (France), CNRS/IN2P3 (France), BMBF, Germany, DFG (Germany), HGF (Germany), GSRT (Greece), OTKA (Hungary), NIH (Hungary), DAE (India), DST (India), IPM (Iran), SFI (Ireland), INFN (Italy), MSIP (Republic of Korea), NRF (Republic of Korea), LAS (Lithuania), MOE (Malaysia), UM (Malaysia), CINVESTAV (Mexico), CONACYT (Mexico), SEP (Mexico), UASLP-FAI (Mexico), MBIE (New Zealand), PAEC (Pakistan), MSHE (Poland), NSC (Poland), FCT (Portugal), JINR (Dubna), MON (Russia), RosAtom (Russia), RAS (Russia), RFBR (Russia), MESTD (Serbia), SEIDI (Spain), CPAN (Spain), Swiss Funding Agencies (Switzerland), MST (Taipei), ThEPCenter (Thailand), IPST (Thailand), STAR (Thailand), NSTDA (Thailand), TUBITAK (Turkey), TAEK (Turkey), NASU (Ukraine), SFFR (Ukraine), STFC (United Kingdom), DOE (USA), NSF (USA)
BMWFW (Austria), FWF (Austria), FNRS (Belgium), FWO (Belgium), CNPq (Brazil), CAPES (Brazil), FAPERJ (Brazil), FAPESP (Brazil), MES (Bulgaria), CERN, CAS (China), MoST (China), NSFC (China), COLCIENCIAS (Colombia), MSES (Croatia), CSF (Croatia), RPF (Cyprus), MoER (Estonia), ERC IUT (Estonia), ERDF (Estonia), Academy of Finland, MEC (Finland), HIP (Finland), CEA (France), CNRS/IN2P3 (France), BMBF, Germany, DFG (Germany), HGF (Germany), GSRT (Greece), OTKA (Hungary), NIH (Hungary), DAE (India), DST (India), IPM (Iran), SFI (Ireland), INFN (Italy), NRF (Republic of Korea), WCU (Republic of Korea), LAS (Lithuania), MOE (Malaysia), UM (Malaysia), CINVESTAV (Mexico), CONACYT (Mexico), SEP (Mexico), UASLP-FAI (Mexico), MBIE (New Zealand), PAEC (Pakistan), MSHE (Poland), NSC (Poland), FCT (Portugal), JINR (Dubna), MON (Russia), RosAtom (Russia), RAS (Russia), RFBR (Russia), MESTD (Serbia), SEIDI (Spain), CPAN (Spain), Swiss Funding Agencies (Switzerland), MST (Taipei), ThEPCenter (Thailand), IPST (Thailand), STAR (Thailand), NSTDA (Thailand), TUBITAK (Turkey), TAEK (Turkey), NASU (Ukraine), SFFR (Ukraine), STFC (United Kingdom), DOE (USA), NSF (USA) FMSR (Austria), FNRS, FWO (Belgium), CNPq, CAPES, FAPERJ, FAPESP (Brazil), MES (Bulgaria), CERN, CAS, MoST, NSFC (China), COLCIENCIAS (Colombia), MSES (Croatia), RPF (Cyprus), Academy of Sciences, NICPB (Estonia), Academy of Finland, ME, HIP (Finland), CEA, CNRS/IN2P3 (France), BMBF, Germany, DFG, HGF (Germany), GSRT (Greece), OTKA, NKTH (Hungary), DAE, DST (India), IPM (Iran), SFI (Ireland), INFN (Italy), NRF, WCU (Korea), LAS (Lithuania), CINVESTAV, CONACYT, SEP, UASLP-FAI (Mexico), PAEC (Pakistan), SCSR (Poland), FCT (Portugal), JINR (Armenia), JINR (Belarus), JINR (Georgia), JINR (Ukraine), JINR (Uzbekistan), MST, MAE (Russia), MSTD (Serbia), MICINN, CPAN (Spain), Swiss Funding Agencies (Switzerland), NSC (Taipei), TUBITAK, TAEK (Turkey), STFC (United Kingdom), DOE, NSF (USA)
SCOAP3 BMWF (Austria), FWF (Austria), FNRS (Belgium), FWO (Belgium), CNPq (Brazil), CAPES (Brazil), FAPERJ (Brazil), FAPESP (Brazil), MES (Bulgaria), CERN, CAS (China), MoST (China), NSFC (China), COLCIENCIAS (Colombia), MSES (Croatia), RPF (Cyprus), MoER (Estonia) [SF0690030s09], ERDF (Estonia), Academy of Finland, MEC (Finland), HIP (Finland), CEA (France), CNRS/IN2P3 (France), BMBF, Germany, DFG (Germany), HGF (Germany), GSRT (Greece), OTKA (Hungary), NKTH (Hungary), DAE (India), DST (India), IPM (Iran), SFI (Ireland), INFN (Italy), NRF (Korea), WCU (Korea), LAS (Lithuania), CINVESTAV (Mexico), CONACYT (Mexico), SEP (Mexico), UASLP-FAI (Mexico), MSI (New Zealand), PAEC (Pakistan), MSHE (Poland), NSC (Poland), FCT (Portugal), JINR (Armenia), JINR (Belarus), JINR (Georgia), JINR (Ukraine), JINR (Uzbekistan), MON (Russia), RosAtom (Russia), RAS (Russia), RFBR (Russia), MSTD (Serbia), SEIDI (Spain), CPAN (Spain), Swiss Funding Agencies (Switzerland), NSC (Taipei), ThEP (Thailand), IPST (Thailand), NECTEC (Thailand), TUBITAK (Turkey), TAEK (Turkey), NASU (Ukraine), STFC (United Kingdom), DOE (USA), NSF (USA), Marie-Curie programme (European Union), European Research Council (European Union), Leventis Foundation, A.P. Sloan Foundation, Alexander von Humboldt Foundation, Austrian Science Fund (FWF), Belgian Federal Science Policy Office, Fonds pour la Formation a la Recherche dans lIndustrie et dans lAgriculture (FRIA-Belgium), Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium), Ministry of Education, Youth and Sports (MEYS) of Czech Republic, Council of Science and Industrial Research, India, Compagnia di San Paolo (Torino), HOMING PLUS programme of Foundation for Polish Science, European Union, Regional Development Fund
BMWF (Austria), FWF (Austria), FNRS (Belgium), FWO (Belgium), CNPq (Brazil), CAPES (Brazil), FAPERJ (Brazil), FAPESP (Brazil), MES (Bulgaria), CERN, CAS (China), MoST (China), NSFC (China), COLCIENCIAS (Colombia), MSES (Croatia), RPF (Cyprus), MoER (Estonia) [SF0690030s09], ERDF (Estonia), Academy of Finland, MEC (Finland), HIP (Finland), CEA (France), CNRS/IN2P3 (France), BMBF, Germany, DFG (Germany), HGF (Germany), GSRT (Greece), OTKA (Hungary), NKTH (Hungary), DAE (India), DST (India), IPM (Iran), SFI (Ireland), INFN (Italy), NRF (Korea), WCU (Korea), LAS (Lithuania), CINVESTAV (Mexico), CONACYT (Mexico), SEP (Mexico), UASLP-FAI (Mexico), MSI (New Zealand), PAEC (Pakistan), MSHE (Poland), NSC (Poland), FCT (Portugal), JINR (Armenia), JINR (Belarus), JINR (Georgia), JINR (Ukraine), JINR (Uzbekistan), MON (Russia), RosAtom (Russia), RAS (Russia), RFBR (Russia), MSTD (Serbia), SEIDI (Spain), CPAN (Spain), Swiss Funding Agencies (Switzerland), NSC (Taipei), TUBITAK (Turkey), TAEK (Turkey), STFC (United Kingdom), DOE (USA), NSF (USA) BMWFW (Austria), FWF (Austria), FNRS (Belgium), FWO (Belgium), CNPq (Brazil), CAPES (Brazil), FAPERJ (Brazil), FAPESP (Brazil), MES (Bulgaria), CERN, CAS (China), MoST (China), NSFC (China), COLCIENCIAS (Colombia), MSES (Croatia), CSF (Croatia), RPF (Cyprus), MoER (Estonia), ERC IUT (Estonia), ERDF (Estonia), Academy of Finland, MEC (Finland), HIP (Finland), CEA (France), CNRS/IN2P3 (France), BMBF, Germany, DFG (Germany), HGF (Germany), GSRT (Greece), OTKA (Hungary), NIH (Hungary), DAE (India), DST (India), IPM (Iran), SFI (Ireland), INFN (Italy), MSIP (Republic of Korea), NRF (Republic of Korea), LAS (Lithuania), MOE (Malaysia), UM (Malaysia), CINVESTAV (Mexico), CONACYT (Mexico), SEP (Mexico), UASLP-FAI (Mexico), MBIE (New Zealand), PAEC (Pakistan), MSHE (Poland), NSC (Poland), FCT (Portugal), JINR (Dubna), MON (Russia), RosAtom (Russia), RAS (Russia), RFBR (Russia), MESTD (Serbia), SEIDI (Spain), CPAN (Spain), Swiss Funding Agencies (Switzerland), MST (Taipei), ThEPCenter (Thailand), IPST (Thailand), STAR (Thailand), NSTDA (Thailand), TUBITAK (Turkey), TAEK (Turkey), NASU (Ukraine), SFFR (Ukraine), STFC (United Kingdom), DOE (U.S.), NSF (U.S.)
BMWFW (Austria), FWF (Austria), FNRS (Belgium), FWO (Belgium), CNPq (Brazil), CAPES (Brazil), FAPERJ (Brazil), FAPESP (Brazil), MES (Bulgaria), CERN, CAS (China), MoST (China), NSFC (China), COLCIENCIAS (Colombia), MSES (Croatia), CSF (Croatia), RPF (Cyprus), SENESCYT (Ecuador), MoER (Estonia), ERC IUT (Estonia), ERDF (Estonia), Academy of Finland, MEC (Finland), HIP (Finland), CEA (France), CNRS/IN2P3 (France), BMBF, Germany, DFG (Germany), HGF (Germany), GSRT (Greece), OTKA (Hungary), NIH (Hungary), DAE (India), DST (India), IPM (Iran), SFI (Ireland), INFN (Italy), MSIP (Republic of Korea), NRF (Republic of Korea), LAS (Lithuania), MOE (Malaysia), UM (Malaysia), BUAP (Mexico), CINVESTAV (Mexico), CONACYT (Mexico), LNS (Mexico), SEP (Mexico), UASLP-FAI (Mexico), MBIE (New Zealand), PAEC (Pakistan), MSHE (Poland), NSC (Poland), FCT (Portugal), JINR (Dubna), MON (Russia), RosAtom (Russia), RAS (Russia), RFBR (Russia), RAEP (Russia), MESTD (Serbia), SEIDI (Spain), CPAN (Spain), PCTI (Spain), FEDER (Spain), Swiss Funding Agencies (Switzerland), MST (Taipei), ThEPCenter (Thailand), IPST (Thailand), STAR (Thailand), NSTDA (Thailand), TUBITAK (Turkey), TAEK (Turkey), NASU (Ukraine), SFFR (Ukraine), STFC (United Kingdom), DOE (USA), NSF (USA) FMSR (Austria), FNRS (Belgium), FWO (Belgium), CNPq (Brazil), CAPES (Brazil), FAPERJ (Brazil), FAPESP (Brazil), MES (Bulgaria), CERN, CAS (China), MoST (China), NSFC (China), COLCIENCIAS (Colombia), MSES (Croatia), RPF (Cyprus), Academy of Sciences (Estonia), NICPB (Estonia), Academy of Finland, MEC (Finland), HIP (Finland), CEA (France), CNRS/IN2P3 (France), BMBF, Germany, DFG (Germany), HGF (Germany), GSRT (Greece), OTKA (Hungary), NKTH (Hungary), DAE (India), DST (India), IPM (Iran), SFI (Ireland), INFN (Italy), NRF (Korea), WCU (Korea), LAS (Lithuania), CINVESTAV (Mexico), CONACYT (Mexico), SEP (Mexico), UASLP-FAI (Mexico), MSI (New Zealand), PAEC (Pakistan), SCSR (Poland), FCT (Portugal), JINR (Armenia), JINR (Belarus), JINR (Georgia), JINR (Ukraine), JINR (Uzbekistan), MON (Russia), RosAtom (Russia), RAS (Russia), RFBR (Russia), MSTD (Serbia), MICINN (Spain), CPAN (Spain), Swiss Funding Agencies (Switzerland), NSC (Taipei), TUBITAK (Turkey), TAEK (Turkey), STFC (United Kingdom), DOE (USA), NSF (USA)
FMSR (Austria), FNRS (Belgium), FWO (Belgium), CNPq (Brazil), CAPES (Brazil), FAPERJ (Brazil), FAPESP (Brazil), MES (Bulgaria), CERN, CAS (China), MoST (China), NSFC (China), COLCIENCIAS (Colombia), MSES (Croatia), RPF (Cyprus), Academy of Sciences (Estonia), NICPB (Estonia), Academy of Finland, ME (Finland), HIP (Finland), CEA (France), CNRS (France) [IN2P3], BMBF, Germany, DFG (Germany), HGF (Germany), GSRT (Greece), OTKA (Hungary), NKTH (Hungary), DAE (India), DST (India), IPM (Iran), SFI (Ireland), INFN (Italy), NRF (Korea), WCU (Korea), LAS (Lithuania), CINVESTAV (Mexico), CONACYT (Mexico), SEP (Mexico), UASLP-FAI (Mexico), PAEC (Pakistan), SCSR (Poland), FCT (Portugal), JINR (Armenia), JINR (Belarus), JINR (Georgia), JINR (Ukraine), JINR (Uzbekistan), MST (Russia), MAE (Russia), MSTD (Serbia), MICINN (Spain), CPAN (Spain), Swiss Funding Agencies (Switzerland), NSC (Taipei), TUBITAK (Turkey), TAEK (Turkey), STFC (United Kingdom), DOE (USA), NSF (USA) FMSR (Austria), FNRS (Belgium), FWO (Belgium), CNPq (Brazil), CAPES (Brazil), FAPERJ (Brazil), FAPESP (Brazil), MES (Bulgaria), CERN, CAS (China), MoST (China), NSFC (China), COLCIENCIAS (Colombia), MSES (Croatia), RPF (Cyprus), MoER (Estonia) [SF0690030s09], ERDF (Estonia), Academy of Finland, MEC (Finland), HIP (Finland), CEA (France), CNRS/IN2P3 (France), BMBF, Germany, DFG (Germany), HGF (Germany), GSRT (Greece), OTKA (Hungary), NKTH (Hungary), DAE (India), DST (India), IPM (Iran), SFI (Ireland), INFN (Italy), NRF (Korea), WCU (Korea), LAS (Lithuania), CINVESTAV (Mexico), CONACYT (Mexico), SEP (Mexico), UASLP-FAI (Mexico), MSI (New Zealand), PAEC (Pakistan), MSHE (Poland), NSC (Poland), FCT (Portugal), JINR (Armenia), JINR (Belarus), JINR (Georgia), JINR (Ukraine), JINR (Uzbekistan), MON (Russia), RosAtom (Russia), RAS (Russia), RFBR (Russia), MSTD (Serbia), MICINN (Spain), CPAN (Spain), Swiss Funding Agencies (Switzerland), NSC (Taipei), TUBITAK (Turkey), TAEK (Turkey), STFC (United Kingdom), DOE (USA), NSF (USA)
FMSR (Austria), FNRS (Belgium), FWO (Belgium), CNPq (Brazil), CAPES (Brazil), FAPERJ (Brazil), FAPESP (Brazil), MES (Bulgaria), CERN (China), CAS (China), MoST (China), NSFC (China), COLCIENCIAS (Colombia), MSES (Croatia), RPF (Cyprus), Academy of Sciences and NICPB (Estonia), Academy of Finland, ME (Finland), HIP (Finland), CEA (France), CNRS/IN2P3 (France), BMBF, Germany, DFG (Germany), HGF (Germany), GSRT (Greece), OTKA (Hungary), NKTH (Hungary), DAE (India), DST (India), IPM (Iran), SFI (Ireland), INFN (Italy), NRF (Korea), WCU (Korea), LAS (Lithuania), CINVESTAV (Mexico), CONACYT (Mexico), SEP (Mexico), UASLP-FAI (Mexico), PAEC (Pakistan), SCSR (Poland), FCT (Portugal), JINR (Armenia), JINR (Belarus), JINR (Georgia), JINR (Ukraine), JINR (Uzbekistan), MST (Russia), MAE (Russia), MSTD (Serbia), MICINN (Spain), CPAN (Spain), Swiss Funding Agencies (Switzerland), NSC (Taipei), TUBITAK (Turkey), TAEK (Turkey), STFC (United Kingdom), DOE (USA), NSF (USA) FMSR (Austria), FNRS (Belgium), FWO (Belgium), CNPq (Brazil), CAPES (Brazil), FAPERJ (Brazil), FAPESP (Brazil), MES (Bulgaria), CERN (China), CAS (China), MoST (China), NSFC (China), COLCIENCIAS (Colombia), MSES (Croatia), RPF (Cyprus), Academy of Sciences (Estonia), NICPB (Estonia), Academy of Finland, ME (Finland), HIP (Finland), CEA (France), CNRS/IN2P3 (France), BMBF, Germany, DFG (Germany), HGF (Germany), GSRT (Greece), OTKA (Hungary), NKTH (Hungary), DAE (India), DST (India), IPM (Iran), SFI (Ireland), INFN (Italy), NRF (Korea), WCU (Korea), LAS (Lithuania), CINVESTAV (Mexico), CONACYT (Mexico), SEP (Mexico), UASLP-FAI (Mexico), PAEC (Pakistan), SCSR (Poland), FCT (Portugal), JINR (Armenia), JINR (Belarus), JINR (Georgia), JINR (Ukraine), JINR (Uzbekistan), MST (Russia), MAE (Russia), MSTD (Serbia), MICINN (Spain), CPAN (Spain), Swiss Funding Agencies (Switzerland), NSC (Taipei), TUBITAK (Turkey), TAEK (Turkey), STFC (United Kingdom), DOE (USA), NSF (USA)
FMSR (Austria), FNRS, FWO (Belgium), CNPq, CAPES, FAPERJ, FAPESP (Brazil), MES (Bulgaria), CERN, CAS, MoST, NSFC (China), COLCIENCIAS (Colombia), MSES (Croatia), RPF (Cyprus), MoER [SF0690030s09], ERDF (Estonia), Academy of Finland, MEC, HIP (Finland), CEA, CNRS/IN2P3 (France), BMBF, Germany, DFG, HGF (Germany), GSRT (Greece), OTKA, NKTH (Hungary), DAE, DST (India), IPM (Iran), SFI (Ireland), INFN (Italy), NRF, WCU (Korea), LAS (Lithuania), CINVESTAV, CONACYT, SEP, UASLP-FAI (Mexico), MSI (New Zealand), PAEC (Pakistan), MSHE, NSC (Poland), FCT (Portugal), JINR (Armenia), JINR (Belarus), JINR (Georgia), JINR (Ukraine), JINR (Uzbekistan), MON, RosAtom, RAS, RFBR (Russia), MSTD (Serbia), MICINN, CPAN (Spain), Swiss Funding Agencies (Switzerland), NSC (Taipei), TUBITAK, TAEK (Turkey), STFC (United Kingdom), DOE, NSF (USA) Science and Technology Facilities Council [CMS, ST/K001604/1]
ANPCyT, Argentina, YerPhI (Armenia), ARC, Australia, BMWFW (Austria), FWF (Austria), ANAS, Azerbaijan, SSTC (Belarus), FNRS (Belgium), FWO (Belgium), CNPq (Brazil), CAPES (Brazil), FAPERJ (Brazil), FAPESP (Brazil), MES (Bulgaria), NSERC (Canada), NRC (Canada), CFI (Canada), CERN, CONICYT (Chile), CAS (China), MoST (China), NSFC (China), COLCIENCIAS (Colombia), MSES (Croatia), CSF (Croatia), RPF (Cyprus), MSMT CR (Czech Republic), MPO CR (Czech Republic), VSC CR (Czech Republic), DNRF (Denmark), DNSRC (Denmark), Lundbeck Foundation (Denmark), MoER (Estonia), ERC IUT (Estonia), ERDF (Estonia), EPLANET (European Union), ERC (European Union), NSRF (European Union), Academy of Finland, MEC (Finland), HIP (Finland), CEA (France), CNRS/IN2P3 (France), GNSF (Georgia), BMBF, Germany, DFG (Germany), HGF (Germany), MPG (Germany), AvH Foundation (Germany), GSRT (Greece), NSRF (Greece), RGC (Hong Kong SAR, China), OTKA (Hungary), NIH (Hungary), DAE (India), DST (India), IPM (Iran), SFI (Ireland), ISF (Israel), MINERVA (Israel), GIF (Israel), I-CORE (Israel), Benoziyo Center, Israel, INFN (Italy), MEXT (Japan), JSPS (Japan), JINR, MSIP (Republic of Korea), NRF (Republic of Korea), LAS (Lithuania), MOE (Malaysia), UM (Malaysia), CINVESTAV (Mexico), CONACYT (Mexico), SEP (Mexico), UASLP-FAI (Mexico), CNRST (Morocco), FOM (Netherlands), NWO (Netherlands), MBIE (New Zealand), BRF (Norway), RCN (Norway), PAEC (Pakistan), MNiSW (Poland), MSHE (Poland), NCN (Poland), NSC (Poland), GRICES (Portugal), FCT (Portugal), MNE/IFA (Romania), MES of Russia (Russian Federation), MON (Russian Federation), RosAtom (Russian Federation), RAS (Russian Federation), RFBR (Russian Federation), MSTD (Serbia), MESTD (Serbia), MSSR (Slovakia), ARRS (Slovenia), MIZS (Slovenia), DST/NRF (South Africa), MINECO (Spain), SEIDI (Spain), CPAN (Spain), SRC (Switzerland), NSC (Taipei), MST (Taiwan), ThEPCenter (Thailand), IPST (Thailand), STAR (Thailand), NSTDA (Thailand), TUBITAK (Turkey), TAEK (Turkey), NASU (Ukraine), SFFR (Ukraine), STFC (U.K.), Royal Society and Leverhulme Trust (U.K.), DOE (U.S.), NSF (U.S.), Wallenberg Foundation (Sweden), ETH Board (Switzerland), ETH Zurich (Switzerland), PSI (Switzerland), SER (Switzerland), SNSF (Switzerland), UniZH (Switzerland), Cantons of Bern (Switzerland), Cantons of Geneve (Switzerland), Cantons of Zurich (Switzerland), ICREA ANPCyT, Argentina, YerPhI (Armenia), ARC, Australia, BMWFW (Austria), FWF (Austria), ANAS, Azerbaijan, SSTC (Belarus), FNRS (Belgium), FWO (Belgium), CNPq (Brazil), CAPES (Brazil), FAPERJ (Brazil), FAPESP (Brazil), MES (Bulgaria), NSERC (Canada), NRC (Canada), CFI (Canada), CERN, CONICYT (Chile), CAS (China), MoST (China), NSFC (China), COLCIENCIAS (Colombia), MSES (Croatia), CSF (Croatia), RPF (Cyprus), MSMT CR (Czech Republic), MPO CR (Czech Republic), VSC CR (Czech Republic), DNRF (Denmark), DNSRC (Denmark), MoER (Estonia), ERC IUT (Estonia), ERDF (Estonia), Academy of Finland, MEC (Finland), HIP (Finland), CEA (France), CNRS/IN2P3 (France), GNSF (Georgia), BMBF, Germany, DFG (Germany), HGF (Germany), MPG (Germany), GSRT (Greece), RGC (Hong Kong SAR, China), OTKA (Hungary), NIH (Hungary), DAE (India), DST (India), IPM (Iran), SFI (Ireland), ISF (Israel), I-CORE (Israel), Benoziyo Center, Israel, INFN (Italy), MEXT (Japan), JSPS (Japan), JINR, MSIP (Republic of Korea), NRF (Republic of Korea), LAS (Lithuania), MOE (Malaysia), UM (Malaysia), BUAP (Mexico), CINVESTAV (Mexico), CONACYT (Mexico), LNS (Mexico), SEP (Mexico), UASLP-FAI (Mexico), CNRST (Morocco), FOM (Netherlands), NWO (Netherlands), MBIE (New Zealand), RCN (Norway), PAEC (Pakistan), MNiSW (Poland), MSHE (Poland), NCN (Poland), NSC (Poland), FCT (Portugal), MNE/IFA (Romania), MES of Russia (Russian Federation), MON (Russian Federation), NRC KI (Russian Federation), RosAtom (Russian Federation), RAS (Russian Federation), RFBR (Russian Federation), MESTD (Serbia), MSSR (Slovakia), ARRS (Slovenia), MIZS (Slovenia), DST/NRF (South Africa), MINECO (Spain), SEIDI (Spain), CPAN (Spain), SRC (Sweden), Wallenberg Foundation (Sweden), ETH Board (Switzerland), ETH Zurich (Switzerland), PSI (Switzerland), SERI (Switzerland), SNSF (Switzerland), UniZH (Switzerland), Canton of Bern (Switzerland), Canton of Geneva (Switzerland), Canton of Zurich (Switzerland), MOST (Taipei), ThEPCenter (Thailand), IPST (Thailand), STAR (Thailand), NSTDA (Thailand), TUBITAK (Turkey), TAEK (Turkey), NASU (Ukraine), SFFR (Ukraine), STFC (United Kingdom), DOE (United States of America), NSF (United States of America), BELSPO (Belgium), FRIA (Belgium), IWT (Belgium), BCKDF (Canada), Canada Council (Canada), CANARIE (Canada), CRC (Canada), Compute Canada (Canada), FQRNT (Canada), Ontario Innovation Trust (Canada), Leventis Foundation (Cyprus), MEYS (Czech Republic), EPLANET (European Union), ERC (European Union), FP7 (European Union), Horizon 2020 (European Union), Marie Sklodowska-Curie Actions (European Union), Investissements dAvenir Labex and Idex (France), ANR (France), Region Auvergne (France), Fondation Partager le Savoir (France), AvH Foundation (Germany), Herakleitos program - EU-ESF (Greece), Thales program - EU-ESF (Greece), Aristeia program - EU-ESF (Greece), Greek NSRF (Greece), CSIR (India), BSF (Israel), GIF (Israel), Minerva (Israel), BRF (Norway), HOMING PLUS programme of the FPS - EU Regional Development Fund (Poland), Mobility Plus programme of the MSHE (Poland), OPUS programme of the NSC (Poland), NPRP by Qatar NRF (Qatar), Generalitat de Catalunya (Spain), Generalitat Valenciana (Spain), Programa Clarin-COFUND del Principado de Asturias (Spain), Rachadapisek Sompot Fund for Postdoctoral Fellowship, Chulalongkorn University (Thailand), Chulalongkorn Academic into Its 2nd Century Project Advancement Project (Thailand), Royal Society (United Kingdom), Leverhulme Trust (United Kingdom), A.P. Sloan Foundation, Welch Foundation (United States of America)
Austrian de la Recherche Scientifique, Fonds voor Wetenschappelijk Onderzoek, CNPq, CAPES, FAPERJ, FAPESP, Bulgarian Ministry of Education and Science, CERN, Chinese Academy of Sciences, Ministry of Science and Technology, National Natural Science Foundation of China, Colombian Funding Agency (COLCIENCIAS), Croatian Ministry of Science, Education and Sport, Research Promotion Foundation, Cyprus, Ministry of Education and Research [SF0690030s09], European Regional Development Fund, Estonia, Academy of Finland, Finnish Ministry of Education and Culture, Helsinki Institute of Physics, Institut National de Physique Nucleaire et de Physique des Particules / CNRS, Commissariat a lEnergie Atomique et aux Energies Alternatives / CEA, France, Bundesministerium fur Bildung und Forschung, Deutsche Forschungsgemeinschaft, Helmholtz-Gemeinschaft Deutscher Forschungszentren, Germany, General Secretariat for Research and Technology, Greece, National Scientific Research Foundation, National Office for Research and Technology, Hungary, Department of Atomic Energy, Department of Science and Technology, India, Institute for Studies in Theoretical Physics and Mathematics, Iran, Science Foundation, Ireland, Istituto Nazionale di Fisica Nucleare, Italy, Korean Ministry of Education, Science and Technology, World Class University program of NRF, Republic of Korea, Lithuanian Academy of Sciences, CINVESTAV, CONACYT, SEP, UASLP-FAI, Ministry of Business, Innovation and Employment, New Zealand, Pakistan Atomic Energy Commission, Ministry of Science and Higher Education, National Science Centre, Poland, Fundacao para a Ciencia e a Tecnologia, Portugal, JINR, Dubna, Ministry of Education and Science of the Russian Federation, Federal Agency of Atomic Energy of the Russian Federation, Russian Academy of Sciences, Russian Foundation for Basic Research, Ministry of Education, Science and Technological Development of Serbia, Secretaria de Estado de Investigacion, Desarrollo e Innovacion, Programa Consolider-Ingenio, Spain, ETH Board, ETH Zurich, PSI, SNF, UniZH, Canton Zurich, SER, National Science Council, Taipei, Thailand Center of Excellence in Physics, Institute for the Promotion of Teaching Science and Technology of Thailand, Special Task Force for Activating Research, National Science and Technology Development Agency of Thailand, Scientific and Technical Research Council of Turkey, Turkish Atomic Energy Authority, Science and Technology Facilities Council, U.K., US Department of Energy, US National Science Foundation, Marie-Curie programme, European Research Council, EPLANET (European Union), Leventis Foundation, A.P. Sloan Foundation, Alexander von Humboldt Foundation, Belgian Federal Science Policy Office, Fonds pour la Formation a la Recherche dans lIndustrie et dans lAgriculture (FRIA-Belgium), Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium), Ministry of Education, Youth and Sports (MEYS) of Czech Republic, Council of Science and Industrial Research, India, Compagnia di San Paolo (Torino), HOMING PLUS programme of Foundation for Polish Science, EU, Regional Development Fund, Thalis and Aristeia programmes, EU-ESF, Greek NSRF Austrian Federal Ministry of Science and Research and the Austrian Science Fund, Belgian Fonds de la Recherche Scientifique, and Fonds voor Wetenschappelijk Onderzoek, Brazilian Funding Agencies (CNPq, CAPES, FAPERJ, and FAPESP), Bulgarian Ministry of Education and Science, CERN, Chinese Academy of Sciences, Ministry of Science and Technology, and National Natural Science Foundation of China, Colombian Funding Agency (COLCIENCIAS), Croatian Ministry of Science, Education and Sport, Research Promotion Foundation, Cyprus, Ministry of Education and Research [SF0690030s09], European Regional Development Fund, Estonia, Academy of Finland, Finnish Ministry of Education and Culture, and Helsinki Institute of Physics, Institut National de Physique Nucleaire et de Physique des Particules/CNRS, and Commissariat a lEnergie Atomique et aux Energies Alternatives/CEA, France, Bundesministerium fur Bildung und Forschung, Deutsche Forschungsgemeinschaft, and Helmholtz-Gemeinschaft Deutscher Forschungszentren, Germany, General Secretariat for Research and Technology, Greece, National Scientific Research Foundation, and National Office for Research and Technology, Hungary, Department of Atomic Energy and the Department of Science and Technology, India, Institute for Studies in Theoretical Physics and Mathematics, Iran, Science Foundation, Ireland, Istituto Nazionale di Fisica Nucleare, Italy, Korean Ministry of Education, Science and Technology and the World Class University program of NRF, Republic of Korea, Lithuanian Academy of Sciences, Mexican Funding Agencies (CINVESTAV, CONACYT, SEP, and UASLP-FAI), Ministry of Business, Innovation and Employment, New Zealand, Pakistan Atomic Energy Commission, Ministry of Science and Higher Education and the National Science Centre, Poland, Fundacao para a Ciencia e a Tecnologia, Portugal, JINR, Dubna, Ministry of Education and Science of the Russian Federation, the Federal Agency of Atomic Energy of the Russian Federation, Russian Academy of Sciences, and the Russian Foundation for Basic Research, Ministry of Education, Science and Technological Development of Serbia, Secretaria de Estado de Investigacion, Desarrollo e Innovacion and Programa Consolider-Ingenio, Spain, Swiss Funding Agencies (ETH Board, ETH Zurich, PSI, SNF, UniZH, Canton Zurich, and SER), National Science Council, Taipei, Thailand Center of Excellence in Physics, the Institute for the Promotion of Teaching Science and Technology of Thailand, Special Task Force for Activating Research and the National Science and Technology Development Agency of Thailand, Scientific and Technical Research Council of Turkey, and Turkish Atomic Energy Authority, Science and Technology Facilities Council, UK, U.S. Department of Energy, and the U.S. National Science Foundation, Marie-Curie program and the European Research Council and EPLANET (European Union), Leventis Foundation, A.P. Sloan Foundation, Alexander von Humboldt Foundation, Belgian Federal Science Policy Office, Fonds pour la Formation a la Recherche dans lIndustrie et dans lAgriculture (FRIA-Belgium), Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium), Ministry of Education, Youth and Sports (MEYS) of Czech Republic, Council of Science and Industrial Research, India, Compagnia di San Paolo (Torino), HOMING PLUS program of Foundation for Polish Science, EU, Regional Development Fund, Thalis and Aristeia programs, EU-ESF and the Greek NSRF
Austrian Federal Ministry of Science and Research and the Austrian Science Fund, Belgian Fonds de la Recherche Scientifique, Fonds voor Wetenschappelijk Onderzoek, Brazilian Funding Agency (CNPq), Brazilian Funding Agency (CAPES), Brazilian Funding Agency(FAPERJ), Brazilian Funding Agency (FAPESP), Bulgarian Ministry of Education and Science, CERN, Chinese Academy of Sciences, Ministry of Science and Technology, and National Natural Science Foundation of China, Colombian Funding Agency (COLCIENCIAS), Croatian Ministry of Science, Education and Sport, Research Promotion Foundation, Cyprus, Ministry of Education and Research [SF0690030s09], European Regional Development Fund, Estonia, Academy of Finland, Finnish Ministry of Education and Culture, Helsinki Institute of Physics, Institut National de Physique Nucleaire et de Physique des Particules / CNRS, Commissariat a lEnergie Atomique et aux Energies Alternatives / CEA, France, Bundesministerium fur Bildung und Forschung, Deutsche Forschungsgemeinschaft, Helmholtz-Gemeinschaft Deutscher Forschungszentren, Germany, General Secretariat for Research and Technology, Greece, National Scientific Research Foundation, National Office for Research and Technology, Hungary, Department of Atomic Energy and the Department of Science and Technology, India, Institute for Studies in Theoretical Physics and Mathematics, Iran, Science Foundation, Ireland, Istituto Nazionale di Fisica Nucleare, Italy, Korean Ministry of Education, Science and Technology, World Class University program of NRF, Republic of Korea, Lithuanian Academy of Sciences, Mexican Funding Agency (CINVESTAV), Mexican Funding Agency (CONACYT), Mexican Funding Agency (SEP), Mexican Funding Agency (UASLP-FAI), Ministry of Business, Innovation and Employment, New Zealand, Pakistan Atomic Energy Commission, Ministry of Science and Higher Education, National Science Centre, Poland, Fundacao para a Ciencia e a Tecnologia, Portugal, JINR, Dubna, Ministry of Education and Science of the Russian Federation, Federal Agency of Atomic Energy of the Russian Federation, Russian Academy of Sciences, Russian Foundation for Basic Research, Ministry of Education, Science and Technological Development of Serbia, Secretaria de Estado de Investigacion, Desarrollo e Innovacion and Programa Consolider-Ingenio, spain, Swiss Funding Agency (ETH Board), Swiss Funding Agency (ETH Zurich), Swiss Funding Agency (PSI), Swiss Funding Agency (SNF), Swiss Funding Agency (UniZH), Swiss Funding Agency (Canton Zurich), Swiss Funding Agency (SER), National Science Council, Taipei, Thailand Center of Excellence in Physics, Institute for the Promotion of Teaching Science and Technology of Thailand, Special Task Force for Activating Research, National Science and Technology Development Agency of Thailand, Scientific and Technical Research Council of Turkey, Turkish Atomic Energy Authority, Science and Technology Facilities Council, U.K, US Department of Energy, US National Science Foundation, Marie-Curie programme, European Research Council and EPLANET (European Union), Leventis Foundation, A.P. Sloan Foundation, Alexander von Humboldt Foundation, Belgian Federal Science Policy Office, Fonds pour la Formation a la Recherche dans lIndustrie et dans lAgriculture (FRIA-Belgium), Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium), Ministry of Education, Youth and Sports (MEYS) of Czech Republic, Council of Science and Industrial Research, India, Compagnia di San Paolo (Torino), HOMING PLUS programme of Foundation for Polish Science, EU, Regional Development Fund, Thalis and Aristeia programmes, EU-ESF, Greek NSRF Austrian Federal Ministry of Science and Research, Austrian Science Fund, Belgian Fonds de la Recherche Scientifique, Fonds voor Wetenschappelijk Onderzoek, Brazilian Funding Agency (CNPq), Brazilian Funding Agency (CAPES), Brazilian Funding Agency (FAPERJ), Brazilian Funding Agency (FAPESP), Bulgarian Ministry of Education and Science, CERN, Chinese Academy of Sciences, Ministry of Science and Technology, National Natural Science Foundation of China, Colombian Funding Agency (COLCIENCIAS), Croatian Ministry of Science, Education and Sport, Research Promotion Foundation, Cyprus, Ministry of Education and Research [SF0690030s09], European Regional Development Fund, Estonia, Academy of Finland, Finnish Ministry of Education and Culture, Helsinki Institute of Physics, Institut National de Physique Nucleaire et de Physique des Particules / CNRS, Commissariat a lEnergie Atomique et aux Energies Alternatives / CEA, France, Bundesministerium fur Bildung und Forschung, Deutsche Forschungsgemeinschaft, Helmholtz-Gemeinschaft Deutscher Forschungszentren, Germany, General Secretariat for Research and Technology, Greece, National Scientific Research Foundation, National Office for Research and Technology, Hungary, Department of Atomic Energy, Department of Science and Technology, India, Institute for Studies in Theoretical Physics and Mathematics, Iran, Science Foundation, Ireland, Istituto Nazionale di Fisica Nucleare, Italy, Korean Ministry of Education, Science and Technology, World Class University program of NRF, Republic of Korea, Lithuanian Academy of Sciences, CINVESTAV, CONACYT, SEP, UASLP-FAI, Ministry of Science and Innovation, New Zealand, Pakistan Atomic Energy Commission, Ministry of Science and Higher Education, National Science Centre, Poland, Fundacao para a Ciencia e a Tecnologia, Portugal, JINR, Dubna, Ministry of Education and Science of the Russian Federation, Federal Agency of Atomic Energy of the Russian Federation, Russian Academy of Sciences, Russian Foundation for Basic Research, Ministry of Education, Science and Technological Development of Serbia, Secretaria de Estado de Investigacion, Desarrollo e Innovacion and Programa Consolider-Ingenio, Spain, ETH Board, ETH Zurich, PSI, SNF, UniZH, Canton Zurich, SER, National Science Council, Taipei, Thailand Center of Excellence in Physics, Institute for the Promotion of Teaching Science and Technology of Thailand, Special Task Force for Activating Research, National Science and Technology Development Agency of Thailand, Scientific and Technical Research Council of Turkey, Turkish Atomic Energy Authority, Science and Technology Facilities Council, U.K., US Department of Energy, US National Science Foundation, Marie-Curie programme, European Research Council, EPLANET (European Union), Leventis Foundation, A.P. Sloan Foundation, Alexander von Humboldt Foundation, Belgian Federal Science Policy Office, Fonds pour la Formation a la Recherche dans lIndustrie et dans lAgriculture (FRIA-Belgium), Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium), Ministry of Education, Youth and Sports (MEYS) of Czech Republic, Council of Science and Industrial Research, India, Compagnia di San Paolo (Torino), HOMING PLUS programme of Foundation for Polish Science, EU, Regional Development Fund, Thalis and Aristeia programmes, EU-ESF, Greek NSRF
Austrian Federal Ministry of Science and Research, Austrian Science Fund, Belgian Fonds de la Recherche Scientifique, Fonds voor Wetenschappelijk Onderzoek, CNPq, CAPES, FAPERJ, FAPESP, Bulgarian Ministry of Education and Science, CERN, Chinese Academy of Sciences, Ministry of Science and Technology, and National Natural Science Foundation of China, Colombian Funding Agency (COLCIENCIAS), Croatian Ministry of Science, Education and Sport, Croatian Science Foundation, Research Promotion Foundation, Cyprus, Ministry of Education and Research [SF0690030s09], European Regional Development Fund, Estonia, Academy of Finland, Finnish Ministry of Education and Culture, and Helsinki Institute of Physics, Institut National de Physique Nucleaire et de Physique des Particules / CNRS, Commissariat a lEnergie Atomique et aux Energies Alternatives / CEA, France, Bundesministerium fur Bildung und Forschung, Deutsche Forschungsgemeinschaft, Helmholtz-Gemeinschaft Deutscher Forschungszentren, Germany, General Secretariat for Research and Technology, Greece, National Scientific Research Foundation, National Innovation Office, Hungary, Department of Atomic Energy, Department of Science and Technology, India, Institute for Studies in Theoretical Physics and Mathematics, Iran, Science Foundation, Ireland, Istituto Nazionale di Fisica Nucleare, Italy, Korean Ministry of Education, Science and Technology, World Class University program of NRF, Republic of Korea, Lithuanian Academy of Sciences, Ministry of Education, and University of Malaya (Malaysia), CINVESTAV, CONACYT, SEP, UASLP-FAI, Ministry of Business, Innovation and Employment, New Zealand, Pakistan Atomic Energy Commission, Ministry of Science and Higher Education, National Science Centre, Poland, Funda, cao para a Ciencia e a Tecnologia, Portugal, JINR, Dubna, Ministry of Education and Science of the Russian Federation, Federal Agency of Atomic Energy of the Russian Federation, Russian Academy of Sciences, Russian Foundation for Basic Research, Ministry of Education, Science and Technological Development of Serbia, Secretaria de Estado de Investigacion, Desarrollo e Innovacion and Programa Consolider-Ingenio, Spain, ETH Board, ETH Zurich, PSI, SNF, UniZH, Canton Zurich, SER, National Science Council, Taipei, Thailand Center of Excellence in Physics, Institute for the Promotion of Teaching Science and Technology of Thailand, Special Task Force for Activating Research, National Science and Technology Development Agency of Thailand, Scientific and Technical Research Council of Turkey, Turkish Atomic Energy Authority, Science and Technology Facilities Council, U.K., US Department of Energy, and the US National Science Foundation, Marie-Curie programme, European Research Council and EPLANET (European Union), Leventis Foundation, A.P. Sloan Foundation, Alexander von Humboldt Foundation, Belgian Federal Science Policy Office, Fonds pour la Formation a la Recherche dans lIndustrie et dans lAgriculture (FRIA-Belgium), Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium), Ministry of Education, Youth and Sports (MEYS) of Czech Republic, Council of Science and Industrial Research, India, Compagnia di San Paolo (Torino), HOMING PLUS programme of Foundation for Polish Science, EU, Regional Development Fund, Thalis and Aristeia programmes, EU-ESF, Greek NSRF Austrian Federal Ministry of Science and Research, Austrian Science Fund, Belgian Fonds de la Recherche Scientifique, Fonds voor Wetenschappelijk Onderzoek, CNPq, CAPES, FAPERJ, FAPESP, Bulgarian Ministry of Education and Science, CERN, Chinese Academy of Sciences, Ministry of Science and Technology, National Natural Science Foundation of China, Colombian Funding Agency (COLCIENCIAS), Croatian Ministry of Science, Education and Sport, Croatian Science Foundation, Research Promotion Foundation, Cyprus, Ministry of Education and Research, European Regional Development Fund, Estonia, Academy of Finland, Finnish Ministry of Education and Culture, Helsinki Institute of Physics, Institut National de Physique Nucleaire et de Physique des Particules / CNRS, Commissariat a lEnergie Atomique et aux Energies Alternatives / CEA, France, Bundesministerium fur Bildung und Forschung, Deutsche Forschungsgemeinschaft, Helmholtz-Gemeinschaft Deutscher Forschungszentren, Germany, General Secretariat for Research and Technology, Greece, National Scientific Research Foundation, National Innovation Office, Hungary, Department of Atomic Energy, Department of Science and Technology, India, Institute for Studies in Theoretical Physics and Mathematics, Iran, Science Foundation, Ireland, Istituto Nazionale di Fisica Nucleare, Italy, Korean Ministry of Education, Science and Technology, World Class University program of NRF, Republic of Korea, Lithuanian Academy of Sciences, CINVESTAV, CONACYT, SEP, UASLP-FAI, Ministry of Business, Innovation and Employment, New Zealand, Pakistan Atomic Energy Commission, Ministry of Science and Higher Education, National Science Centre, Poland, Fundacao para a Ciencia e a Tecnologia, Portugal, JINR, Dubna, Ministry of Education and Science of the Russian Federation, Federal Agency of Atomic Energy of the Russian Federation, Russian Academy of Sciences, Russian Foundation for Basic Research, Ministry of Education, Science and Technological Development of Serbia, Secretaria de Estado de Investigacion, Desarrollo e Innovacion and Programa Consolider-Ingenio, Spain, ETH Board, ETH Zurich, PSI, SNF, UniZH, Canton Zurich, SER, National Science Council, Taipei, Thailand Center of Excellence in Physics, Institute for the Promotion of Teaching Science and Technology of Thailand, Special Task Force for Activating Research, National Science and Technology Development Agency of Thailand, Scientific and Technical Research Council of Turkey, Turkish Atomic Energy Authority, Science and Technology Facilities Council, U.K., US Department of Energy, US National Science Foundation, Marie-Curie programme, European Research Council, EPLANET (European Union), Leventis Foundation, A.P. Sloan Foundation, Alexander von Humboldt Foundation, Belgian Federal Science Policy Office, Fonds pour la Formation a la Recherche dans lIndustrie et dans lAgriculture (FRIA-Belgium), Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium), Ministry of Education, Youth and Sports (MEYS) of Czech Republic, Council of Science and Industrial Research, India, Compagnia di San Paolo (Torino), HOMING PLUS programme of Foundation for Polish Science, EU, Regional Development Fund, EU-ESF, Greek NSRF, [SF0690030s09]
Austrian Federal Ministry of Science and Research, Austrian Science Fund, Belgian Fonds de la Recherche Scientifique, Fonds voor Wetenschappelijk Onderzoek, CNPq, CAPES, FAPERJ, FAPESP, Bulgarian Ministry of Education and Science, CERN, Chinese Academy of Sciences, Ministry of Science and Technology, National Natural Science Foundation of China, Colombian Funding Agency (COLCIENCIAS), Croatian Ministry of Science, Education and Sport, Croatian Science Foundation, Research Promotion Foundation, Cyprus, Ministry of Education and Research, European Regional Development Fund, Estonia, Academy of Finland, Finnish Ministry of Education and Culture, Helsinki Institute of Physics, Institut National de Physique Nucleaire et de Physique des Particules / CNRS, Commissariat a lEnergie Atomique et aux Energies Alternatives / CEA, France, Bundesministerium fur Bildung und Forschung, Deutsche Forschungsgemeinschaft, Helmholtz-Gemeinschaft Deutscher Forschungszentren, Germany, General Secretariat for Research and Technology, Greece, National Scientific Research Foundation, National Innovation Office, Hungary, Department of Atomic Energy, India, Department of Science and Technology, India, Institute for Studies in Theoretical Physics and Mathematics, Iran, Science Foundation, Ireland, Istituto Nazionale di Fisica Nucleare, Italy, Korean Ministry of Education, Science and Technology, Republic of Korea, World Class University program of NRF, Republic of Korea, Lithuanian Academy of Sciences, Ministry of Education (Malaysia), University of Malaya (Malaysia), CINVESTAV, Mexican Funding Agency, CONACYT, Mexican Funding Agency, SEP, Mexican Funding Agency, UASLP-FAI, Mexican Funding Agency, Ministry of Business, Innovation and Employment, New Zealand, Pakistan Atomic Energy Commission, Ministry of Science and Higher Education, Poland, National Science Centre, Poland, Fundacao para a Ciencia e a Tecnologia, Portugal, JINR, Dubna, Ministry of Education and Science of the Russian Federation, Federal Agency of Atomic Energy of the Russian Federation, Russian Academy of Sciences, Russian Foundation for Basic Research, Ministry of Education, Science and Technological Development of Serbia, Secretaria de Estado de Investigacion, Spain, Desarrollo e Innovacion, Spain, Programa Consolider-Ingenio, Spain, ETH Board, Swiss Funding Agency, ETH Zurich, Swiss Funding Agency, PSI, Swiss Funding Agency, SNF, Swiss Funding Agency, UniZH, Swiss Funding Agency, Canton Zurich, Swiss Funding Agency, SER, Swiss Funding Agency, National Science Council, Taipei, Thailand Center of Excellence in Physics, Institute for the Promotion of Teaching Science and Technology of Thailand, Special Task Force for Activating Research, National Science and Technology Development Agency of Thailand, Scientific and Technical Research Council of Turkey, Turkish Atomic Energy Authority, Science and Technology Facilities Council, UK, US Department of Energy, US National Science Foundation, Marie-Curie programme (European Union), European Research Council (European Union), EPLANET (European Union), Leventis Foundation, A.P. Sloan Foundation, Alexander von Humboldt Foundation, Belgian Federal Science Policy Office (FRIA-Belgium), Fonds pour la Formation a la Recherche dans lIndustrie et dans lAgriculture (FRIA-Belgium), Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium), Ministry of Education, Youth and Sports (MEYS) of Czech Republic, Council of Science and Industrial Research, India, Compagnia di San Paolo (Torino), HOMING PLUS programme of Foundation for Polish Science, EU, Regional Development Fund, Thalis and Aristeia programmes - EU-ESF, Greek NSRF, [SF0690030s09] Austrian Federal Ministry of Science and Research, Austrian Science Fund, Belgian Fonds de la Recherche Scientifique, Fonds voor Wetenschappelijk Onderzoek, CNPq, CAPES, FAPERJ, FAPESP, Bulgarian Ministry of Education and Science, CERN, Chinese Academy of Sciences, Ministry of Science and Technology, National Natural Science Foundation of China, Colombian Funding Agency (COLCIENCIAS), Croatian Ministry of Science, Education and Sport, Croatian Science Foundation, Research Promotion Foundation, Cyprus, Ministry of Education and Research, Recurrent financing contract [SF0690030s09], European Regional Development Fund, Estonia, Academy of Finland, Finnish Ministry of Education and Culture, Helsinki Institute of Physics, Institut National de Physique Nucleaire et de Physique des Particules / CNRS, Commissariat a lEnergie Atomique et aux Energies Alternatives / CEA, France, Bundesministerium fur Bildung und Forschung, Deutsche Forschungsgemeinschaft, Helmholtz-Gemeinschaft Deutscher Forschungszentren, Germany, General Secretariat for Research and Technology, Greece, National Scientific Research Foundation, National Innovation Office, Hungary, Department of Atomic Energy, Department of Science and Technology, India, Institute for Studies in Theoretical Physics and Mathematics, Iran, Science Foundation, Ireland, Istituto Nazionale di Fisica Nucleare, Italy, Korean Ministry of Education, Science and Technology, World Class University program of NRF, Republic of Korea, Lithuanian Academy of Sciences, Ministry of Education, and University of Malaya (Malaysia), CINVESTAV, CONACYT, SEP, UASLP-FAI, Ministry of Business, Innovation and Employment, New Zealand, Pakistan Atomic Energy Commission, Ministry of Science and Higher Education, National Science Centre, Poland, Fundacao para a Ciencia e a Tecnologia, Portugal, JINR, Dubna, Ministry of Education and Science of the Russian Federation, Federal Agency of Atomic Energy of the Russian Federation, Russian Academy of Sciences, Russian Foundation for Basic Research, Ministry of Education, Science and Technological Development of Serbia, Secretaria de Estado de Investigacion, Desarrollo e Innovacion and Programa Consolider-Ingenio, Spain, ETH Board, ETH Zurich, PSI, SNF, UniZH, Canton Zurich, SER, National Science Council, Taipei, Thailand Center of Excellence in Physics, Institute for the Promotion of Teaching Science and Technology of Thailand, Special Task Force for Activating Research, National Science and Technology Development Agency of Thailand, Scientific and Technical Research Council of Turkey, Turkish Atomic Energy Authority, National Academy of Sciences of Ukraine, State Fund for Fundamental Researches, Ukraine, Science and Technology Facilities Council, U.K., US Department of Energy, US National Science Foundation, Marie-Curie programme, European Research Council, EPLANET (European Union), Leventis Foundation, A.P. Sloan Foundation, Alexander von Humboldt Foundation, Belgian Federal Science Policy Office, Fonds pour la Formation a la Recherche dans lIndustrie et dans lAgriculture (FRIA-Belgium), Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium), Ministry of Education, Youth and Sports (MEYS) of Czech Republic, Council of Science and Industrial Research, India, Compagnia di San Paolo (Torino), HOMING PLUS programme of Foundation for Polish Science, EU, Regional Development Fund, Thalis and Aristeia programmes, EU-ESF, Greek NSRF
Austrian Federal Ministry of Science and Research, Austrian Science Fund, Belgian Fonds de la Recherche Scientifique, Fonds voor Wetenschappelijk Onderzoek, CNPq, CAPES, FAPERJ, FAPESP, Bulgarian Ministry of Education and Science, CERN, Chinese Academy of Sciences, Ministry of Science and Technology, National Natural Science Foundation of China, Colombian Funding Agency (COLCIENCIAS), Croatian Ministry of Science, Education and Sport, Croatian Science Foundation, Research Promotion Foundation, Cyprus, Ministry of Education and Research [SF0690030s09], European Regional Development Fund, Estonia, Academy of Finland, Finnish Ministry of Education and Culture, Helsinki Institute of Physics, Institut National de Physique Nucleaire et de Physique des Particules/CNRS, Commissariat a lEnergie Atomique et aux Energies Alternatives/CEA, France, Bundesministerium fur Bildung und Forschung, Deutsche Forschungsgemeinschaft, Helmholtz-Gemeinschaft Deutscher Forschungszentren, Germany, General Secretariat for Research and Technology, Greece, National Scientific Research Foundation, National Innovation Office, Hungary, Department of Atomic Energy and the Department of Science and Technology, India, Institute for Studies in Theoretical Physics and Mathematics, Iran, Science Foundation, Ireland, Istituto Nazionale di Fisica Nucleare, Italy, Korean Ministry of Education, Science and Technology and the World Class University program of NRF, Republic of Korea, Lithuanian Academy of Sciences, Mexican Funding Agencies (CINVESTAV, CONACYT, SEP, and UASLP-FAI), Ministry of Business, Innovation and Employment, New Zealand, Pakistan Atomic Energy Commission, Ministry of Science and Higher Education, National Science Centre, Poland, Fundacao para a Ciencia e a Tecnologia, Portugal, JINR, Dubna, Ministry of Education and Science of the Russian Federation, Federal Agency of Atomic Energy of the Russian Federation, Russian Academy of Sciences, Russian Foundation for Basic Research, Ministry of Education, Science and Technological Development of Serbia, Secretaria a de Estado de Investigacion, Desarrollo e Innovacion and Programa Consolider-Ingenio, Spain, Swiss Funding Agencies (ETH Board, ETH Zurich, PSI, SNF, UniZH, Canton Zurich, and SER), National Science Council, Taipei, Thailand Center of Excellence in Physics, Institute for the Promotion of Teaching Science and Technology of Thailand, Special Task Force for Activating Research, National Science and Technology Development Agency of Thailand, Scientific and Technical Research Council of Turkey, Turkish Atomic Energy Authority, Science and Technology Facilities Council, UK, U.S. Department of Energy, U.S. National Science Foundation, Marie-Curie programme, European Research Council, EPLANET (European Union), Leventis Foundation, A.P. Sloan Foundation, Alexander von Humboldt Foundation, Belgian Federal Science Policy Office, Fonds pour la Formation a la Recherche dans lIndustrie et dans lAgriculture (FRIA-Belgium), Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium), Ministry of Education, Youth and Sports (MEYS) of Czech Republic, Council of Science and Industrial Research, India, Compagnia di San Paolo (Torino), HOMING PLUS programme of Foundation for Polish Science, EU, Regional Development Fund, EU-ESF, Greek NSRF Austrian Federal Ministry of Science and Research, Austrian Science Fund, Belgian Fonds de la Recherche Scientifique, Fonds voor Wetenschappelijk Onderzoek, CNPq, CAPES, FAPERJ, FAPESP, Bulgarian Ministry of Education and Science, CERN, Chinese Academy of Sciences, Ministry of Science and Technology, National Natural Science Foundation of China, Colombian Funding Agency (COLCIENCIAS), Croatian Ministry of Science, Education and Sport, Croatian Science Foundation, Research Promotion Foundation, Cyprus, Ministry of Education and Research [SF0690030s09], European Regional Development Fund, Estonia, Academy of Finland, Finnish Ministry of Education and Culture, Helsinki Institute of Physics, Institut National de Physique Nucleaire et de Physique des Particules / CNRS, Commissariat a lEnergie Atomique et aux Energies Alternatives / CEA, France, Bundesministerium fur Bildung und Forschung, Deutsche Forschungsgemeinschaft, Helmholtz-Gemeinschaft Deutscher Forschungszentren, Germany, General Secretariat for Research and Technology, Greece, National Scientific Research Foundation, National Innovation Office, Hungary, Department of Atomic Energy, India, Department of Science and Technology, India, Institute for Studies in Theoretical Physics and Mathematics, Iran, Science Foundation, Ireland, Istituto Nazionale di Fisica Nucleare, Italy, Korean Ministry of Education, Science and Technology, World Class University program of NRF, Republic of Korea, Lithuanian Academy of Sciences, Ministry of Education and University of Malaya (Malaysia), CINVESTAV, CONACYT, SEP, UASLP-FAI, Ministry of Business, Innovation and Employment, New Zealand, Pakistan Atomic Energy Commission, Ministry of Science and Higher Education, National Science Centre, Poland, Fundacao para a Ciencia e a Tecnologia, Portugal, JINR, Dubna, Ministry of Education and Science of the Russian Federation, Federal Agency of Atomic Energy of the Russian Federation, Russian Academy of Sciences, Russian Foundation for Basic Research, Ministry of Education, Science and Technological Development of Serbia, Secretaria de Estado de Investigacion, Desarrollo e Innovacion and Programa Consolider-Ingenio, Spain, ETH Board, ETH Zurich, PSI, SNF, UniZH, Canton Zurich, SER, National Science Council, Taipei, Thailand Center of Excellence in Physics, Institute for the Promotion of Teaching Science and Technology of Thailand, Special Task Force for Activating Research, National Science and Technology Development Agency of Thailand, Scientific and Technical Research Council of Turkey, Turkish Atomic Energy Authority, National Academy of Sciences of Ukraine, State Fund for Fundamental Researches, Ukraine, Science and Technology Facilities Council, UK, US Department of Energy, US National Science Foundation, Marie-Curie programme, European Research Council, EPLANET (European Union), Leventis Foundation, A.P. Sloan Foundation, Alexander von Humboldt Foundation, Belgian Federal Science Policy Office, Fonds pour la Formation la Recherche dans lIndustrie et dans lAgriculture (FRIA-Belgium), Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium), Ministry of Education, Youth and Sports (MEYS) of Czech Republic, Council of Science and Industrial Research, India, Compagnia di San Paolo (Torino), HOMING PLUS programme of Foundation for Polish Science by EU, Regional Development Fund, EU-ESF, Greek NSRF

Author's Bibliography

Measurement of the top quark mass in the all-jets final state at √s=13TeV and combination with the lepton+jets channel

Sirunyan, A M; Tumasyan, A; Adam, W; Ambrogi, F; Adžić, Petar; Ćirković, Predrag; Devetak, Damir; Đorđević, Miloš; Milenović, Predrag; Milošević, Jovan

(2019)

TY  - JOUR
AU  - Sirunyan, A M
AU  - Tumasyan, A
AU  - Adam, W
AU  - Ambrogi, F
AU  - Adžić, Petar
AU  - Ćirković, Predrag
AU  - Devetak, Damir
AU  - Đorđević, Miloš
AU  - Milenović, Predrag
AU  - Milošević, Jovan
PY  - 2019
UR  - http://vinar.vin.bg.ac.rs/handle/123456789/8142
AB  - A top quark mass measurement is performed using 35.9fb-1 of LHC proton–proton collision data collected with the CMS detector at s=13TeV. The measurement uses the t t ¯ all-jets final state. A kinematic fit is performed to reconstruct the decay of the t t ¯ system and suppress the multijet background. Using the ideogram method, the top quark mass (m t ) is determined, simultaneously constraining an additional jet energy scale factor (JSF). The resulting value of mt=172.34±0.20(stat+JSF)±0.70(syst)GeV is in good agreement with previous measurements. In addition, a combined measurement that uses the t t ¯ lepton+jets and all-jets final states is presented, using the same mass extraction method, and provides an m t measurement of 172.26±0.07(stat+JSF)±0.61(syst)GeV. This is the first combined m t extraction from the lepton+jets and all-jets channels through a single likelihood function. © 2019, CERN for the benefit of the CMS collaboration.
T2  - European Physical Journal C
T1  - Measurement of the top quark mass in the all-jets final state at √s=13TeV and combination with the lepton+jets channel
VL  - 79
IS  - 4
DO  - 10.1140/epjc/s10052-019-6788-2
ER  - 
@article{
author = "Sirunyan, A M and Tumasyan, A and Adam, W and Ambrogi, F and Adžić, Petar and Ćirković, Predrag and Devetak, Damir and Đorđević, Miloš and Milenović, Predrag and Milošević, Jovan",
year = "2019",
url = "http://vinar.vin.bg.ac.rs/handle/123456789/8142",
abstract = "A top quark mass measurement is performed using 35.9fb-1 of LHC proton–proton collision data collected with the CMS detector at s=13TeV. The measurement uses the t t ¯ all-jets final state. A kinematic fit is performed to reconstruct the decay of the t t ¯ system and suppress the multijet background. Using the ideogram method, the top quark mass (m t ) is determined, simultaneously constraining an additional jet energy scale factor (JSF). The resulting value of mt=172.34±0.20(stat+JSF)±0.70(syst)GeV is in good agreement with previous measurements. In addition, a combined measurement that uses the t t ¯ lepton+jets and all-jets final states is presented, using the same mass extraction method, and provides an m t measurement of 172.26±0.07(stat+JSF)±0.61(syst)GeV. This is the first combined m t extraction from the lepton+jets and all-jets channels through a single likelihood function. © 2019, CERN for the benefit of the CMS collaboration.",
journal = "European Physical Journal C",
title = "Measurement of the top quark mass in the all-jets final state at √s=13TeV and combination with the lepton+jets channel",
volume = "79",
number = "4",
doi = "10.1140/epjc/s10052-019-6788-2"
}
Sirunyan, A. M., Tumasyan, A., Adam, W., Ambrogi, F., Adžić, P., Ćirković, P., Devetak, D., Đorđević, M., Milenović, P.,& Milošević, J. (2019). Measurement of the top quark mass in the all-jets final state at √s=13TeV and combination with the lepton+jets channel.
European Physical Journal C, 79(4).
https://doi.org/10.1140/epjc/s10052-019-6788-2
Sirunyan AM, Tumasyan A, Adam W, Ambrogi F, Adžić P, Ćirković P, Devetak D, Đorđević M, Milenović P, Milošević J. Measurement of the top quark mass in the all-jets final state at √s=13TeV and combination with the lepton+jets channel. European Physical Journal C. 2019;79(4)
Sirunyan A M, Tumasyan A, Adam W, Ambrogi F, Adžić Petar, Ćirković Predrag, Devetak Damir, Đorđević Miloš, Milenović Predrag, Milošević Jovan, "Measurement of the top quark mass in the all-jets final state at √s=13TeV and combination with the lepton+jets channel" European Physical Journal C, 79, no. 4 (2019),
https://doi.org/10.1140/epjc/s10052-019-6788-2 .
1
10
10
16

Observation of Two Excited Bc+ States and Measurement of the Bc+ (2S) Mass in pp Collisions at s =13 TeV

Sirunyan, A M; Tumasyan, A; Adam, W; Ambrogi, F; Adžić, Petar; Ćirković, Predrag; Devetak, Damir; Đorđević, Miloš; Milenović, Predrag; Milošević, Jovan; Stojanović, Milan

(2019)

TY  - JOUR
AU  - Sirunyan, A M
AU  - Tumasyan, A
AU  - Adam, W
AU  - Ambrogi, F
AU  - Adžić, Petar
AU  - Ćirković, Predrag
AU  - Devetak, Damir
AU  - Đorđević, Miloš
AU  - Milenović, Predrag
AU  - Milošević, Jovan
AU  - Stojanović, Milan
PY  - 2019
UR  - http://vinar.vin.bg.ac.rs/handle/123456789/8141
AB  - Signals consistent with the Bc+(2S) and Bc∗+(2S) states are observed in proton-proton collisions at s=13 TeV, in an event sample corresponding to an integrated luminosity of 143 fb-1, collected by the CMS experiment during the 2015-2018 LHC running periods. These excited bc states are observed in the Bc+π+π- invariant mass spectrum, with the ground state Bc+ reconstructed through its decay to J/ψπ+. The two states are reconstructed as two well-resolved peaks, separated in mass by 29.1±1.5(stat)±0.7(syst) MeV. The observation of two peaks, rather than one, is established with a significance exceeding five standard deviations. The mass of the Bc+(2S) meson is measured to be 6871.0±1.2(stat)±0.8(syst)±0.8(Bc+) MeV, where the last term corresponds to the uncertainty in the world-average Bc+ mass. © 2019 CERN for the CMS Collaboration. Published by the American Physical Society under the terms of the »https://creativecommons.org/licenses/by/4.0/» Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.
T2  - Physical Review Letters
T1  - Observation of Two Excited Bc+ States and Measurement of the Bc+ (2S) Mass in pp Collisions at s =13 TeV
VL  - 122
IS  - 13
DO  - 10.1103/PhysRevLett.122.132001
ER  - 
@article{
author = "Sirunyan, A M and Tumasyan, A and Adam, W and Ambrogi, F and Adžić, Petar and Ćirković, Predrag and Devetak, Damir and Đorđević, Miloš and Milenović, Predrag and Milošević, Jovan and Stojanović, Milan",
year = "2019",
url = "http://vinar.vin.bg.ac.rs/handle/123456789/8141",
abstract = "Signals consistent with the Bc+(2S) and Bc∗+(2S) states are observed in proton-proton collisions at s=13 TeV, in an event sample corresponding to an integrated luminosity of 143 fb-1, collected by the CMS experiment during the 2015-2018 LHC running periods. These excited bc states are observed in the Bc+π+π- invariant mass spectrum, with the ground state Bc+ reconstructed through its decay to J/ψπ+. The two states are reconstructed as two well-resolved peaks, separated in mass by 29.1±1.5(stat)±0.7(syst) MeV. The observation of two peaks, rather than one, is established with a significance exceeding five standard deviations. The mass of the Bc+(2S) meson is measured to be 6871.0±1.2(stat)±0.8(syst)±0.8(Bc+) MeV, where the last term corresponds to the uncertainty in the world-average Bc+ mass. © 2019 CERN for the CMS Collaboration. Published by the American Physical Society under the terms of the »https://creativecommons.org/licenses/by/4.0/» Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.",
journal = "Physical Review Letters",
title = "Observation of Two Excited Bc+ States and Measurement of the Bc+ (2S) Mass in pp Collisions at s =13 TeV",
volume = "122",
number = "13",
doi = "10.1103/PhysRevLett.122.132001"
}
Sirunyan, A. M., Tumasyan, A., Adam, W., Ambrogi, F., Adžić, P., Ćirković, P., Devetak, D., Đorđević, M., Milenović, P., Milošević, J.,& Stojanović, M. (2019). Observation of Two Excited Bc+ States and Measurement of the Bc+ (2S) Mass in pp Collisions at s =13 TeV.
Physical Review Letters, 122(13).
https://doi.org/10.1103/PhysRevLett.122.132001
Sirunyan AM, Tumasyan A, Adam W, Ambrogi F, Adžić P, Ćirković P, Devetak D, Đorđević M, Milenović P, Milošević J, Stojanović M. Observation of Two Excited Bc+ States and Measurement of the Bc+ (2S) Mass in pp Collisions at s =13 TeV. Physical Review Letters. 2019;122(13)
Sirunyan A M, Tumasyan A, Adam W, Ambrogi F, Adžić Petar, Ćirković Predrag, Devetak Damir, Đorđević Miloš, Milenović Predrag, Milošević Jovan, Stojanović Milan, "Observation of Two Excited Bc+ States and Measurement of the Bc+ (2S) Mass in pp Collisions at s =13 TeV" Physical Review Letters, 122, no. 13 (2019),
https://doi.org/10.1103/PhysRevLett.122.132001 .
74
30
22
45

Search for dark matter produced in association with a single top quark or a top quark pair in proton-proton collisions at √s=13 TeV

Sirunyan, A M; Tumasyan, A; Adam, W; Ambrogi, F; Adžić, Petar; Ćirković, Predrag; Devetak, Damir; Đorđević, Miloš; Milošević, Jovan; Milenović, Predrag

(2019)

TY  - JOUR
AU  - Sirunyan, A M
AU  - Tumasyan, A
AU  - Adam, W
AU  - Ambrogi, F
AU  - Adžić, Petar
AU  - Ćirković, Predrag
AU  - Devetak, Damir
AU  - Đorđević, Miloš
AU  - Milošević, Jovan
AU  - Milenović, Predrag
PY  - 2019
UR  - http://vinar.vin.bg.ac.rs/handle/123456789/8125
AB  - A search for dark matter produced in association with top quarks in proton-proton collisions at a center-of-mass energy of 13 TeV is presented. The data set used corresponds to an integrated luminosity of 35.9 fb −1 recorded with the CMS detector at the LHC. Whereas previous searches for neutral scalar or pseudoscalar mediators considered dark matter production in association with a top quark pair only, this analysis also includes production modes with a single top quark. The results are derived from the combination of multiple selection categories that are defined to target either the single top quark or the top quark pair signature. No significant deviations with respect to the standard model predictions are observed. The results are interpreted in the context of a simplified model in which a scalar or pseudoscalar mediator particle couples to a top quark and subsequently decays into dark matter particles. Scalar and pseudoscalar mediator particles with masses below 290 and 300 GeV, respectively, are excluded at 95% confidence level, assuming a dark matter particle mass of 1 GeV and mediator couplings to fermions and dark matter particles equal to unity.[Figure not available: see fulltext.]. © 2019, The Author(s).
T2  - Journal of High Energy Physics
T1  - Search for dark matter produced in association with a single top quark or a top quark pair in proton-proton collisions at √s=13 TeV
VL  - 2019
IS  - 3
DO  - 10.1007/JHEP03(2019)141
ER  - 
@article{
author = "Sirunyan, A M and Tumasyan, A and Adam, W and Ambrogi, F and Adžić, Petar and Ćirković, Predrag and Devetak, Damir and Đorđević, Miloš and Milošević, Jovan and Milenović, Predrag",
year = "2019",
url = "http://vinar.vin.bg.ac.rs/handle/123456789/8125",
abstract = "A search for dark matter produced in association with top quarks in proton-proton collisions at a center-of-mass energy of 13 TeV is presented. The data set used corresponds to an integrated luminosity of 35.9 fb −1 recorded with the CMS detector at the LHC. Whereas previous searches for neutral scalar or pseudoscalar mediators considered dark matter production in association with a top quark pair only, this analysis also includes production modes with a single top quark. The results are derived from the combination of multiple selection categories that are defined to target either the single top quark or the top quark pair signature. No significant deviations with respect to the standard model predictions are observed. The results are interpreted in the context of a simplified model in which a scalar or pseudoscalar mediator particle couples to a top quark and subsequently decays into dark matter particles. Scalar and pseudoscalar mediator particles with masses below 290 and 300 GeV, respectively, are excluded at 95% confidence level, assuming a dark matter particle mass of 1 GeV and mediator couplings to fermions and dark matter particles equal to unity.[Figure not available: see fulltext.]. © 2019, The Author(s).",
journal = "Journal of High Energy Physics",
title = "Search for dark matter produced in association with a single top quark or a top quark pair in proton-proton collisions at √s=13 TeV",
volume = "2019",
number = "3",
doi = "10.1007/JHEP03(2019)141"
}
Sirunyan, A. M., Tumasyan, A., Adam, W., Ambrogi, F., Adžić, P., Ćirković, P., Devetak, D., Đorđević, M., Milošević, J.,& Milenović, P. (2019). Search for dark matter produced in association with a single top quark or a top quark pair in proton-proton collisions at √s=13 TeV.
Journal of High Energy Physics, 2019(3).
https://doi.org/10.1007/JHEP03(2019)141
Sirunyan AM, Tumasyan A, Adam W, Ambrogi F, Adžić P, Ćirković P, Devetak D, Đorđević M, Milošević J, Milenović P. Search for dark matter produced in association with a single top quark or a top quark pair in proton-proton collisions at √s=13 TeV. Journal of High Energy Physics. 2019;2019(3)
Sirunyan A M, Tumasyan A, Adam W, Ambrogi F, Adžić Petar, Ćirković Predrag, Devetak Damir, Đorđević Miloš, Milošević Jovan, Milenović Predrag, "Search for dark matter produced in association with a single top quark or a top quark pair in proton-proton collisions at √s=13 TeV" Journal of High Energy Physics, 2019, no. 3 (2019),
https://doi.org/10.1007/JHEP03(2019)141 .
1
6
6
13

Search for low mass vector resonances decaying into quark-antiquark pairs in proton-proton collisions at root s=13 TeV

Sirunyan, A. M.; Adžić, Petar; Ćirković, Predrag; Devetak, Damir; Đorđević, Miloš; Milošević, Jovan; Rekovic, V.; Milenović, Predrag

(2018)

TY  - JOUR
AU  - Sirunyan, A. M.
AU  - Adžić, Petar
AU  - Ćirković, Predrag
AU  - Devetak, Damir
AU  - Đorđević, Miloš
AU  - Milošević, Jovan
AU  - Rekovic, V.
AU  - Milenović, Predrag
PY  - 2018
UR  - http://vinar.vin.bg.ac.rs/handle/123456789/1924
AB  - A search for narrow vector resonances decaying into quark-antiquark pairs is presented. The analysis is based on data collected in proton-proton collisions at root s = 13 TeV with the CMS detector at the LHC, corresponding to an integrated luminosity of 35.9 fb(-1). The hypothetical resonance is produced with sufficiently high transverse momentum that its decay products are merged into a single jet with two-prong substructure. A signal would be identified as a peak over a smoothly falling background in the distribution of the invariant mass of the jet, using novel jet substructure techniques. No evidence for such a resonance is observed within the mass range of 50-300 GeV. Upper limits at 95% confidence level are set on the production cross section, and presented in a mass-coupling parameter space. The limits further constrain simplified models of dark matter production involving a mediator interacting between quarks and dark matter particles through a vector or axial-vector current. In the framework of these models, the results are the most sensitive to date, extending for the first time the search region to masses below 100 GeV.
T2  - Journal of High Energy Physics
T1  - Search for low mass vector resonances decaying into quark-antiquark pairs in proton-proton collisions at root s=13 TeV
IS  - 1
DO  - 10.1007/JHEP01(2018)097
ER  - 
@article{
author = "Sirunyan, A. M. and Adžić, Petar and Ćirković, Predrag and Devetak, Damir and Đorđević, Miloš and Milošević, Jovan and Rekovic, V. and Milenović, Predrag",
year = "2018",
url = "http://vinar.vin.bg.ac.rs/handle/123456789/1924",
abstract = "A search for narrow vector resonances decaying into quark-antiquark pairs is presented. The analysis is based on data collected in proton-proton collisions at root s = 13 TeV with the CMS detector at the LHC, corresponding to an integrated luminosity of 35.9 fb(-1). The hypothetical resonance is produced with sufficiently high transverse momentum that its decay products are merged into a single jet with two-prong substructure. A signal would be identified as a peak over a smoothly falling background in the distribution of the invariant mass of the jet, using novel jet substructure techniques. No evidence for such a resonance is observed within the mass range of 50-300 GeV. Upper limits at 95% confidence level are set on the production cross section, and presented in a mass-coupling parameter space. The limits further constrain simplified models of dark matter production involving a mediator interacting between quarks and dark matter particles through a vector or axial-vector current. In the framework of these models, the results are the most sensitive to date, extending for the first time the search region to masses below 100 GeV.",
journal = "Journal of High Energy Physics",
title = "Search for low mass vector resonances decaying into quark-antiquark pairs in proton-proton collisions at root s=13 TeV",
number = "1",
doi = "10.1007/JHEP01(2018)097"
}
Sirunyan, A. M., Adžić, P., Ćirković, P., Devetak, D., Đorđević, M., Milošević, J., Rekovic, V.,& Milenović, P. (2018). Search for low mass vector resonances decaying into quark-antiquark pairs in proton-proton collisions at root s=13 TeV.
Journal of High Energy Physics(1).
https://doi.org/10.1007/JHEP01(2018)097
Sirunyan AM, Adžić P, Ćirković P, Devetak D, Đorđević M, Milošević J, Rekovic V, Milenović P. Search for low mass vector resonances decaying into quark-antiquark pairs in proton-proton collisions at root s=13 TeV. Journal of High Energy Physics. 2018;(1)
Sirunyan A. M., Adžić Petar, Ćirković Predrag, Devetak Damir, Đorđević Miloš, Milošević Jovan, Rekovic V., Milenović Predrag, "Search for low mass vector resonances decaying into quark-antiquark pairs in proton-proton collisions at root s=13 TeV" Journal of High Energy Physics, no. 1 (2018),
https://doi.org/10.1007/JHEP01(2018)097 .
9
33
18
51

Search for supersymmetry in proton-proton collisions at 13 TeV using identified top quarks

Sirunyan, A. M.; Adžić, Petar; Ćirković, Predrag; Devetak, Damir; Đorđević, Miloš; Milošević, Jovan; Rekovic, V.; Milenović, Predrag

(2018)

TY  - JOUR
AU  - Sirunyan, A. M.
AU  - Adžić, Petar
AU  - Ćirković, Predrag
AU  - Devetak, Damir
AU  - Đorđević, Miloš
AU  - Milošević, Jovan
AU  - Rekovic, V.
AU  - Milenović, Predrag
PY  - 2018
UR  - http://vinar.vin.bg.ac.rs/handle/123456789/1930
AB  - A search for supersymmetry is presented based on proton-proton collision events containing identified hadronically decaying top quarks, no leptons, and an imbalance p(T)(miss) in transverse momentum. The data were collected with the CMS detector at the CERN LHC at a center-of-mass energy of 13 TeV, and correspond to an integrated luminosity of 35.9 fb(-1). Search regions are defined in terms of the multiplicity of bottom quark jet and top quark candidates, the p(T)(miss) , the scalar sum of jet transverse momenta, and themT2 mass variable. No statistically significant excess of events is observed relative to the expectation from the standard model. Lower limits on the masses of supersymmetric particles are determined at 95% confidence level in the context of simplified models with top quark production. For a model with direct top squark pair production followed by the decay of each top squark to a top quark and a neutralino, top squark masses up to 1020 GeVand neutralino masses up to 430 GeVare excluded. For amodel with pair production of gluinos followed by the decay of each gluino to a top quark-antiquark pair and a neutralino, gluino masses up to 2040 GeVand neutralino masses up to 1150 GeVare excluded. These limits extend previous results.
T2  - Physical Review D
T1  - Search for supersymmetry in proton-proton collisions at 13 TeV using identified top quarks
VL  - 97
IS  - 1
DO  - 10.1103/PhysRevD.97.012007
ER  - 
@article{
author = "Sirunyan, A. M. and Adžić, Petar and Ćirković, Predrag and Devetak, Damir and Đorđević, Miloš and Milošević, Jovan and Rekovic, V. and Milenović, Predrag",
year = "2018",
url = "http://vinar.vin.bg.ac.rs/handle/123456789/1930",
abstract = "A search for supersymmetry is presented based on proton-proton collision events containing identified hadronically decaying top quarks, no leptons, and an imbalance p(T)(miss) in transverse momentum. The data were collected with the CMS detector at the CERN LHC at a center-of-mass energy of 13 TeV, and correspond to an integrated luminosity of 35.9 fb(-1). Search regions are defined in terms of the multiplicity of bottom quark jet and top quark candidates, the p(T)(miss) , the scalar sum of jet transverse momenta, and themT2 mass variable. No statistically significant excess of events is observed relative to the expectation from the standard model. Lower limits on the masses of supersymmetric particles are determined at 95% confidence level in the context of simplified models with top quark production. For a model with direct top squark pair production followed by the decay of each top squark to a top quark and a neutralino, top squark masses up to 1020 GeVand neutralino masses up to 430 GeVare excluded. For amodel with pair production of gluinos followed by the decay of each gluino to a top quark-antiquark pair and a neutralino, gluino masses up to 2040 GeVand neutralino masses up to 1150 GeVare excluded. These limits extend previous results.",
journal = "Physical Review D",
title = "Search for supersymmetry in proton-proton collisions at 13 TeV using identified top quarks",
volume = "97",
number = "1",
doi = "10.1103/PhysRevD.97.012007"
}
Sirunyan, A. M., Adžić, P., Ćirković, P., Devetak, D., Đorđević, M., Milošević, J., Rekovic, V.,& Milenović, P. (2018). Search for supersymmetry in proton-proton collisions at 13 TeV using identified top quarks.
Physical Review D, 97(1).
https://doi.org/10.1103/PhysRevD.97.012007
Sirunyan AM, Adžić P, Ćirković P, Devetak D, Đorđević M, Milošević J, Rekovic V, Milenović P. Search for supersymmetry in proton-proton collisions at 13 TeV using identified top quarks. Physical Review D. 2018;97(1)
Sirunyan A. M., Adžić Petar, Ćirković Predrag, Devetak Damir, Đorđević Miloš, Milošević Jovan, Rekovic V., Milenović Predrag, "Search for supersymmetry in proton-proton collisions at 13 TeV using identified top quarks" Physical Review D, 97, no. 1 (2018),
https://doi.org/10.1103/PhysRevD.97.012007 .
4
14
26
31

Search for heavy resonances decaying to a top quark and a bottom quark in the lepton plus jets final state in proton-proton collisions at 13 TeV

Sirunyan, A. M.; Adžić, Petar; Ćirković, Predrag; Devetak, Damir; Đorđević, Miloš; Milošević, Jovan; Rekovic, V.; Milenović, Predrag

(2018)

TY  - JOUR
AU  - Sirunyan, A. M.
AU  - Adžić, Petar
AU  - Ćirković, Predrag
AU  - Devetak, Damir
AU  - Đorđević, Miloš
AU  - Milošević, Jovan
AU  - Rekovic, V.
AU  - Milenović, Predrag
PY  - 2018
UR  - http://vinar.vin.bg.ac.rs/handle/123456789/1941
AB  - A search is presented for narrow heavy resonances decaying to a top quark and a bottom quark using data collected by the CMS experiment at root s= 13 TeV in 2016. The data set analyzed corresponds to an integrated luminosity of 35.9fb(-1). Final states that include a single lepton (e, mu), multiple jets, and missing transverse momentum are analyzed. No evidence is found for the production of a W boson, and the production of right-handed W bosons is excluded at 95% confidence level for masses up to 3.6 TeV depending on the scenario considered. Exclusion limits for W bosons are also presented as a function of their coupling strength to left- and right-handed fermions. These limits on a W boson decaying via a top and a bottom quark are the most stringent published to date. (c) 2017 The Author. Published by Elsevier B.V.
T2  - Physics Letters B
T1  - Search for heavy resonances decaying to a top quark and a bottom quark in the lepton plus jets final state in proton-proton collisions at 13 TeV
VL  - 777
SP  - 39
EP  - 63
DO  - 10.1016/j.physletb.2017.12.006
ER  - 
@article{
author = "Sirunyan, A. M. and Adžić, Petar and Ćirković, Predrag and Devetak, Damir and Đorđević, Miloš and Milošević, Jovan and Rekovic, V. and Milenović, Predrag",
year = "2018",
url = "http://vinar.vin.bg.ac.rs/handle/123456789/1941",
abstract = "A search is presented for narrow heavy resonances decaying to a top quark and a bottom quark using data collected by the CMS experiment at root s= 13 TeV in 2016. The data set analyzed corresponds to an integrated luminosity of 35.9fb(-1). Final states that include a single lepton (e, mu), multiple jets, and missing transverse momentum are analyzed. No evidence is found for the production of a W boson, and the production of right-handed W bosons is excluded at 95% confidence level for masses up to 3.6 TeV depending on the scenario considered. Exclusion limits for W bosons are also presented as a function of their coupling strength to left- and right-handed fermions. These limits on a W boson decaying via a top and a bottom quark are the most stringent published to date. (c) 2017 The Author. Published by Elsevier B.V.",
journal = "Physics Letters B",
title = "Search for heavy resonances decaying to a top quark and a bottom quark in the lepton plus jets final state in proton-proton collisions at 13 TeV",
volume = "777",
pages = "39-63",
doi = "10.1016/j.physletb.2017.12.006"
}
Sirunyan, A. M., Adžić, P., Ćirković, P., Devetak, D., Đorđević, M., Milošević, J., Rekovic, V.,& Milenović, P. (2018). Search for heavy resonances decaying to a top quark and a bottom quark in the lepton plus jets final state in proton-proton collisions at 13 TeV.
Physics Letters B, 777, 39-63.
https://doi.org/10.1016/j.physletb.2017.12.006
Sirunyan AM, Adžić P, Ćirković P, Devetak D, Đorđević M, Milošević J, Rekovic V, Milenović P. Search for heavy resonances decaying to a top quark and a bottom quark in the lepton plus jets final state in proton-proton collisions at 13 TeV. Physics Letters B. 2018;777:39-63
Sirunyan A. M., Adžić Petar, Ćirković Predrag, Devetak Damir, Đorđević Miloš, Milošević Jovan, Rekovic V., Milenović Predrag, "Search for heavy resonances decaying to a top quark and a bottom quark in the lepton plus jets final state in proton-proton collisions at 13 TeV" Physics Letters B, 777 (2018):39-63,
https://doi.org/10.1016/j.physletb.2017.12.006 .
2
11
16
17

Search for Higgsino pair production in pp collisions at root s=13 TeV in final states with large missing transverse momentum and two Higgs bosons decaying via H - GT b(b)over bar

Sirunyan, A. M.; Adžić, Petar; Ćirković, Predrag; Devetak, Damir; Đorđević, Miloš; Milošević, Jovan; Rekovic, V.; Milenović, Predrag

(2018)

TY  - JOUR
AU  - Sirunyan, A. M.
AU  - Adžić, Petar
AU  - Ćirković, Predrag
AU  - Devetak, Damir
AU  - Đorđević, Miloš
AU  - Milošević, Jovan
AU  - Rekovic, V.
AU  - Milenović, Predrag
PY  - 2018
UR  - http://vinar.vin.bg.ac.rs/handle/123456789/1950
AB  - Results are reported from a search for new physics in 13 TeV proton-proton collisions in the final state with large missing transverse momentum and two Higgs bosons decaying via H - GT b(b)over bar. The search uses a data sample accumulated by the CMS experiment at the LHC in 2016, corresponding to an integrated luminosity of 35.9 fb(-1). The search is motivated by models based on gauge-mediated supersymmetry breaking, which predict the electroweak production of a pair of Higgsinos, each of which can decay via a cascade process to a Higgs boson and an undetected lightest supersymmetric particle. The observed event yields in the signal regions are consistent with the standard model background expectation obtained from control regions in data. Higgsinos in the mass range 230-770 GeV are excluded at 95% confidence level in the context of a simplified model for the production and decay of approximately degenerate Higgsinos.
T2  - Physical Review D
T1  - Search for Higgsino pair production in pp collisions at root s=13 TeV in final states with large missing transverse momentum and two Higgs bosons decaying via H - GT b(b)over bar
VL  - 97
IS  - 3
DO  - 10.1103/PhysRevD.97.032007
ER  - 
@article{
author = "Sirunyan, A. M. and Adžić, Petar and Ćirković, Predrag and Devetak, Damir and Đorđević, Miloš and Milošević, Jovan and Rekovic, V. and Milenović, Predrag",
year = "2018",
url = "http://vinar.vin.bg.ac.rs/handle/123456789/1950",
abstract = "Results are reported from a search for new physics in 13 TeV proton-proton collisions in the final state with large missing transverse momentum and two Higgs bosons decaying via H - GT b(b)over bar. The search uses a data sample accumulated by the CMS experiment at the LHC in 2016, corresponding to an integrated luminosity of 35.9 fb(-1). The search is motivated by models based on gauge-mediated supersymmetry breaking, which predict the electroweak production of a pair of Higgsinos, each of which can decay via a cascade process to a Higgs boson and an undetected lightest supersymmetric particle. The observed event yields in the signal regions are consistent with the standard model background expectation obtained from control regions in data. Higgsinos in the mass range 230-770 GeV are excluded at 95% confidence level in the context of a simplified model for the production and decay of approximately degenerate Higgsinos.",
journal = "Physical Review D",
title = "Search for Higgsino pair production in pp collisions at root s=13 TeV in final states with large missing transverse momentum and two Higgs bosons decaying via H - GT b(b)over bar",
volume = "97",
number = "3",
doi = "10.1103/PhysRevD.97.032007"
}
Sirunyan, A. M., Adžić, P., Ćirković, P., Devetak, D., Đorđević, M., Milošević, J., Rekovic, V.,& Milenović, P. (2018). Search for Higgsino pair production in pp collisions at root s=13 TeV in final states with large missing transverse momentum and two Higgs bosons decaying via H - GT b(b)over bar.
Physical Review D, 97(3).
https://doi.org/10.1103/PhysRevD.97.032007
Sirunyan AM, Adžić P, Ćirković P, Devetak D, Đorđević M, Milošević J, Rekovic V, Milenović P. Search for Higgsino pair production in pp collisions at root s=13 TeV in final states with large missing transverse momentum and two Higgs bosons decaying via H - GT b(b)over bar. Physical Review D. 2018;97(3)
Sirunyan A. M., Adžić Petar, Ćirković Predrag, Devetak Damir, Đorđević Miloš, Milošević Jovan, Rekovic V., Milenović Predrag, "Search for Higgsino pair production in pp collisions at root s=13 TeV in final states with large missing transverse momentum and two Higgs bosons decaying via H - GT b(b)over bar" Physical Review D, 97, no. 3 (2018),
https://doi.org/10.1103/PhysRevD.97.032007 .
3
8
5
15

Pseudorapidity distributions of charged hadrons in proton-lead collisions at root s(NN)=5:02 and 8.16 TeV

Sirunyan, A. M.; Adžić, Petar; Ćirković, Predrag; Devetak, Damir; Đorđević, Miloš; Milošević, Jovan; Rekovic, V.; Milenović, Predrag

(2018)

TY  - JOUR
AU  - Sirunyan, A. M.
AU  - Adžić, Petar
AU  - Ćirković, Predrag
AU  - Devetak, Damir
AU  - Đorđević, Miloš
AU  - Milošević, Jovan
AU  - Rekovic, V.
AU  - Milenović, Predrag
PY  - 2018
UR  - http://vinar.vin.bg.ac.rs/handle/123456789/1920
AB  - The pseudorapidity distributions of charged hadrons in proton-lead collisions at nucleon-nucleon center-of-mass energies root s(NN) = 5.02 and 8.16 TeV are presented. The measurements are based on data samples collected by the CMS experiment at the LHC. The number of primary charged hadrons produced in non-single-diffractive proton-lead collisions is determined in the pseudorapidity range vertical bar eta(lab)vertical bar LT 2.4. The charged-hadron multiplicity distributions are compared to the predictions from theoretical calculations and Monte Carlo event generators. In the center-of-mass pseudorapidity range vertical bar eta(cm)vertical bar LT 0.5, the average charged-hadron multiplicity densities LT dN(ch)/d eta(cm) GT vertical bar(vertical bar eta cm vertical bar) LT 0.5 are 17.1 +/- 0.01 (stat) +/- 0.59 (syst) and 20.10 +/- 0.01 (stat) +/- 0.5(syst) at root s(NN) = 5.02 and 8.16 TeV, respectively. The particle densities per participant nucleon are compared to similar measurements in proton-proton, proton-nucleus, and nucleus-nucleus collisions.
T2  - Journal of High Energy Physics
T1  - Pseudorapidity distributions of charged hadrons in proton-lead collisions at root s(NN)=5:02 and 8.16 TeV
IS  - 1
DO  - 10.1007/JHEP01(2018)045
ER  - 
@article{
author = "Sirunyan, A. M. and Adžić, Petar and Ćirković, Predrag and Devetak, Damir and Đorđević, Miloš and Milošević, Jovan and Rekovic, V. and Milenović, Predrag",
year = "2018",
url = "http://vinar.vin.bg.ac.rs/handle/123456789/1920",
abstract = "The pseudorapidity distributions of charged hadrons in proton-lead collisions at nucleon-nucleon center-of-mass energies root s(NN) = 5.02 and 8.16 TeV are presented. The measurements are based on data samples collected by the CMS experiment at the LHC. The number of primary charged hadrons produced in non-single-diffractive proton-lead collisions is determined in the pseudorapidity range vertical bar eta(lab)vertical bar LT 2.4. The charged-hadron multiplicity distributions are compared to the predictions from theoretical calculations and Monte Carlo event generators. In the center-of-mass pseudorapidity range vertical bar eta(cm)vertical bar LT 0.5, the average charged-hadron multiplicity densities LT dN(ch)/d eta(cm) GT vertical bar(vertical bar eta cm vertical bar) LT 0.5 are 17.1 +/- 0.01 (stat) +/- 0.59 (syst) and 20.10 +/- 0.01 (stat) +/- 0.5(syst) at root s(NN) = 5.02 and 8.16 TeV, respectively. The particle densities per participant nucleon are compared to similar measurements in proton-proton, proton-nucleus, and nucleus-nucleus collisions.",
journal = "Journal of High Energy Physics",
title = "Pseudorapidity distributions of charged hadrons in proton-lead collisions at root s(NN)=5:02 and 8.16 TeV",
number = "1",
doi = "10.1007/JHEP01(2018)045"
}
Sirunyan, A. M., Adžić, P., Ćirković, P., Devetak, D., Đorđević, M., Milošević, J., Rekovic, V.,& Milenović, P. (2018). Pseudorapidity distributions of charged hadrons in proton-lead collisions at root s(NN)=5:02 and 8.16 TeV.
Journal of High Energy Physics(1).
https://doi.org/10.1007/JHEP01(2018)045
Sirunyan AM, Adžić P, Ćirković P, Devetak D, Đorđević M, Milošević J, Rekovic V, Milenović P. Pseudorapidity distributions of charged hadrons in proton-lead collisions at root s(NN)=5:02 and 8.16 TeV. Journal of High Energy Physics. 2018;(1)
Sirunyan A. M., Adžić Petar, Ćirković Predrag, Devetak Damir, Đorđević Miloš, Milošević Jovan, Rekovic V., Milenović Predrag, "Pseudorapidity distributions of charged hadrons in proton-lead collisions at root s(NN)=5:02 and 8.16 TeV" Journal of High Energy Physics, no. 1 (2018),
https://doi.org/10.1007/JHEP01(2018)045 .
1
6
5
7

Search for resonant and nonresonant Higgs boson pair production in the b(b)over-barl nu l nu final state in proton-proton collisions at root s=13 TeV

Sirunyan, A. M.; Adžić, Petar; Ćirković, Predrag; Devetak, Damir; Đorđević, Miloš; Milošević, Jovan; Rekovic, V.; Milenović, Predrag

(2018)

TY  - JOUR
AU  - Sirunyan, A. M.
AU  - Adžić, Petar
AU  - Ćirković, Predrag
AU  - Devetak, Damir
AU  - Đorđević, Miloš
AU  - Milošević, Jovan
AU  - Rekovic, V.
AU  - Milenović, Predrag
PY  - 2018
UR  - http://vinar.vin.bg.ac.rs/handle/123456789/1914
AB  - Searches for resonant and nonresonant pair-produced Higgs bosons (HH) decaying respectively into l nu l nu, through either W or Z bosons, and b (b) over bar are presented. The analyses are based on a sample of proton-proton collisions at root s = 13 TeV, collected by the CMS experiment at the LHC, corresponding to an integrated luminosity of 35.9 fb(-1). Data and predictions from the standard model are in agreement within uncertainties. For the standard model HH hypothesis, the data exclude at 95% confidence level a product of the production cross section and branching fraction larger than 72 fb, corresponding to 79 times the standard model prediction. Constraints are placed on different scenarios considering anomalous couplings, which could affect the rate and kinematics of HH production. Upper limits at 95% confidence level are set on the production cross section of narrow-width spin-0 and spin-2 particles decaying to Higgs boson pairs, the latter produced with minimal gravity-like coupling.
T2  - Journal of High Energy Physics
T1  - Search for resonant and nonresonant Higgs boson pair production in the b(b)over-barl nu l nu final state in proton-proton collisions at root s=13 TeV
IS  - 1
DO  - 10.1007/JHEP01(2018)054
ER  - 
@article{
author = "Sirunyan, A. M. and Adžić, Petar and Ćirković, Predrag and Devetak, Damir and Đorđević, Miloš and Milošević, Jovan and Rekovic, V. and Milenović, Predrag",
year = "2018",
url = "http://vinar.vin.bg.ac.rs/handle/123456789/1914",
abstract = "Searches for resonant and nonresonant pair-produced Higgs bosons (HH) decaying respectively into l nu l nu, through either W or Z bosons, and b (b) over bar are presented. The analyses are based on a sample of proton-proton collisions at root s = 13 TeV, collected by the CMS experiment at the LHC, corresponding to an integrated luminosity of 35.9 fb(-1). Data and predictions from the standard model are in agreement within uncertainties. For the standard model HH hypothesis, the data exclude at 95% confidence level a product of the production cross section and branching fraction larger than 72 fb, corresponding to 79 times the standard model prediction. Constraints are placed on different scenarios considering anomalous couplings, which could affect the rate and kinematics of HH production. Upper limits at 95% confidence level are set on the production cross section of narrow-width spin-0 and spin-2 particles decaying to Higgs boson pairs, the latter produced with minimal gravity-like coupling.",
journal = "Journal of High Energy Physics",
title = "Search for resonant and nonresonant Higgs boson pair production in the b(b)over-barl nu l nu final state in proton-proton collisions at root s=13 TeV",
number = "1",
doi = "10.1007/JHEP01(2018)054"
}
Sirunyan, A. M., Adžić, P., Ćirković, P., Devetak, D., Đorđević, M., Milošević, J., Rekovic, V.,& Milenović, P. (2018). Search for resonant and nonresonant Higgs boson pair production in the b(b)over-barl nu l nu final state in proton-proton collisions at root s=13 TeV.
Journal of High Energy Physics(1).
https://doi.org/10.1007/JHEP01(2018)054
Sirunyan AM, Adžić P, Ćirković P, Devetak D, Đorđević M, Milošević J, Rekovic V, Milenović P. Search for resonant and nonresonant Higgs boson pair production in the b(b)over-barl nu l nu final state in proton-proton collisions at root s=13 TeV. Journal of High Energy Physics. 2018;(1)
Sirunyan A. M., Adžić Petar, Ćirković Predrag, Devetak Damir, Đorđević Miloš, Milošević Jovan, Rekovic V., Milenović Predrag, "Search for resonant and nonresonant Higgs boson pair production in the b(b)over-barl nu l nu final state in proton-proton collisions at root s=13 TeV" Journal of High Energy Physics, no. 1 (2018),
https://doi.org/10.1007/JHEP01(2018)054 .
11
23
14
43

Measurements of t(t)over-bar cross sections in association with b jets and inclusive jets and their ratio using dilepton final states in pp collisions at root s=13 TeV

Sirunyan, A. M.; Adžić, Petar; Ćirković, Predrag; Devetak, Damir; Đorđević, Miloš; Milošević, Jovan; Rekovic, V.; Milenović, Predrag

(2018)

TY  - JOUR
AU  - Sirunyan, A. M.
AU  - Adžić, Petar
AU  - Ćirković, Predrag
AU  - Devetak, Damir
AU  - Đorđević, Miloš
AU  - Milošević, Jovan
AU  - Rekovic, V.
AU  - Milenović, Predrag
PY  - 2018
UR  - http://vinar.vin.bg.ac.rs/handle/123456789/1907
AB  - The cross sections for the production of t (t) over bar b (b) over bar and t (t) over bar jj events and their ratio sigma(t (t) over bar b (b) over bar)/sigma(t (t) over bar jj) are measured using data corresponding to an integrated luminosity of 2.3 fb(-1) collected in pp collisions at root s = 13 TeV with the CMS detector at the LHC. Events with two leptons (e or mu) and at least four reconstructed jets, including at least two identified as b quark jets, in the final state are selected. In the full phase space, the measured ratio is 0.022 +/- 0.003 (stat) +/- 0.006 (syst), the cross section sigma(t (t) over bar b (b) over bar) bis 4.0 +/- 0.6 (stat)+/- 1.3 (syst) pb and sigma(t (t) over bar jj) is 184 +/- 6 (stat)+/- 33 (syst) pb. The measurements are compared with the standard model expectations obtained from a POWHEG simulation at next-to-leading-order interfaced with PYTHIA. (c) 2017 The Author. Published by Elsevier B.V.
T2  - Physics Letters B
T1  - Measurements of t(t)over-bar cross sections in association with b jets and inclusive jets and their ratio using dilepton final states in pp collisions at root s=13 TeV
VL  - 776
SP  - 355
EP  - 378
DO  - 10.1016/j.physletb.2017.11.043
ER  - 
@article{
author = "Sirunyan, A. M. and Adžić, Petar and Ćirković, Predrag and Devetak, Damir and Đorđević, Miloš and Milošević, Jovan and Rekovic, V. and Milenović, Predrag",
year = "2018",
url = "http://vinar.vin.bg.ac.rs/handle/123456789/1907",
abstract = "The cross sections for the production of t (t) over bar b (b) over bar and t (t) over bar jj events and their ratio sigma(t (t) over bar b (b) over bar)/sigma(t (t) over bar jj) are measured using data corresponding to an integrated luminosity of 2.3 fb(-1) collected in pp collisions at root s = 13 TeV with the CMS detector at the LHC. Events with two leptons (e or mu) and at least four reconstructed jets, including at least two identified as b quark jets, in the final state are selected. In the full phase space, the measured ratio is 0.022 +/- 0.003 (stat) +/- 0.006 (syst), the cross section sigma(t (t) over bar b (b) over bar) bis 4.0 +/- 0.6 (stat)+/- 1.3 (syst) pb and sigma(t (t) over bar jj) is 184 +/- 6 (stat)+/- 33 (syst) pb. The measurements are compared with the standard model expectations obtained from a POWHEG simulation at next-to-leading-order interfaced with PYTHIA. (c) 2017 The Author. Published by Elsevier B.V.",
journal = "Physics Letters B",
title = "Measurements of t(t)over-bar cross sections in association with b jets and inclusive jets and their ratio using dilepton final states in pp collisions at root s=13 TeV",
volume = "776",
pages = "355-378",
doi = "10.1016/j.physletb.2017.11.043"
}
Sirunyan, A. M., Adžić, P., Ćirković, P., Devetak, D., Đorđević, M., Milošević, J., Rekovic, V.,& Milenović, P. (2018). Measurements of t(t)over-bar cross sections in association with b jets and inclusive jets and their ratio using dilepton final states in pp collisions at root s=13 TeV.
Physics Letters B, 776, 355-378.
https://doi.org/10.1016/j.physletb.2017.11.043
Sirunyan AM, Adžić P, Ćirković P, Devetak D, Đorđević M, Milošević J, Rekovic V, Milenović P. Measurements of t(t)over-bar cross sections in association with b jets and inclusive jets and their ratio using dilepton final states in pp collisions at root s=13 TeV. Physics Letters B. 2018;776:355-378
Sirunyan A. M., Adžić Petar, Ćirković Predrag, Devetak Damir, Đorđević Miloš, Milošević Jovan, Rekovic V., Milenović Predrag, "Measurements of t(t)over-bar cross sections in association with b jets and inclusive jets and their ratio using dilepton final states in pp collisions at root s=13 TeV" Physics Letters B, 776 (2018):355-378,
https://doi.org/10.1016/j.physletb.2017.11.043 .
1
11
21
27

Azimuthal anisotropy of charged particles with transverse momentum up to 100GeV/c in PbPb collisions at root S-NN=5.02 TeV

Sirunyan, A. M.; Adžić, Petar; Ćirković, Predrag; Devetak, Damir; Đorđević, Miloš; Milošević, Jovan; Rekovic, V.; Milenović, Predrag

(2018)

TY  - JOUR
AU  - Sirunyan, A. M.
AU  - Adžić, Petar
AU  - Ćirković, Predrag
AU  - Devetak, Damir
AU  - Đorđević, Miloš
AU  - Milošević, Jovan
AU  - Rekovic, V.
AU  - Milenović, Predrag
PY  - 2018
UR  - http://vinar.vin.bg.ac.rs/handle/123456789/1906
AB  - The Fourier coefficients v(2) and v(3) characterizing the anisotropy of the azimuthal distribution of charged particles produced in PbPb collisions at root S-NN = 5.02 TeV are measured with data collected by the CMS experiment. The measurements cover a broad transverse momentum range, 1 LT p(T) LT 100 GeV/c. The analysis focuses on the p(T) GT 10 GeV/c range, where anisotropic azimuthal distributions should reflect the path-length dependence of parton energy loss in the created medium. Results are presented in several bins of PbPb collision centrality, spanning the 60% most central events. The v(2) coefficient is measured with the scalar product and the multiparticle cumulant methods, which have different sensitivities to initial-state fluctuations. The values from both methods remain positive up to p(T) similar to 60-80 GeV/c, in all examined centrality classes. The v(3) coefficient, only measured with the scalar product method, tends to zero for p(T) greater than or similar to 20 GeV/c. Comparisons between theoretical calculations and data provide new constraints on the path-length dependence of parton energy loss in heavy ion collisions and highlight the importance of the initial-state fluctuations. (C) 2017 The Author. Published by Elsevier B.V.
T2  - Physics Letters B
T1  - Azimuthal anisotropy of charged particles with transverse momentum up to 100GeV/c in PbPb collisions at root S-NN=5.02 TeV
VL  - 776
SP  - 195
EP  - 216
DO  - 10.1016/j.physletb.2017.11.041
ER  - 
@article{
author = "Sirunyan, A. M. and Adžić, Petar and Ćirković, Predrag and Devetak, Damir and Đorđević, Miloš and Milošević, Jovan and Rekovic, V. and Milenović, Predrag",
year = "2018",
url = "http://vinar.vin.bg.ac.rs/handle/123456789/1906",
abstract = "The Fourier coefficients v(2) and v(3) characterizing the anisotropy of the azimuthal distribution of charged particles produced in PbPb collisions at root S-NN = 5.02 TeV are measured with data collected by the CMS experiment. The measurements cover a broad transverse momentum range, 1 LT p(T) LT 100 GeV/c. The analysis focuses on the p(T) GT 10 GeV/c range, where anisotropic azimuthal distributions should reflect the path-length dependence of parton energy loss in the created medium. Results are presented in several bins of PbPb collision centrality, spanning the 60% most central events. The v(2) coefficient is measured with the scalar product and the multiparticle cumulant methods, which have different sensitivities to initial-state fluctuations. The values from both methods remain positive up to p(T) similar to 60-80 GeV/c, in all examined centrality classes. The v(3) coefficient, only measured with the scalar product method, tends to zero for p(T) greater than or similar to 20 GeV/c. Comparisons between theoretical calculations and data provide new constraints on the path-length dependence of parton energy loss in heavy ion collisions and highlight the importance of the initial-state fluctuations. (C) 2017 The Author. Published by Elsevier B.V.",
journal = "Physics Letters B",
title = "Azimuthal anisotropy of charged particles with transverse momentum up to 100GeV/c in PbPb collisions at root S-NN=5.02 TeV",
volume = "776",
pages = "195-216",
doi = "10.1016/j.physletb.2017.11.041"
}
Sirunyan, A. M., Adžić, P., Ćirković, P., Devetak, D., Đorđević, M., Milošević, J., Rekovic, V.,& Milenović, P. (2018). Azimuthal anisotropy of charged particles with transverse momentum up to 100GeV/c in PbPb collisions at root S-NN=5.02 TeV.
Physics Letters B, 776, 195-216.
https://doi.org/10.1016/j.physletb.2017.11.041
Sirunyan AM, Adžić P, Ćirković P, Devetak D, Đorđević M, Milošević J, Rekovic V, Milenović P. Azimuthal anisotropy of charged particles with transverse momentum up to 100GeV/c in PbPb collisions at root S-NN=5.02 TeV. Physics Letters B. 2018;776:195-216
Sirunyan A. M., Adžić Petar, Ćirković Predrag, Devetak Damir, Đorđević Miloš, Milošević Jovan, Rekovic V., Milenović Predrag, "Azimuthal anisotropy of charged particles with transverse momentum up to 100GeV/c in PbPb collisions at root S-NN=5.02 TeV" Physics Letters B, 776 (2018):195-216,
https://doi.org/10.1016/j.physletb.2017.11.041 .
2
28
27
30

Search for dark matter and unparticles in events with a Z boson and missing transverse momentum in proton-proton collisions at root s = 13 TeV (vol 9, 106, 2017)

Sirunyan, A. M.; Adžić, Petar; Ćirković, Predrag; Devetak, Damir; Đorđević, Miloš; Milošević, Jovan; Rekovic, V.; Milenović, Predrag

(2018)

TY  - BOOK
AU  - Sirunyan, A. M.
AU  - Adžić, Petar
AU  - Ćirković, Predrag
AU  - Devetak, Damir
AU  - Đorđević, Miloš
AU  - Milošević, Jovan
AU  - Rekovic, V.
AU  - Milenović, Predrag
PY  - 2018
UR  - http://vinar.vin.bg.ac.rs/handle/123456789/1921
T2  - Journal of High Energy Physics
T1  - Search for dark matter and unparticles in events with a Z boson and missing transverse momentum in proton-proton collisions at root s = 13 TeV (vol 9, 106, 2017)
IS  - 1
DO  - 10.1007/JHEP01(2018)056
ER  - 
@book{
author = "Sirunyan, A. M. and Adžić, Petar and Ćirković, Predrag and Devetak, Damir and Đorđević, Miloš and Milošević, Jovan and Rekovic, V. and Milenović, Predrag",
year = "2018",
url = "http://vinar.vin.bg.ac.rs/handle/123456789/1921",
journal = "Journal of High Energy Physics",
title = "Search for dark matter and unparticles in events with a Z boson and missing transverse momentum in proton-proton collisions at root s = 13 TeV (vol 9, 106, 2017)",
number = "1",
doi = "10.1007/JHEP01(2018)056"
}
Sirunyan, A. M., Adžić, P., Ćirković, P., Devetak, D., Đorđević, M., Milošević, J., Rekovic, V.,& Milenović, P. (2018). Search for dark matter and unparticles in events with a Z boson and missing transverse momentum in proton-proton collisions at root s = 13 TeV (vol 9, 106, 2017).
Journal of High Energy Physics(1).
https://doi.org/10.1007/JHEP01(2018)056
Sirunyan AM, Adžić P, Ćirković P, Devetak D, Đorđević M, Milošević J, Rekovic V, Milenović P. Search for dark matter and unparticles in events with a Z boson and missing transverse momentum in proton-proton collisions at root s = 13 TeV (vol 9, 106, 2017). Journal of High Energy Physics. 2018;(1)
Sirunyan A. M., Adžić Petar, Ćirković Predrag, Devetak Damir, Đorđević Miloš, Milošević Jovan, Rekovic V., Milenović Predrag, "Search for dark matter and unparticles in events with a Z boson and missing transverse momentum in proton-proton collisions at root s = 13 TeV (vol 9, 106, 2017)" Journal of High Energy Physics, no. 1 (2018),
https://doi.org/10.1007/JHEP01(2018)056 .
1

Search for supersymmetry in the all-hadronic final state using top quark tagging in pp collisions at root s=13 TeV

Khachatryan, V.; Adžić, Petar; Ćirković, Predrag; Devetak, Damir; Đorđević, Miloš; Milošević, Jovan; Rekovic, V.; Milenović, Predrag

(2017)

TY  - JOUR
AU  - Khachatryan, V.
AU  - Adžić, Petar
AU  - Ćirković, Predrag
AU  - Devetak, Damir
AU  - Đorđević, Miloš
AU  - Milošević, Jovan
AU  - Rekovic, V.
AU  - Milenović, Predrag
PY  - 2017
UR  - http://vinar.vin.bg.ac.rs/handle/123456789/1657
AB  - A search is presented for supersymmetry in all-hadronic events with missing transverse momentum and tagged top quarks. The data sample was collected with the CMS detector at the LHC and corresponds to an integrated luminosity of 2.3 fb(-1) of proton-proton collisions at a center-of-mass energy of 13 TeV. Search regions are defined using the properties of reconstructed jets, the multiplicity of bottom and top quark candidates, and an imbalance in transverse momentum. With no statistically significant excess of events observed beyond the expected contributions from the standard model, we set exclusion limits at 95% confidence level on the masses of new particles in the context of simplified models of direct and gluino-mediated top squark production. For direct top squark production with decays to a top quark and a neutralino, top squark masses up to 740 GeV and neutralino masses up to 240 GeV are excluded. Gluino masses up to 1550 GeV and neutralino masses up to 900 GeV are excluded for a gluino-mediated production case, where each of the pair-produced gluinos decays to a top-antitop quark pair and a neutralino.
T2  - Physical Review D
T1  - Search for supersymmetry in the all-hadronic final state using top quark tagging in pp collisions at root s=13 TeV
VL  - 96
IS  - 1
DO  - 10.1103/PhysRevD.96.012004
ER  - 
@article{
author = "Khachatryan, V. and Adžić, Petar and Ćirković, Predrag and Devetak, Damir and Đorđević, Miloš and Milošević, Jovan and Rekovic, V. and Milenović, Predrag",
year = "2017",
url = "http://vinar.vin.bg.ac.rs/handle/123456789/1657",
abstract = "A search is presented for supersymmetry in all-hadronic events with missing transverse momentum and tagged top quarks. The data sample was collected with the CMS detector at the LHC and corresponds to an integrated luminosity of 2.3 fb(-1) of proton-proton collisions at a center-of-mass energy of 13 TeV. Search regions are defined using the properties of reconstructed jets, the multiplicity of bottom and top quark candidates, and an imbalance in transverse momentum. With no statistically significant excess of events observed beyond the expected contributions from the standard model, we set exclusion limits at 95% confidence level on the masses of new particles in the context of simplified models of direct and gluino-mediated top squark production. For direct top squark production with decays to a top quark and a neutralino, top squark masses up to 740 GeV and neutralino masses up to 240 GeV are excluded. Gluino masses up to 1550 GeV and neutralino masses up to 900 GeV are excluded for a gluino-mediated production case, where each of the pair-produced gluinos decays to a top-antitop quark pair and a neutralino.",
journal = "Physical Review D",
title = "Search for supersymmetry in the all-hadronic final state using top quark tagging in pp collisions at root s=13 TeV",
volume = "96",
number = "1",
doi = "10.1103/PhysRevD.96.012004"
}
Khachatryan, V., Adžić, P., Ćirković, P., Devetak, D., Đorđević, M., Milošević, J., Rekovic, V.,& Milenović, P. (2017). Search for supersymmetry in the all-hadronic final state using top quark tagging in pp collisions at root s=13 TeV.
Physical Review D, 96(1).
https://doi.org/10.1103/PhysRevD.96.012004
Khachatryan V, Adžić P, Ćirković P, Devetak D, Đorđević M, Milošević J, Rekovic V, Milenović P. Search for supersymmetry in the all-hadronic final state using top quark tagging in pp collisions at root s=13 TeV. Physical Review D. 2017;96(1)
Khachatryan V., Adžić Petar, Ćirković Predrag, Devetak Damir, Đorđević Miloš, Milošević Jovan, Rekovic V., Milenović Predrag, "Search for supersymmetry in the all-hadronic final state using top quark tagging in pp collisions at root s=13 TeV" Physical Review D, 96, no. 1 (2017),
https://doi.org/10.1103/PhysRevD.96.012004 .
19
7
3
20

Measurement of the differential inclusive B+ hadron cross sections in pp collisions at root s=13TeV

Khachatryan, V.; Adžić, Petar; Ćirković, Predrag; Devetak, Damir; Đorđević, Miloš; Milošević, Jovan; Rekovic, V.; Milenović, Predrag

(2017)

TY  - JOUR
AU  - Khachatryan, V.
AU  - Adžić, Petar
AU  - Ćirković, Predrag
AU  - Devetak, Damir
AU  - Đorđević, Miloš
AU  - Milošević, Jovan
AU  - Rekovic, V.
AU  - Milenović, Predrag
PY  - 2017
UR  - http://vinar.vin.bg.ac.rs/handle/123456789/1654
AB  - The differential cross sections for inclusive production of B+ hadrons are measured as a function of the B+ transverse momentum p(T)(B) and rapidity y(B) in pp collisions at a centre-of-mass energy of 13 TeV, using data collected by the CMS experiment that correspond to an integrated luminosity of 48.1 pb(-1). The measurement uses the exclusive decay channel B+ - GT J/psi K+, with J/psi mesons that decay to a pair of muons. The results show a reasonable agreement with theoretical calculations within the uncertainties. (C) 2017 The Author(s). Published by Elsevier B.V.
T2  - Physics Letters B
T1  - Measurement of the differential inclusive B+ hadron cross sections in pp collisions at root s=13TeV
VL  - 771
SP  - 435
EP  - 456
DO  - 10.1016/j.physletb.2017.05.074
ER  - 
@article{
author = "Khachatryan, V. and Adžić, Petar and Ćirković, Predrag and Devetak, Damir and Đorđević, Miloš and Milošević, Jovan and Rekovic, V. and Milenović, Predrag",
year = "2017",
url = "http://vinar.vin.bg.ac.rs/handle/123456789/1654",
abstract = "The differential cross sections for inclusive production of B+ hadrons are measured as a function of the B+ transverse momentum p(T)(B) and rapidity y(B) in pp collisions at a centre-of-mass energy of 13 TeV, using data collected by the CMS experiment that correspond to an integrated luminosity of 48.1 pb(-1). The measurement uses the exclusive decay channel B+ - GT J/psi K+, with J/psi mesons that decay to a pair of muons. The results show a reasonable agreement with theoretical calculations within the uncertainties. (C) 2017 The Author(s). Published by Elsevier B.V.",
journal = "Physics Letters B",
title = "Measurement of the differential inclusive B+ hadron cross sections in pp collisions at root s=13TeV",
volume = "771",
pages = "435-456",
doi = "10.1016/j.physletb.2017.05.074"
}
Khachatryan, V., Adžić, P., Ćirković, P., Devetak, D., Đorđević, M., Milošević, J., Rekovic, V.,& Milenović, P. (2017). Measurement of the differential inclusive B+ hadron cross sections in pp collisions at root s=13TeV.
Physics Letters B, 771, 435-456.
https://doi.org/10.1016/j.physletb.2017.05.074
Khachatryan V, Adžić P, Ćirković P, Devetak D, Đorđević M, Milošević J, Rekovic V, Milenović P. Measurement of the differential inclusive B+ hadron cross sections in pp collisions at root s=13TeV. Physics Letters B. 2017;771:435-456
Khachatryan V., Adžić Petar, Ćirković Predrag, Devetak Damir, Đorđević Miloš, Milošević Jovan, Rekovic V., Milenović Predrag, "Measurement of the differential inclusive B+ hadron cross sections in pp collisions at root s=13TeV" Physics Letters B, 771 (2017):435-456,
https://doi.org/10.1016/j.physletb.2017.05.074 .
2
11
14
19

Measurement of differential cross sections for top quark pair production using the lepton plus jets final state in proton-proton collisions at 13 TeV

Khachatryan, V.; Adžić, Petar; Ćirković, Predrag; Devetak, Damir; Đorđević, Miloš; Milošević, Jovan; Rekovic, V.; Milenović, Predrag

(2017)

TY  - JOUR
AU  - Khachatryan, V.
AU  - Adžić, Petar
AU  - Ćirković, Predrag
AU  - Devetak, Damir
AU  - Đorđević, Miloš
AU  - Milošević, Jovan
AU  - Rekovic, V.
AU  - Milenović, Predrag
PY  - 2017
UR  - http://vinar.vin.bg.ac.rs/handle/123456789/1546
AB  - Differential and double-differential cross sections for the production of top quark pairs in proton-proton collisions at 13 TeV are measured as a function of jet multiplicity and of kinematic variables of the top quarks and the top quark-antiquark system. This analysis is based on data collected by the CMS experiment at the LHC corresponding to an integrated luminosity of 2.3 fb(-1). The measurements are performed in the lepton + jets decay channels with a single muon or electron in the final state. The differential cross sections are presented at particle level, within a phase space close to the experimental acceptance, and at parton level in the full phase space. The results are compared to several standard model predictions.
T2  - Physical Review D
T1  - Measurement of differential cross sections for top quark pair production using the lepton plus jets final state in proton-proton collisions at 13 TeV
VL  - 95
IS  - 9
DO  - 10.1103/PhysRevD.95.092001
ER  - 
@article{
author = "Khachatryan, V. and Adžić, Petar and Ćirković, Predrag and Devetak, Damir and Đorđević, Miloš and Milošević, Jovan and Rekovic, V. and Milenović, Predrag",
year = "2017",
url = "http://vinar.vin.bg.ac.rs/handle/123456789/1546",
abstract = "Differential and double-differential cross sections for the production of top quark pairs in proton-proton collisions at 13 TeV are measured as a function of jet multiplicity and of kinematic variables of the top quarks and the top quark-antiquark system. This analysis is based on data collected by the CMS experiment at the LHC corresponding to an integrated luminosity of 2.3 fb(-1). The measurements are performed in the lepton + jets decay channels with a single muon or electron in the final state. The differential cross sections are presented at particle level, within a phase space close to the experimental acceptance, and at parton level in the full phase space. The results are compared to several standard model predictions.",
journal = "Physical Review D",
title = "Measurement of differential cross sections for top quark pair production using the lepton plus jets final state in proton-proton collisions at 13 TeV",
volume = "95",
number = "9",
doi = "10.1103/PhysRevD.95.092001"
}
Khachatryan, V., Adžić, P., Ćirković, P., Devetak, D., Đorđević, M., Milošević, J., Rekovic, V.,& Milenović, P. (2017). Measurement of differential cross sections for top quark pair production using the lepton plus jets final state in proton-proton collisions at 13 TeV.
Physical Review D, 95(9).
https://doi.org/10.1103/PhysRevD.95.092001
Khachatryan V, Adžić P, Ćirković P, Devetak D, Đorđević M, Milošević J, Rekovic V, Milenović P. Measurement of differential cross sections for top quark pair production using the lepton plus jets final state in proton-proton collisions at 13 TeV. Physical Review D. 2017;95(9)
Khachatryan V., Adžić Petar, Ćirković Predrag, Devetak Damir, Đorđević Miloš, Milošević Jovan, Rekovic V., Milenović Predrag, "Measurement of differential cross sections for top quark pair production using the lepton plus jets final state in proton-proton collisions at 13 TeV" Physical Review D, 95, no. 9 (2017),
https://doi.org/10.1103/PhysRevD.95.092001 .
1
46
71
74

Search for physics beyond the standard model in events with two leptons of same sign, missing transverse momentum, and jets in proton-proton collisions at root s=13TeV

Sirunyan, A. M.; Adžić, Petar; Ćirković, Predrag; Devetak, Damir; Đorđević, Miloš; Milošević, Jovan; Rekovic, V.; Milenović, Predrag

(2017)

TY  - JOUR
AU  - Sirunyan, A. M.
AU  - Adžić, Petar
AU  - Ćirković, Predrag
AU  - Devetak, Damir
AU  - Đorđević, Miloš
AU  - Milošević, Jovan
AU  - Rekovic, V.
AU  - Milenović, Predrag
PY  - 2017
UR  - http://vinar.vin.bg.ac.rs/handle/123456789/1716
AB  - A data sample of events from proton-proton collisions with two isolated same-sign leptons, missing transverse momentum, and jets is studied in a search for signatures of new physics phenomena by the CMS Collaboration at the LHC. The data correspond to an integrated luminosity of 35.9 fb(-1), and a center-of-mass energy of 13 TeV. The properties of the events are consistent with expectations from standard model processes, and no excess yield is observed. Exclusion limits at 95% confidence level are set on cross sections for the pair production of gluinos, squarks, and same-sign top quarks, as well as top-quark associated production of a heavy scalar or pseudoscalar boson decaying to top quarks, and on the standard model production of events with four top quarks. The observed lower mass limits are as high as 1500 GeV for gluinos, 830 GeV for bottom squarks. The excluded mass range for heavy (pseudo) scalar bosons is 350-360 (350-410) GeV. Additionally, model-independent limits in several topological regions are provided, allowing for further interpretations of the results.
T2  - European Physical Journal C. Particles and Fields
T1  - Search for physics beyond the standard model in events with two leptons of same sign, missing transverse momentum, and jets in proton-proton collisions at root s=13TeV
VL  - 77
IS  - 9
DO  - 10.1140/epjc/s10052-017-5079-z
ER  - 
@article{
author = "Sirunyan, A. M. and Adžić, Petar and Ćirković, Predrag and Devetak, Damir and Đorđević, Miloš and Milošević, Jovan and Rekovic, V. and Milenović, Predrag",
year = "2017",
url = "http://vinar.vin.bg.ac.rs/handle/123456789/1716",
abstract = "A data sample of events from proton-proton collisions with two isolated same-sign leptons, missing transverse momentum, and jets is studied in a search for signatures of new physics phenomena by the CMS Collaboration at the LHC. The data correspond to an integrated luminosity of 35.9 fb(-1), and a center-of-mass energy of 13 TeV. The properties of the events are consistent with expectations from standard model processes, and no excess yield is observed. Exclusion limits at 95% confidence level are set on cross sections for the pair production of gluinos, squarks, and same-sign top quarks, as well as top-quark associated production of a heavy scalar or pseudoscalar boson decaying to top quarks, and on the standard model production of events with four top quarks. The observed lower mass limits are as high as 1500 GeV for gluinos, 830 GeV for bottom squarks. The excluded mass range for heavy (pseudo) scalar bosons is 350-360 (350-410) GeV. Additionally, model-independent limits in several topological regions are provided, allowing for further interpretations of the results.",
journal = "European Physical Journal C. Particles and Fields",
title = "Search for physics beyond the standard model in events with two leptons of same sign, missing transverse momentum, and jets in proton-proton collisions at root s=13TeV",
volume = "77",
number = "9",
doi = "10.1140/epjc/s10052-017-5079-z"
}
Sirunyan, A. M., Adžić, P., Ćirković, P., Devetak, D., Đorđević, M., Milošević, J., Rekovic, V.,& Milenović, P. (2017). Search for physics beyond the standard model in events with two leptons of same sign, missing transverse momentum, and jets in proton-proton collisions at root s=13TeV.
European Physical Journal C. Particles and Fields, 77(9).
https://doi.org/10.1140/epjc/s10052-017-5079-z
Sirunyan AM, Adžić P, Ćirković P, Devetak D, Đorđević M, Milošević J, Rekovic V, Milenović P. Search for physics beyond the standard model in events with two leptons of same sign, missing transverse momentum, and jets in proton-proton collisions at root s=13TeV. European Physical Journal C. Particles and Fields. 2017;77(9)
Sirunyan A. M., Adžić Petar, Ćirković Predrag, Devetak Damir, Đorđević Miloš, Milošević Jovan, Rekovic V., Milenović Predrag, "Search for physics beyond the standard model in events with two leptons of same sign, missing transverse momentum, and jets in proton-proton collisions at root s=13TeV" European Physical Journal C. Particles and Fields, 77, no. 9 (2017),
https://doi.org/10.1140/epjc/s10052-017-5079-z .
1
21
42
50

Study of Jet Quenching with Z plus jet Correlations in Pb-Pb and pp Collisions at root s(NN)=5.02 TeV

Sirunyan, A. M.; Adžić, Petar; Ćirković, Predrag; Devetak, Damir; Đorđević, Miloš; Milošević, Jovan; Rekovic, V.; Milenović, Predrag

(2017)

TY  - JOUR
AU  - Sirunyan, A. M.
AU  - Adžić, Petar
AU  - Ćirković, Predrag
AU  - Devetak, Damir
AU  - Đorđević, Miloš
AU  - Milošević, Jovan
AU  - Rekovic, V.
AU  - Milenović, Predrag
PY  - 2017
UR  - http://vinar.vin.bg.ac.rs/handle/123456789/1694
AB  - The production of jets in association with Z bosons, reconstructed via the mu(+)mu(-) and e(+)e(-) decay channels, is studied in pp and, for the first time, in Pb-Pb collisions. Both data samples were collected by the CMS experiment at the LHC, at a nucleon-nucleon center-of-mass energy of 5.02 TeV. The Pb-Pb collisions were analyzed in the 0%-30% centrality range. The back-to-back azimuthal alignment was studied in both pp and Pb-Pb collisions for Z bosons with transverse momentum p(T)(Z) GT 60 GeV/c and a recoiling jet with p(T)(jet) GT 30 GeV/c. The p(T) imbalance x(jZ) = p(T)(jet)/p(T)(Z), as well as the average number of jet partners per Z, R-jZ, was studied in intervals of p(T)(Z). The R-jZ is found to be smaller in Pb-Pb than in pp collisions, which suggests that in Pb-Pb collisions a larger fraction of partons associated with the Z bosons fall below the 30 GeV/c p(T)(jet) threshold because they lose energy.
T2  - Physical Review Letters
T1  - Study of Jet Quenching with Z plus jet Correlations in Pb-Pb and pp Collisions at root s(NN)=5.02 TeV
VL  - 119
IS  - 8
DO  - 10.1103/PhysRevLett.119.082301
ER  - 
@article{
author = "Sirunyan, A. M. and Adžić, Petar and Ćirković, Predrag and Devetak, Damir and Đorđević, Miloš and Milošević, Jovan and Rekovic, V. and Milenović, Predrag",
year = "2017",
url = "http://vinar.vin.bg.ac.rs/handle/123456789/1694",
abstract = "The production of jets in association with Z bosons, reconstructed via the mu(+)mu(-) and e(+)e(-) decay channels, is studied in pp and, for the first time, in Pb-Pb collisions. Both data samples were collected by the CMS experiment at the LHC, at a nucleon-nucleon center-of-mass energy of 5.02 TeV. The Pb-Pb collisions were analyzed in the 0%-30% centrality range. The back-to-back azimuthal alignment was studied in both pp and Pb-Pb collisions for Z bosons with transverse momentum p(T)(Z) GT 60 GeV/c and a recoiling jet with p(T)(jet) GT 30 GeV/c. The p(T) imbalance x(jZ) = p(T)(jet)/p(T)(Z), as well as the average number of jet partners per Z, R-jZ, was studied in intervals of p(T)(Z). The R-jZ is found to be smaller in Pb-Pb than in pp collisions, which suggests that in Pb-Pb collisions a larger fraction of partons associated with the Z bosons fall below the 30 GeV/c p(T)(jet) threshold because they lose energy.",
journal = "Physical Review Letters",
title = "Study of Jet Quenching with Z plus jet Correlations in Pb-Pb and pp Collisions at root s(NN)=5.02 TeV",
volume = "119",
number = "8",
doi = "10.1103/PhysRevLett.119.082301"
}
Sirunyan, A. M., Adžić, P., Ćirković, P., Devetak, D., Đorđević, M., Milošević, J., Rekovic, V.,& Milenović, P. (2017). Study of Jet Quenching with Z plus jet Correlations in Pb-Pb and pp Collisions at root s(NN)=5.02 TeV.
Physical Review Letters, 119(8).
https://doi.org/10.1103/PhysRevLett.119.082301
Sirunyan AM, Adžić P, Ćirković P, Devetak D, Đorđević M, Milošević J, Rekovic V, Milenović P. Study of Jet Quenching with Z plus jet Correlations in Pb-Pb and pp Collisions at root s(NN)=5.02 TeV. Physical Review Letters. 2017;119(8)
Sirunyan A. M., Adžić Petar, Ćirković Predrag, Devetak Damir, Đorđević Miloš, Milošević Jovan, Rekovic V., Milenović Predrag, "Study of Jet Quenching with Z plus jet Correlations in Pb-Pb and pp Collisions at root s(NN)=5.02 TeV" Physical Review Letters, 119, no. 8 (2017),
https://doi.org/10.1103/PhysRevLett.119.082301 .
44
21
15
37

Coherent J/psi photoproduction in ultra-peripheral PbPb collisions at root s(NN)=2.76 TeV with the CMS experiment

Khachatryan, V.; Adzic, R.; Ćirković, Predrag; Devetak, Damir; Milošević, Jovan; Rekovic, V.; Đorđević, Miloš; Milenović, Predrag

(2017)

TY  - JOUR
AU  - Khachatryan, V.
AU  - Adzic, R.
AU  - Ćirković, Predrag
AU  - Devetak, Damir
AU  - Milošević, Jovan
AU  - Rekovic, V.
AU  - Đorđević, Miloš
AU  - Milenović, Predrag
PY  - 2017
UR  - http://vinar.vin.bg.ac.rs/handle/123456789/1742
AB  - The cross section for coherent J/psi photoproduction accompanied by at least one neutron on one side of the interaction point and no neutron activity on the other side, Xn0n, is measured with the CMS experiment in ultra-peripheral PbPb collisions at root sNN= 2.76TeV. The analysis is based on a data sample corresponding to an integrated luminosity of 159 mu b(-1), collected during the 2011 PbPb run. The J/psi mesons are reconstructed in the dimuon decay channel, while neutrons are detected using zero degree calorimeters. The measured cross section is d sigma(Xn)o(n)(coh)/dy(J/psi) = 0.36 +/- 0.04 (stat)+/- 0.04 (syst) mbin the rapidity interval 1.8 LT vertical bar y vertical bar LT 2.3. Using a model for the relative rate of coherent photoproduction processes, this Xn0nmeasurement gives a total coherent photoproduction cross section of d sigma(coh/) dy(J/psi) = 1.82 +/- 0.22 (stat)+/- 0.20 (syst)+/- 0.19 (theo) mb. The data strongly disfavorthe impulse approximation model prediction, indicating that nuclear effects are needed to describe coherent J/psi photoproduction in.+ Pbinteractions. The data are found to be consistent with the leading twist approximation, which includes nuclear gluon shadowing. (C) 2017 The Author(s). Published by Elsevier B.V.
T2  - Physics Letters B
T1  - Coherent J/psi photoproduction in ultra-peripheral PbPb collisions at root s(NN)=2.76 TeV with the CMS experiment
VL  - 772
SP  - 489
EP  - 511
DO  - 10.1016/j.physletb.2017.07.001
ER  - 
@article{
author = "Khachatryan, V. and Adzic, R. and Ćirković, Predrag and Devetak, Damir and Milošević, Jovan and Rekovic, V. and Đorđević, Miloš and Milenović, Predrag",
year = "2017",
url = "http://vinar.vin.bg.ac.rs/handle/123456789/1742",
abstract = "The cross section for coherent J/psi photoproduction accompanied by at least one neutron on one side of the interaction point and no neutron activity on the other side, Xn0n, is measured with the CMS experiment in ultra-peripheral PbPb collisions at root sNN= 2.76TeV. The analysis is based on a data sample corresponding to an integrated luminosity of 159 mu b(-1), collected during the 2011 PbPb run. The J/psi mesons are reconstructed in the dimuon decay channel, while neutrons are detected using zero degree calorimeters. The measured cross section is d sigma(Xn)o(n)(coh)/dy(J/psi) = 0.36 +/- 0.04 (stat)+/- 0.04 (syst) mbin the rapidity interval 1.8 LT vertical bar y vertical bar LT 2.3. Using a model for the relative rate of coherent photoproduction processes, this Xn0nmeasurement gives a total coherent photoproduction cross section of d sigma(coh/) dy(J/psi) = 1.82 +/- 0.22 (stat)+/- 0.20 (syst)+/- 0.19 (theo) mb. The data strongly disfavorthe impulse approximation model prediction, indicating that nuclear effects are needed to describe coherent J/psi photoproduction in.+ Pbinteractions. The data are found to be consistent with the leading twist approximation, which includes nuclear gluon shadowing. (C) 2017 The Author(s). Published by Elsevier B.V.",
journal = "Physics Letters B",
title = "Coherent J/psi photoproduction in ultra-peripheral PbPb collisions at root s(NN)=2.76 TeV with the CMS experiment",
volume = "772",
pages = "489-511",
doi = "10.1016/j.physletb.2017.07.001"
}
Khachatryan, V., Adzic, R., Ćirković, P., Devetak, D., Milošević, J., Rekovic, V., Đorđević, M.,& Milenović, P. (2017). Coherent J/psi photoproduction in ultra-peripheral PbPb collisions at root s(NN)=2.76 TeV with the CMS experiment.
Physics Letters B, 772, 489-511.
https://doi.org/10.1016/j.physletb.2017.07.001
Khachatryan V, Adzic R, Ćirković P, Devetak D, Milošević J, Rekovic V, Đorđević M, Milenović P. Coherent J/psi photoproduction in ultra-peripheral PbPb collisions at root s(NN)=2.76 TeV with the CMS experiment. Physics Letters B. 2017;772:489-511
Khachatryan V., Adzic R., Ćirković Predrag, Devetak Damir, Milošević Jovan, Rekovic V., Đorđević Miloš, Milenović Predrag, "Coherent J/psi photoproduction in ultra-peripheral PbPb collisions at root s(NN)=2.76 TeV with the CMS experiment" Physics Letters B, 772 (2017):489-511,
https://doi.org/10.1016/j.physletb.2017.07.001 .
2
49
50
58

Pseudorapidity dependence of long-range two-particle correlations in pPb collisions at root sNN=5.02 TeV

Khachatryan, V.; Adžić, Petar; Ćirković, Predrag; Milošević, Jovan; Rekovic, V.; Đorđević, Miloš; Milenović, Predrag

(2017)

TY  - JOUR
AU  - Khachatryan, V.
AU  - Adžić, Petar
AU  - Ćirković, Predrag
AU  - Milošević, Jovan
AU  - Rekovic, V.
AU  - Đorđević, Miloš
AU  - Milenović, Predrag
PY  - 2017
UR  - http://vinar.vin.bg.ac.rs/handle/123456789/1660
AB  - Two-particle correlations in pPb collisions at a nucleon-nucleon center-of-mass energy of 5.02 TeV are studied as a function of the pseudorapidity separation (Delta eta) of the particle pair at small relative azimuthal angle (|Delta phi| LT pi/3). The correlations are decomposed into a jet component that dominates the short-range correlations (|Delta eta| LT 1), and a component that persists at large Delta eta and may originate from collective behavior of the produced system. The events are classified in terms of the multiplicity of the produced particles. Finite azimuthal anisotropies are observed in high-multiplicity events. The second and third Fourier components of the particle-pair azimuthal correlations, V2 and V3, are extracted after subtraction of the jet component. The single-particle anisotropy parameters v2 and v3 are normalized by their laboratory frame midrapidity value and are studied as a function of eta(c.m). The normalized v2 distribution is found to be asymmetric about eta(c.m.) = 0, with smaller values observed at forward pseudorapidity, corresponding to the direction of the proton beam, while no significant pseudorapidity dependence is observed for the normalized v3 distribution within the statistical uncertainties.
T2  - Physical Review C
T1  - Pseudorapidity dependence of long-range two-particle correlations in pPb collisions at root sNN=5.02 TeV
VL  - 96
IS  - 1
DO  - 10.1103/PhysRevC.96.014915
ER  - 
@article{
author = "Khachatryan, V. and Adžić, Petar and Ćirković, Predrag and Milošević, Jovan and Rekovic, V. and Đorđević, Miloš and Milenović, Predrag",
year = "2017",
url = "http://vinar.vin.bg.ac.rs/handle/123456789/1660",
abstract = "Two-particle correlations in pPb collisions at a nucleon-nucleon center-of-mass energy of 5.02 TeV are studied as a function of the pseudorapidity separation (Delta eta) of the particle pair at small relative azimuthal angle (|Delta phi| LT pi/3). The correlations are decomposed into a jet component that dominates the short-range correlations (|Delta eta| LT 1), and a component that persists at large Delta eta and may originate from collective behavior of the produced system. The events are classified in terms of the multiplicity of the produced particles. Finite azimuthal anisotropies are observed in high-multiplicity events. The second and third Fourier components of the particle-pair azimuthal correlations, V2 and V3, are extracted after subtraction of the jet component. The single-particle anisotropy parameters v2 and v3 are normalized by their laboratory frame midrapidity value and are studied as a function of eta(c.m). The normalized v2 distribution is found to be asymmetric about eta(c.m.) = 0, with smaller values observed at forward pseudorapidity, corresponding to the direction of the proton beam, while no significant pseudorapidity dependence is observed for the normalized v3 distribution within the statistical uncertainties.",
journal = "Physical Review C",
title = "Pseudorapidity dependence of long-range two-particle correlations in pPb collisions at root sNN=5.02 TeV",
volume = "96",
number = "1",
doi = "10.1103/PhysRevC.96.014915"
}
Khachatryan, V., Adžić, P., Ćirković, P., Milošević, J., Rekovic, V., Đorđević, M.,& Milenović, P. (2017). Pseudorapidity dependence of long-range two-particle correlations in pPb collisions at root sNN=5.02 TeV.
Physical Review C, 96(1).
https://doi.org/10.1103/PhysRevC.96.014915
Khachatryan V, Adžić P, Ćirković P, Milošević J, Rekovic V, Đorđević M, Milenović P. Pseudorapidity dependence of long-range two-particle correlations in pPb collisions at root sNN=5.02 TeV. Physical Review C. 2017;96(1)
Khachatryan V., Adžić Petar, Ćirković Predrag, Milošević Jovan, Rekovic V., Đorđević Miloš, Milenović Predrag, "Pseudorapidity dependence of long-range two-particle correlations in pPb collisions at root sNN=5.02 TeV" Physical Review C, 96, no. 1 (2017),
https://doi.org/10.1103/PhysRevC.96.014915 .
2
6
11
11

Measurement of double-differential cross sections for top quark pair production in pp collisions at root s=8 TeV and impact on parton distribution functions

Sirunyan, A. M.; Adžić, Petar; Ćirković, Predrag; Devetak, Damir; Đorđević, Miloš; Milošević, Jovan; Rekovic, V.; Milenović, Predrag

(2017)

TY  - JOUR
AU  - Sirunyan, A. M.
AU  - Adžić, Petar
AU  - Ćirković, Predrag
AU  - Devetak, Damir
AU  - Đorđević, Miloš
AU  - Milošević, Jovan
AU  - Rekovic, V.
AU  - Milenović, Predrag
PY  - 2017
UR  - http://vinar.vin.bg.ac.rs/handle/123456789/1637
AB  - Normalized double-differential cross sections for top quark pair (t (t) over bar) production are measured in pp collisions at a centre-of-mass energy of 8 TeV with the CMS experiment at the LHC. The analyzed data correspond to an integrated luminosity of 19.7 fb(-1). The measurement is performed in the dilepton e(+/-)mu(+/-) final state. The tt cross section is determined as a function of various pairs of observables characterizing the kinematics of the top quark and tt system. The data are compared to calculations using perturbative quantum chromodynamics at next-to-leading and approximate next-to-next-to-leading orders. They are also compared to predictions of Monte Carlo event generators that complement fixed-order computations with parton showers, hadronization, and multiple-parton interactions. Overall agreement is observed with the predictions, which is improved when the latest global sets of proton parton distribution functions are used. The inclusion of the measured tt cross sections in a fit of parametrized parton distribution functions is shown to have significant impact on the gluon distribution.
T2  - European Physical Journal C. Particles and Fields
T1  - Measurement of double-differential cross sections for top quark pair production in pp collisions at root s=8 TeV and impact on parton distribution functions
VL  - 77
IS  - 7
DO  - 10.1140/epjc/s10052-017-4984-5
ER  - 
@article{
author = "Sirunyan, A. M. and Adžić, Petar and Ćirković, Predrag and Devetak, Damir and Đorđević, Miloš and Milošević, Jovan and Rekovic, V. and Milenović, Predrag",
year = "2017",
url = "http://vinar.vin.bg.ac.rs/handle/123456789/1637",
abstract = "Normalized double-differential cross sections for top quark pair (t (t) over bar) production are measured in pp collisions at a centre-of-mass energy of 8 TeV with the CMS experiment at the LHC. The analyzed data correspond to an integrated luminosity of 19.7 fb(-1). The measurement is performed in the dilepton e(+/-)mu(+/-) final state. The tt cross section is determined as a function of various pairs of observables characterizing the kinematics of the top quark and tt system. The data are compared to calculations using perturbative quantum chromodynamics at next-to-leading and approximate next-to-next-to-leading orders. They are also compared to predictions of Monte Carlo event generators that complement fixed-order computations with parton showers, hadronization, and multiple-parton interactions. Overall agreement is observed with the predictions, which is improved when the latest global sets of proton parton distribution functions are used. The inclusion of the measured tt cross sections in a fit of parametrized parton distribution functions is shown to have significant impact on the gluon distribution.",
journal = "European Physical Journal C. Particles and Fields",
title = "Measurement of double-differential cross sections for top quark pair production in pp collisions at root s=8 TeV and impact on parton distribution functions",
volume = "77",
number = "7",
doi = "10.1140/epjc/s10052-017-4984-5"
}
Sirunyan, A. M., Adžić, P., Ćirković, P., Devetak, D., Đorđević, M., Milošević, J., Rekovic, V.,& Milenović, P. (2017). Measurement of double-differential cross sections for top quark pair production in pp collisions at root s=8 TeV and impact on parton distribution functions.
European Physical Journal C. Particles and Fields, 77(7).
https://doi.org/10.1140/epjc/s10052-017-4984-5
Sirunyan AM, Adžić P, Ćirković P, Devetak D, Đorđević M, Milošević J, Rekovic V, Milenović P. Measurement of double-differential cross sections for top quark pair production in pp collisions at root s=8 TeV and impact on parton distribution functions. European Physical Journal C. Particles and Fields. 2017;77(7)
Sirunyan A. M., Adžić Petar, Ćirković Predrag, Devetak Damir, Đorđević Miloš, Milošević Jovan, Rekovic V., Milenović Predrag, "Measurement of double-differential cross sections for top quark pair production in pp collisions at root s=8 TeV and impact on parton distribution functions" European Physical Journal C. Particles and Fields, 77, no. 7 (2017),
https://doi.org/10.1140/epjc/s10052-017-4984-5 .
4
13
20
24

A search for new phenomena in pp collisions at root s=13TeV in final states with missing transverse momentum and at least one jet using the alpha(T) variable

Khachatryan, V.; Adžić, Petar; Ćirković, Predrag; Devetak, Damir; Đorđević, Miloš; Milošević, Jovan; Rekovic, V.; Milenović, Predrag

(2017)

TY  - JOUR
AU  - Khachatryan, V.
AU  - Adžić, Petar
AU  - Ćirković, Predrag
AU  - Devetak, Damir
AU  - Đorđević, Miloš
AU  - Milošević, Jovan
AU  - Rekovic, V.
AU  - Milenović, Predrag
PY  - 2017
UR  - http://vinar.vin.bg.ac.rs/handle/123456789/1561
AB  - A search for new phenomena is performed in final states containing one or more jets and an imbalance in transverse momentum in pp collisions at a centre-of-mass energy of 13 TeV. The analysed data sample, recorded with the CMS detector at the CERN LHC, corresponds to an integrated luminosity of 2.3 fb(-1). Several kinematic variables are employed to suppress the dominant background, multijet production, as well as to discriminate between other standard model and new physics processes. The search provides sensitivity to a broad range of new-physics models that yield a stable weakly interacting massive particle. The number of observed candidate events is found to agree with the expected contributions from standard model processes, and the result is interpreted in the mass parameter space of fourteen simplified supersymmetric models that assume the pair production of gluinos or squarks and a range of decay modes. For models that assume gluino pair production, masses up to 1575 and 975 GeV are excluded for gluinos and neutralinos, respectively. For models involving the pair production of top squarks and compressed mass spectra, top squark masses up to 400 GeV are excluded.
T2  - European Physical Journal C. Particles and Fields
T1  - A search for new phenomena in pp collisions at root s=13TeV in final states with missing transverse momentum and at least one jet using the alpha(T) variable
VL  - 77
IS  - 5
DO  - 10.1140/epjc/s10052-017-4787-8
ER  - 
@article{
author = "Khachatryan, V. and Adžić, Petar and Ćirković, Predrag and Devetak, Damir and Đorđević, Miloš and Milošević, Jovan and Rekovic, V. and Milenović, Predrag",
year = "2017",
url = "http://vinar.vin.bg.ac.rs/handle/123456789/1561",
abstract = "A search for new phenomena is performed in final states containing one or more jets and an imbalance in transverse momentum in pp collisions at a centre-of-mass energy of 13 TeV. The analysed data sample, recorded with the CMS detector at the CERN LHC, corresponds to an integrated luminosity of 2.3 fb(-1). Several kinematic variables are employed to suppress the dominant background, multijet production, as well as to discriminate between other standard model and new physics processes. The search provides sensitivity to a broad range of new-physics models that yield a stable weakly interacting massive particle. The number of observed candidate events is found to agree with the expected contributions from standard model processes, and the result is interpreted in the mass parameter space of fourteen simplified supersymmetric models that assume the pair production of gluinos or squarks and a range of decay modes. For models that assume gluino pair production, masses up to 1575 and 975 GeV are excluded for gluinos and neutralinos, respectively. For models involving the pair production of top squarks and compressed mass spectra, top squark masses up to 400 GeV are excluded.",
journal = "European Physical Journal C. Particles and Fields",
title = "A search for new phenomena in pp collisions at root s=13TeV in final states with missing transverse momentum and at least one jet using the alpha(T) variable",
volume = "77",
number = "5",
doi = "10.1140/epjc/s10052-017-4787-8"
}
Khachatryan, V., Adžić, P., Ćirković, P., Devetak, D., Đorđević, M., Milošević, J., Rekovic, V.,& Milenović, P. (2017). A search for new phenomena in pp collisions at root s=13TeV in final states with missing transverse momentum and at least one jet using the alpha(T) variable.
European Physical Journal C. Particles and Fields, 77(5).
https://doi.org/10.1140/epjc/s10052-017-4787-8
Khachatryan V, Adžić P, Ćirković P, Devetak D, Đorđević M, Milošević J, Rekovic V, Milenović P. A search for new phenomena in pp collisions at root s=13TeV in final states with missing transverse momentum and at least one jet using the alpha(T) variable. European Physical Journal C. Particles and Fields. 2017;77(5)
Khachatryan V., Adžić Petar, Ćirković Predrag, Devetak Damir, Đorđević Miloš, Milošević Jovan, Rekovic V., Milenović Predrag, "A search for new phenomena in pp collisions at root s=13TeV in final states with missing transverse momentum and at least one jet using the alpha(T) variable" European Physical Journal C. Particles and Fields, 77, no. 5 (2017),
https://doi.org/10.1140/epjc/s10052-017-4787-8 .
1
20
14
17

Measurement of the t(t)over-bar production cross section using events in the e mu final state in pp collisions at root s=13 TeV

Khachatryan, V.; Adžić, Petar; Ćirković, Predrag; Devetak, Damir; Đorđević, Miloš; Milošević, Jovan; Rekovic, V.; Milenović, Predrag

(2017)

TY  - JOUR
AU  - Khachatryan, V.
AU  - Adžić, Petar
AU  - Ćirković, Predrag
AU  - Devetak, Damir
AU  - Đorđević, Miloš
AU  - Milošević, Jovan
AU  - Rekovic, V.
AU  - Milenović, Predrag
PY  - 2017
UR  - http://vinar.vin.bg.ac.rs/handle/123456789/1534
AB  - The cross section of top quark-antiquark pair production in proton-proton collisions at root s = 13 TeV is measured by the CMS experiment at the LHC, using data corresponding to an integrated luminosity of 2.2 fb(-1). The measurement is performed by analyzing events in which the final state includes one electron, one muon, and two or more jets, at least one of which is identified as originating from hadronization of a b quark. The measured cross section is 815 +/- 9 (stat) +/- 38 (syst) +/- 19 (lumi) pb, in agreement with the expectation from the standard model.
T2  - European Physical Journal C. Particles and Fields
T1  - Measurement of the t(t)over-bar production cross section using events in the e mu final state in pp collisions at root s=13 TeV
VL  - 77
IS  - 3
DO  - 10.1140/epjc/s10052-017-4718-8
ER  - 
@article{
author = "Khachatryan, V. and Adžić, Petar and Ćirković, Predrag and Devetak, Damir and Đorđević, Miloš and Milošević, Jovan and Rekovic, V. and Milenović, Predrag",
year = "2017",
url = "http://vinar.vin.bg.ac.rs/handle/123456789/1534",
abstract = "The cross section of top quark-antiquark pair production in proton-proton collisions at root s = 13 TeV is measured by the CMS experiment at the LHC, using data corresponding to an integrated luminosity of 2.2 fb(-1). The measurement is performed by analyzing events in which the final state includes one electron, one muon, and two or more jets, at least one of which is identified as originating from hadronization of a b quark. The measured cross section is 815 +/- 9 (stat) +/- 38 (syst) +/- 19 (lumi) pb, in agreement with the expectation from the standard model.",
journal = "European Physical Journal C. Particles and Fields",
title = "Measurement of the t(t)over-bar production cross section using events in the e mu final state in pp collisions at root s=13 TeV",
volume = "77",
number = "3",
doi = "10.1140/epjc/s10052-017-4718-8"
}
Khachatryan, V., Adžić, P., Ćirković, P., Devetak, D., Đorđević, M., Milošević, J., Rekovic, V.,& Milenović, P. (2017). Measurement of the t(t)over-bar production cross section using events in the e mu final state in pp collisions at root s=13 TeV.
European Physical Journal C. Particles and Fields, 77(3).
https://doi.org/10.1140/epjc/s10052-017-4718-8
Khachatryan V, Adžić P, Ćirković P, Devetak D, Đorđević M, Milošević J, Rekovic V, Milenović P. Measurement of the t(t)over-bar production cross section using events in the e mu final state in pp collisions at root s=13 TeV. European Physical Journal C. Particles and Fields. 2017;77(3)
Khachatryan V., Adžić Petar, Ćirković Predrag, Devetak Damir, Đorđević Miloš, Milošević Jovan, Rekovic V., Milenović Predrag, "Measurement of the t(t)over-bar production cross section using events in the e mu final state in pp collisions at root s=13 TeV" European Physical Journal C. Particles and Fields, 77, no. 3 (2017),
https://doi.org/10.1140/epjc/s10052-017-4718-8 .
1
19
32
32

Measurements of the t(t)over-bar production cross section in lepton plus jets final states in pp collisions at 8 and ratio of 8 to 7 cross sections

Khachatryan, V.; Adžić, Petar; Milošević, Jovan; Rekovic, V.; Đorđević, Miloš; Milenović, Predrag

(2017)

TY  - JOUR
AU  - Khachatryan, V.
AU  - Adžić, Petar
AU  - Milošević, Jovan
AU  - Rekovic, V.
AU  - Đorđević, Miloš
AU  - Milenović, Predrag
PY  - 2017
UR  - http://vinar.vin.bg.ac.rs/handle/123456789/1389
AB  - A measurement of the top quark pair production () cross section in proton-proton collisions at the centre-of-mass energy of 8 is presented using data collected with the CMS detector at the LHC, corresponding to an integrated luminosity of 19.6. This analysis is performed in the decay channels with one isolated, high transverse momentum electron or muon and at least four jets, at least one of which is required to be identified as originating from hadronization of a b quark. The calibration of the jet energy scale and the efficiency of b jet identification are determined from data. The measured cross section is . This measurement is compared with an analysis of 7 data, corresponding to an integrated luminosity of 5.0, to determine the ratio of 8 to 7 cross sections, which is found to be . The measurements are in agreement with QCD predictions up to next-to-next-to-leading order.
T2  - European Physical Journal C. Particles and Fields
T1  - Measurements of the t(t)over-bar production cross section in lepton plus jets final states in pp collisions at 8 and ratio of 8 to 7 cross sections
VL  - 77
IS  - 1
SP  - 1
EP  - 27
DO  - 10.1140/epjc/s10052-016-4504-z
ER  - 
@article{
author = "Khachatryan, V. and Adžić, Petar and Milošević, Jovan and Rekovic, V. and Đorđević, Miloš and Milenović, Predrag",
year = "2017",
url = "http://vinar.vin.bg.ac.rs/handle/123456789/1389",
abstract = "A measurement of the top quark pair production () cross section in proton-proton collisions at the centre-of-mass energy of 8 is presented using data collected with the CMS detector at the LHC, corresponding to an integrated luminosity of 19.6. This analysis is performed in the decay channels with one isolated, high transverse momentum electron or muon and at least four jets, at least one of which is required to be identified as originating from hadronization of a b quark. The calibration of the jet energy scale and the efficiency of b jet identification are determined from data. The measured cross section is . This measurement is compared with an analysis of 7 data, corresponding to an integrated luminosity of 5.0, to determine the ratio of 8 to 7 cross sections, which is found to be . The measurements are in agreement with QCD predictions up to next-to-next-to-leading order.",
journal = "European Physical Journal C. Particles and Fields",
title = "Measurements of the t(t)over-bar production cross section in lepton plus jets final states in pp collisions at 8 and ratio of 8 to 7 cross sections",
volume = "77",
number = "1",
pages = "1-27",
doi = "10.1140/epjc/s10052-016-4504-z"
}
Khachatryan, V., Adžić, P., Milošević, J., Rekovic, V., Đorđević, M.,& Milenović, P. (2017). Measurements of the t(t)over-bar production cross section in lepton plus jets final states in pp collisions at 8 and ratio of 8 to 7 cross sections.
European Physical Journal C. Particles and Fields, 77(1), 1-27.
https://doi.org/10.1140/epjc/s10052-016-4504-z
Khachatryan V, Adžić P, Milošević J, Rekovic V, Đorđević M, Milenović P. Measurements of the t(t)over-bar production cross section in lepton plus jets final states in pp collisions at 8 and ratio of 8 to 7 cross sections. European Physical Journal C. Particles and Fields. 2017;77(1):1-27
Khachatryan V., Adžić Petar, Milošević Jovan, Rekovic V., Đorđević Miloš, Milenović Predrag, "Measurements of the t(t)over-bar production cross section in lepton plus jets final states in pp collisions at 8 and ratio of 8 to 7 cross sections" European Physical Journal C. Particles and Fields, 77, no. 1 (2017):1-27,
https://doi.org/10.1140/epjc/s10052-016-4504-z .
2
19
22
21

Search for Dark Matter and Supersymmetry with a Compressed Mass Spectrum in the Vector Boson Fusion Topology in Proton-Proton Collisions at root s=8 TeV

Khachatryan, V.; Adžić, Petar; Ćirković, Predrag; Devetak, Damir; Milošević, Jovan; Rekovic, V.; Đorđević, Miloš; Milenović, Predrag

(2017)

TY  - JOUR
AU  - Khachatryan, V.
AU  - Adžić, Petar
AU  - Ćirković, Predrag
AU  - Devetak, Damir
AU  - Milošević, Jovan
AU  - Rekovic, V.
AU  - Đorđević, Miloš
AU  - Milenović, Predrag
PY  - 2017
UR  - http://vinar.vin.bg.ac.rs/handle/123456789/1386
AB  - A first search for pair production of dark matter candidates through vector boson fusion in proton-proton collisions at root s = 8 TeV is performed with the CMS detector. The vector boson fusion topology enhances missing transverse momentum, providing a way to probe supersymmetry, even in the case of a compressed mass spectrum. The data sample corresponds to an integrated luminosity of 18.5 fb(-1), recorded by the CMS experiment. The observed dijet mass spectrum is consistent with the standard model expectation. In an effective field theory, dark matter masses are explored as a function of contact interaction strength. The most stringent limit on bottom squark production with mass below 315 GeV is also reported, assuming a 5 GeV mass difference with respect to the lightest neutralino.
T2  - Physical Review Letters
T1  - Search for Dark Matter and Supersymmetry with a Compressed Mass Spectrum in the Vector Boson Fusion Topology in Proton-Proton Collisions at root s=8 TeV
VL  - 118
IS  - 2
DO  - 10.1103/PhysRevLett.118.021802
ER  - 
@article{
author = "Khachatryan, V. and Adžić, Petar and Ćirković, Predrag and Devetak, Damir and Milošević, Jovan and Rekovic, V. and Đorđević, Miloš and Milenović, Predrag",
year = "2017",
url = "http://vinar.vin.bg.ac.rs/handle/123456789/1386",
abstract = "A first search for pair production of dark matter candidates through vector boson fusion in proton-proton collisions at root s = 8 TeV is performed with the CMS detector. The vector boson fusion topology enhances missing transverse momentum, providing a way to probe supersymmetry, even in the case of a compressed mass spectrum. The data sample corresponds to an integrated luminosity of 18.5 fb(-1), recorded by the CMS experiment. The observed dijet mass spectrum is consistent with the standard model expectation. In an effective field theory, dark matter masses are explored as a function of contact interaction strength. The most stringent limit on bottom squark production with mass below 315 GeV is also reported, assuming a 5 GeV mass difference with respect to the lightest neutralino.",
journal = "Physical Review Letters",
title = "Search for Dark Matter and Supersymmetry with a Compressed Mass Spectrum in the Vector Boson Fusion Topology in Proton-Proton Collisions at root s=8 TeV",
volume = "118",
number = "2",
doi = "10.1103/PhysRevLett.118.021802"
}
Khachatryan, V., Adžić, P., Ćirković, P., Devetak, D., Milošević, J., Rekovic, V., Đorđević, M.,& Milenović, P. (2017). Search for Dark Matter and Supersymmetry with a Compressed Mass Spectrum in the Vector Boson Fusion Topology in Proton-Proton Collisions at root s=8 TeV.
Physical Review Letters, 118(2).
https://doi.org/10.1103/PhysRevLett.118.021802
Khachatryan V, Adžić P, Ćirković P, Devetak D, Milošević J, Rekovic V, Đorđević M, Milenović P. Search for Dark Matter and Supersymmetry with a Compressed Mass Spectrum in the Vector Boson Fusion Topology in Proton-Proton Collisions at root s=8 TeV. Physical Review Letters. 2017;118(2)
Khachatryan V., Adžić Petar, Ćirković Predrag, Devetak Damir, Milošević Jovan, Rekovic V., Đorđević Miloš, Milenović Predrag, "Search for Dark Matter and Supersymmetry with a Compressed Mass Spectrum in the Vector Boson Fusion Topology in Proton-Proton Collisions at root s=8 TeV" Physical Review Letters, 118, no. 2 (2017),
https://doi.org/10.1103/PhysRevLett.118.021802 .
72
22
16
21

Search for single production of vector-like quarks decaying into a b quark and a W boson in proton-proton collisions at root s=13 TeV

Sirunyan, A. M.; Adzic, R.; Ćirković, Predrag; Devetak, Damir; Đorđević, Miloš; Milošević, Jovan; Rekovic, V.; Milenović, Predrag

(2017)

TY  - JOUR
AU  - Sirunyan, A. M.
AU  - Adzic, R.
AU  - Ćirković, Predrag
AU  - Devetak, Damir
AU  - Đorđević, Miloš
AU  - Milošević, Jovan
AU  - Rekovic, V.
AU  - Milenović, Predrag
PY  - 2017
UR  - http://vinar.vin.bg.ac.rs/handle/123456789/1743
AB  - A search is presented for a heavy vector-like quark, decaying into a b quark and a W boson, which is produced singly in association with a light flavor quark and a b quark. The analysis is performed using a data sample of proton-proton collisions at a center-of-mass energy of root s = 13 TeV collected at the LHC in 2015. The data set used in the analysis corresponds to an integrated luminosity of 2.3 fb(-1). The search is carried out using events containing one electron or muon, at least one b-tagged jet with large transverse momentum, at least one jet in the forward region of the detector, and missing transverse momentum. No excess over the standard model prediction is observed. Upper limits are placed on the production cross section of heavy exotic quarks: a T quark with a charge of 2/3, and a Y quark with a charge of -4/3. For Y quarks with coupling of 0.5 and beta(Y - GT bW) = 100%, the observed (expected) lower mass limits are 1.40 (1.0) TeV. This is the most stringent limit to date on the single production of the Y vector-like quark. (C) 2017 The Author(s). Published by Elsevier B.V.
T2  - Physics Letters B
T1  - Search for single production of vector-like quarks decaying into a b quark and a W boson in proton-proton collisions at root s=13 TeV
VL  - 772
SP  - 634
EP  - 656
DO  - 10.1016/j.physletb.2017.07.022
ER  - 
@article{
author = "Sirunyan, A. M. and Adzic, R. and Ćirković, Predrag and Devetak, Damir and Đorđević, Miloš and Milošević, Jovan and Rekovic, V. and Milenović, Predrag",
year = "2017",
url = "http://vinar.vin.bg.ac.rs/handle/123456789/1743",
abstract = "A search is presented for a heavy vector-like quark, decaying into a b quark and a W boson, which is produced singly in association with a light flavor quark and a b quark. The analysis is performed using a data sample of proton-proton collisions at a center-of-mass energy of root s = 13 TeV collected at the LHC in 2015. The data set used in the analysis corresponds to an integrated luminosity of 2.3 fb(-1). The search is carried out using events containing one electron or muon, at least one b-tagged jet with large transverse momentum, at least one jet in the forward region of the detector, and missing transverse momentum. No excess over the standard model prediction is observed. Upper limits are placed on the production cross section of heavy exotic quarks: a T quark with a charge of 2/3, and a Y quark with a charge of -4/3. For Y quarks with coupling of 0.5 and beta(Y - GT bW) = 100%, the observed (expected) lower mass limits are 1.40 (1.0) TeV. This is the most stringent limit to date on the single production of the Y vector-like quark. (C) 2017 The Author(s). Published by Elsevier B.V.",
journal = "Physics Letters B",
title = "Search for single production of vector-like quarks decaying into a b quark and a W boson in proton-proton collisions at root s=13 TeV",
volume = "772",
pages = "634-656",
doi = "10.1016/j.physletb.2017.07.022"
}
Sirunyan, A. M., Adzic, R., Ćirković, P., Devetak, D., Đorđević, M., Milošević, J., Rekovic, V.,& Milenović, P. (2017). Search for single production of vector-like quarks decaying into a b quark and a W boson in proton-proton collisions at root s=13 TeV.
Physics Letters B, 772, 634-656.
https://doi.org/10.1016/j.physletb.2017.07.022
Sirunyan AM, Adzic R, Ćirković P, Devetak D, Đorđević M, Milošević J, Rekovic V, Milenović P. Search for single production of vector-like quarks decaying into a b quark and a W boson in proton-proton collisions at root s=13 TeV. Physics Letters B. 2017;772:634-656
Sirunyan A. M., Adzic R., Ćirković Predrag, Devetak Damir, Đorđević Miloš, Milošević Jovan, Rekovic V., Milenović Predrag, "Search for single production of vector-like quarks decaying into a b quark and a W boson in proton-proton collisions at root s=13 TeV" Physics Letters B, 772 (2017):634-656,
https://doi.org/10.1016/j.physletb.2017.07.022 .
11
9
26
23