Van Neste, Christophe

Link to this page

Authority KeyName Variants
orcid::0000-0002-5958-5731
  • Van Neste, Christophe (4)

Author's Bibliography

Redox control of vascular biology

Obradović, Milan M.; Essack, Magbubah; Zafirović, Sonja; Sudar-Milovanović, Emina; Bajić, Vladan P.; Van Neste, Christophe; Trpković, Andreja; Stanimirović, Julijana; Bajić, Vladimir B.; Isenović, Esma R.

(2020)

TY  - JOUR
AU  - Obradović, Milan M.
AU  - Essack, Magbubah
AU  - Zafirović, Sonja
AU  - Sudar-Milovanović, Emina
AU  - Bajić, Vladan P.
AU  - Van Neste, Christophe
AU  - Trpković, Andreja
AU  - Stanimirović, Julijana
AU  - Bajić, Vladimir B.
AU  - Isenović, Esma R.
PY  - 2020
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/8486
AB  - Redox control is lost when the antioxidant defense system cannot remove abnormally high concentrations of signaling molecules, such as reactive oxygen species (ROS). Chronically elevated levels of ROS cause oxidative stress that may eventually lead to cancer and cardiovascular and neurodegenerative diseases. In this review, we focus on redox effects in the vascular system. We pay close attention to the subcompartments of the vascular system (endothelium, smooth muscle cell layer) and give an overview of how redox changes influence those different compartments. We also review the core aspects of redox biology, cardiovascular physiology, and pathophysiology. Moreover, the topic-specific knowledgebase DES-RedoxVasc was used to develop two case studies, one focused on endothelial cells and the other on the vascular smooth muscle cells, as a starting point to possibly extend our knowledge of redox control in vascular biology. © 2019 The Authors. BioFactors published by Wiley Periodicals, Inc. on behalf of International Union of Biochemistry and Molecular Biology.
T2  - BioFactors
T1  - Redox control of vascular biology
VL  - 46
IS  - 2
SP  - 246
EP  - 262
DO  - 10.1002/biof.1559
ER  - 
@article{
author = "Obradović, Milan M. and Essack, Magbubah and Zafirović, Sonja and Sudar-Milovanović, Emina and Bajić, Vladan P. and Van Neste, Christophe and Trpković, Andreja and Stanimirović, Julijana and Bajić, Vladimir B. and Isenović, Esma R.",
year = "2020",
abstract = "Redox control is lost when the antioxidant defense system cannot remove abnormally high concentrations of signaling molecules, such as reactive oxygen species (ROS). Chronically elevated levels of ROS cause oxidative stress that may eventually lead to cancer and cardiovascular and neurodegenerative diseases. In this review, we focus on redox effects in the vascular system. We pay close attention to the subcompartments of the vascular system (endothelium, smooth muscle cell layer) and give an overview of how redox changes influence those different compartments. We also review the core aspects of redox biology, cardiovascular physiology, and pathophysiology. Moreover, the topic-specific knowledgebase DES-RedoxVasc was used to develop two case studies, one focused on endothelial cells and the other on the vascular smooth muscle cells, as a starting point to possibly extend our knowledge of redox control in vascular biology. © 2019 The Authors. BioFactors published by Wiley Periodicals, Inc. on behalf of International Union of Biochemistry and Molecular Biology.",
journal = "BioFactors",
title = "Redox control of vascular biology",
volume = "46",
number = "2",
pages = "246-262",
doi = "10.1002/biof.1559"
}
Obradović, M. M., Essack, M., Zafirović, S., Sudar-Milovanović, E., Bajić, V. P., Van Neste, C., Trpković, A., Stanimirović, J., Bajić, V. B.,& Isenović, E. R.. (2020). Redox control of vascular biology. in BioFactors, 46(2), 246-262.
https://doi.org/10.1002/biof.1559
Obradović MM, Essack M, Zafirović S, Sudar-Milovanović E, Bajić VP, Van Neste C, Trpković A, Stanimirović J, Bajić VB, Isenović ER. Redox control of vascular biology. in BioFactors. 2020;46(2):246-262.
doi:10.1002/biof.1559 .
Obradović, Milan M., Essack, Magbubah, Zafirović, Sonja, Sudar-Milovanović, Emina, Bajić, Vladan P., Van Neste, Christophe, Trpković, Andreja, Stanimirović, Julijana, Bajić, Vladimir B., Isenović, Esma R., "Redox control of vascular biology" in BioFactors, 46, no. 2 (2020):246-262,
https://doi.org/10.1002/biof.1559 . .
2
15
10
14

DES-ROD: Exploring Literature to Develop New Links between RNA Oxidation and Human Diseases

Essack, Magbubah; Salhi, Adil; Van Neste, Christophe; Raies, Arwa Bin; Tifratene, Faroug; Uludag, Mahmut; Hungler, Arnaud; Zarić, Božidarka; Zafirović, Sonja; Gojobori, Takashi; Isenović, Esma R.; Bajić, Vladan P.

(2020)

TY  - JOUR
AU  - Essack, Magbubah
AU  - Salhi, Adil
AU  - Van Neste, Christophe
AU  - Raies, Arwa Bin
AU  - Tifratene, Faroug
AU  - Uludag, Mahmut
AU  - Hungler, Arnaud
AU  - Zarić, Božidarka
AU  - Zafirović, Sonja
AU  - Gojobori, Takashi
AU  - Isenović, Esma R.
AU  - Bajić, Vladan P.
PY  - 2020
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/8945
AB  - Normal cellular physiology and biochemical processes require undamaged RNA molecules. However, RNAs are frequently subjected to oxidative damage. Overproduction of reactive oxygen species (ROS) leads to RNA oxidation and disturbs redox (oxidation-reduction reaction) homeostasis. When oxidation damage affects RNA carrying protein-coding information, this may result in the synthesis of aberrant proteins as well as a lower efficiency of translation. Both of these, as well as imbalanced redox homeostasis, may lead to numerous human diseases. The number of studies on the effects of RNA oxidative damage in mammals is increasing by year due to the understanding that this oxidation fundamentally leads to numerous human diseases. To enable researchers in this field to explore information relevant to RNA oxidation and effects on human diseases, we developed DES-ROD, an online knowledgebase that contains processed information from 298,603 relevant documents that consist of PubMed abstracts and PubMed Central full-text articles. The system utilizes concepts/terms from 38 curated thematic dictionaries mapped to the analyzed documents. Researchers can explore enriched concepts, as well as enriched pairs of putatively associated concepts. In this way, one can explore mutual relationships between any combinations of two concepts from used dictionaries. Dictionaries cover a wide range of biomedical topics, such as human genes and proteins, pathways, Gene Ontology categories, mutations, noncoding RNAs, enzymes, toxins, metabolites, and diseases. This makes insights into different facets of the effects of RNA oxidation and the control of this process possible. The usefulness of the DES-ROD system is demonstrated by case studies on some known information, as well as potentially novel information involving RNA oxidation and diseases. DES-ROD is the first knowledgebase based on text and data mining that focused on the exploration of RNA oxidation and human diseases.
T2  - Oxidative Medicine and Cellular Longevity
T1  - DES-ROD: Exploring Literature to Develop New Links between RNA Oxidation and Human Diseases
VL  - 2020
SP  - 5904315
DO  - 10.1155/2020/5904315
ER  - 
@article{
author = "Essack, Magbubah and Salhi, Adil and Van Neste, Christophe and Raies, Arwa Bin and Tifratene, Faroug and Uludag, Mahmut and Hungler, Arnaud and Zarić, Božidarka and Zafirović, Sonja and Gojobori, Takashi and Isenović, Esma R. and Bajić, Vladan P.",
year = "2020",
abstract = "Normal cellular physiology and biochemical processes require undamaged RNA molecules. However, RNAs are frequently subjected to oxidative damage. Overproduction of reactive oxygen species (ROS) leads to RNA oxidation and disturbs redox (oxidation-reduction reaction) homeostasis. When oxidation damage affects RNA carrying protein-coding information, this may result in the synthesis of aberrant proteins as well as a lower efficiency of translation. Both of these, as well as imbalanced redox homeostasis, may lead to numerous human diseases. The number of studies on the effects of RNA oxidative damage in mammals is increasing by year due to the understanding that this oxidation fundamentally leads to numerous human diseases. To enable researchers in this field to explore information relevant to RNA oxidation and effects on human diseases, we developed DES-ROD, an online knowledgebase that contains processed information from 298,603 relevant documents that consist of PubMed abstracts and PubMed Central full-text articles. The system utilizes concepts/terms from 38 curated thematic dictionaries mapped to the analyzed documents. Researchers can explore enriched concepts, as well as enriched pairs of putatively associated concepts. In this way, one can explore mutual relationships between any combinations of two concepts from used dictionaries. Dictionaries cover a wide range of biomedical topics, such as human genes and proteins, pathways, Gene Ontology categories, mutations, noncoding RNAs, enzymes, toxins, metabolites, and diseases. This makes insights into different facets of the effects of RNA oxidation and the control of this process possible. The usefulness of the DES-ROD system is demonstrated by case studies on some known information, as well as potentially novel information involving RNA oxidation and diseases. DES-ROD is the first knowledgebase based on text and data mining that focused on the exploration of RNA oxidation and human diseases.",
journal = "Oxidative Medicine and Cellular Longevity",
title = "DES-ROD: Exploring Literature to Develop New Links between RNA Oxidation and Human Diseases",
volume = "2020",
pages = "5904315",
doi = "10.1155/2020/5904315"
}
Essack, M., Salhi, A., Van Neste, C., Raies, A. B., Tifratene, F., Uludag, M., Hungler, A., Zarić, B., Zafirović, S., Gojobori, T., Isenović, E. R.,& Bajić, V. P.. (2020). DES-ROD: Exploring Literature to Develop New Links between RNA Oxidation and Human Diseases. in Oxidative Medicine and Cellular Longevity, 2020, 5904315.
https://doi.org/10.1155/2020/5904315
Essack M, Salhi A, Van Neste C, Raies AB, Tifratene F, Uludag M, Hungler A, Zarić B, Zafirović S, Gojobori T, Isenović ER, Bajić VP. DES-ROD: Exploring Literature to Develop New Links between RNA Oxidation and Human Diseases. in Oxidative Medicine and Cellular Longevity. 2020;2020:5904315.
doi:10.1155/2020/5904315 .
Essack, Magbubah, Salhi, Adil, Van Neste, Christophe, Raies, Arwa Bin, Tifratene, Faroug, Uludag, Mahmut, Hungler, Arnaud, Zarić, Božidarka, Zafirović, Sonja, Gojobori, Takashi, Isenović, Esma R., Bajić, Vladan P., "DES-ROD: Exploring Literature to Develop New Links between RNA Oxidation and Human Diseases" in Oxidative Medicine and Cellular Longevity, 2020 (2020):5904315,
https://doi.org/10.1155/2020/5904315 . .
3
2
3

Glutathione “Redox Homeostasis” and Its Relation to Cardiovascular Disease

Bajić, Vladan P.; Van Neste, Christophe; Obradović, Milan M.; Zafirović, Sonja; Radak, Đorđe J.; Bajić, Vladimir B.; Essack, Magbubah; Isenović, Esma R.

(2019)

TY  - JOUR
AU  - Bajić, Vladan P.
AU  - Van Neste, Christophe
AU  - Obradović, Milan M.
AU  - Zafirović, Sonja
AU  - Radak, Đorđe J.
AU  - Bajić, Vladimir B.
AU  - Essack, Magbubah
AU  - Isenović, Esma R.
PY  - 2019
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/8375
AB  - More people die from cardiovascular diseases (CVD) than from any other cause. Cardiovascular complications are thought to arise from enhanced levels of free radicals causing impaired “redox homeostasis,” which represents the interplay between oxidative stress (OS) and reductive stress (RS). In this review, we compile several experimental research findings that show sustained shifts towards OS will alter the homeostatic redox mechanism to cause cardiovascular complications, as well as findings that show a prolonged antioxidant state or RS can similarly lead to such cardiovascular complications. This experimental evidence is specifically focused on the role of glutathione, the most abundant antioxidant in the heart, in a redox homeostatic mechanism that has been shifted towards OS or RS. This may lead to impairment of cellular signaling mechanisms and elevated pools of proteotoxicity associated with cardiac dysfunction.
T2  - Oxidative Medicine and Cellular Longevity
T1  - Glutathione “Redox Homeostasis” and Its Relation to Cardiovascular Disease
VL  - 2019
SP  - 5028181
DO  - 10.1155/2019/5028181
ER  - 
@article{
author = "Bajić, Vladan P. and Van Neste, Christophe and Obradović, Milan M. and Zafirović, Sonja and Radak, Đorđe J. and Bajić, Vladimir B. and Essack, Magbubah and Isenović, Esma R.",
year = "2019",
abstract = "More people die from cardiovascular diseases (CVD) than from any other cause. Cardiovascular complications are thought to arise from enhanced levels of free radicals causing impaired “redox homeostasis,” which represents the interplay between oxidative stress (OS) and reductive stress (RS). In this review, we compile several experimental research findings that show sustained shifts towards OS will alter the homeostatic redox mechanism to cause cardiovascular complications, as well as findings that show a prolonged antioxidant state or RS can similarly lead to such cardiovascular complications. This experimental evidence is specifically focused on the role of glutathione, the most abundant antioxidant in the heart, in a redox homeostatic mechanism that has been shifted towards OS or RS. This may lead to impairment of cellular signaling mechanisms and elevated pools of proteotoxicity associated with cardiac dysfunction.",
journal = "Oxidative Medicine and Cellular Longevity",
title = "Glutathione “Redox Homeostasis” and Its Relation to Cardiovascular Disease",
volume = "2019",
pages = "5028181",
doi = "10.1155/2019/5028181"
}
Bajić, V. P., Van Neste, C., Obradović, M. M., Zafirović, S., Radak, Đ. J., Bajić, V. B., Essack, M.,& Isenović, E. R.. (2019). Glutathione “Redox Homeostasis” and Its Relation to Cardiovascular Disease. in Oxidative Medicine and Cellular Longevity, 2019, 5028181.
https://doi.org/10.1155/2019/5028181
Bajić VP, Van Neste C, Obradović MM, Zafirović S, Radak ĐJ, Bajić VB, Essack M, Isenović ER. Glutathione “Redox Homeostasis” and Its Relation to Cardiovascular Disease. in Oxidative Medicine and Cellular Longevity. 2019;2019:5028181.
doi:10.1155/2019/5028181 .
Bajić, Vladan P., Van Neste, Christophe, Obradović, Milan M., Zafirović, Sonja, Radak, Đorđe J., Bajić, Vladimir B., Essack, Magbubah, Isenović, Esma R., "Glutathione “Redox Homeostasis” and Its Relation to Cardiovascular Disease" in Oxidative Medicine and Cellular Longevity, 2019 (2019):5028181,
https://doi.org/10.1155/2019/5028181 . .
2
89
38
90

Literature-Based Enrichment Insights into Redox Control of Vascular Biology

Essack, Magbubah; Salhi, Adil; Stanimirović, Julijana; Tifratene, Faroug; Bin Raies, Arwa; Hungler, Arnaud; Uludag, Mahmut; Van Neste, Christophe; Trpković, Andreja; Bajić, Vladan P.; Bajić, Vladimir B.; Isenović, Esma R.

(2019)

TY  - JOUR
AU  - Essack, Magbubah
AU  - Salhi, Adil
AU  - Stanimirović, Julijana
AU  - Tifratene, Faroug
AU  - Bin Raies, Arwa
AU  - Hungler, Arnaud
AU  - Uludag, Mahmut
AU  - Van Neste, Christophe
AU  - Trpković, Andreja
AU  - Bajić, Vladan P.
AU  - Bajić, Vladimir B.
AU  - Isenović, Esma R.
PY  - 2019
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/8389
AB  - In cellular physiology and signaling, reactive oxygen species (ROS) play one of the most critical roles. ROS overproduction leads to cellular oxidative stress. This may lead to an irrecoverable imbalance of redox (oxidation-reduction reaction) function that deregulates redox homeostasis, which itself could lead to several diseases including neurodegenerative disease, cardiovascular disease, and cancers. In this study, we focus on the redox effects related to vascular systems in mammals. To support research in this domain, we developed an online knowledge base, DES-RedoxVasc, which enables exploration of information contained in the biomedical scientific literature. The DES-RedoxVasc system analyzed 233399 documents consisting of PubMed abstracts and PubMed Central full-text articles related to different aspects of redox biology in vascular systems. It allows researchers to explore enriched concepts from 28 curated thematic dictionaries, as well as literature-derived potential associations of pairs of such enriched concepts, where associations themselves are statistically enriched. For example, the system allows exploration of associations of pathways, diseases, mutations, genes/proteins, miRNAs, long ncRNAs, toxins, drugs, biological processes, molecular functions, etc. that allow for insights about different aspects of redox effects and control of processes related to the vascular system. Moreover, we deliver case studies about some existing or possibly novel knowledge regarding redox of vascular biology demonstrating the usefulness of DES-RedoxVasc. DES-RedoxVasc is the first compiled knowledge base using text mining for the exploration of this topic.
T2  - Oxidative Medicine and Cellular Longevity
T1  - Literature-Based Enrichment Insights into Redox Control of Vascular Biology
VL  - 2019
SP  - 1769437
DO  - 10.1155/2019/1769437
ER  - 
@article{
author = "Essack, Magbubah and Salhi, Adil and Stanimirović, Julijana and Tifratene, Faroug and Bin Raies, Arwa and Hungler, Arnaud and Uludag, Mahmut and Van Neste, Christophe and Trpković, Andreja and Bajić, Vladan P. and Bajić, Vladimir B. and Isenović, Esma R.",
year = "2019",
abstract = "In cellular physiology and signaling, reactive oxygen species (ROS) play one of the most critical roles. ROS overproduction leads to cellular oxidative stress. This may lead to an irrecoverable imbalance of redox (oxidation-reduction reaction) function that deregulates redox homeostasis, which itself could lead to several diseases including neurodegenerative disease, cardiovascular disease, and cancers. In this study, we focus on the redox effects related to vascular systems in mammals. To support research in this domain, we developed an online knowledge base, DES-RedoxVasc, which enables exploration of information contained in the biomedical scientific literature. The DES-RedoxVasc system analyzed 233399 documents consisting of PubMed abstracts and PubMed Central full-text articles related to different aspects of redox biology in vascular systems. It allows researchers to explore enriched concepts from 28 curated thematic dictionaries, as well as literature-derived potential associations of pairs of such enriched concepts, where associations themselves are statistically enriched. For example, the system allows exploration of associations of pathways, diseases, mutations, genes/proteins, miRNAs, long ncRNAs, toxins, drugs, biological processes, molecular functions, etc. that allow for insights about different aspects of redox effects and control of processes related to the vascular system. Moreover, we deliver case studies about some existing or possibly novel knowledge regarding redox of vascular biology demonstrating the usefulness of DES-RedoxVasc. DES-RedoxVasc is the first compiled knowledge base using text mining for the exploration of this topic.",
journal = "Oxidative Medicine and Cellular Longevity",
title = "Literature-Based Enrichment Insights into Redox Control of Vascular Biology",
volume = "2019",
pages = "1769437",
doi = "10.1155/2019/1769437"
}
Essack, M., Salhi, A., Stanimirović, J., Tifratene, F., Bin Raies, A., Hungler, A., Uludag, M., Van Neste, C., Trpković, A., Bajić, V. P., Bajić, V. B.,& Isenović, E. R.. (2019). Literature-Based Enrichment Insights into Redox Control of Vascular Biology. in Oxidative Medicine and Cellular Longevity, 2019, 1769437.
https://doi.org/10.1155/2019/1769437
Essack M, Salhi A, Stanimirović J, Tifratene F, Bin Raies A, Hungler A, Uludag M, Van Neste C, Trpković A, Bajić VP, Bajić VB, Isenović ER. Literature-Based Enrichment Insights into Redox Control of Vascular Biology. in Oxidative Medicine and Cellular Longevity. 2019;2019:1769437.
doi:10.1155/2019/1769437 .
Essack, Magbubah, Salhi, Adil, Stanimirović, Julijana, Tifratene, Faroug, Bin Raies, Arwa, Hungler, Arnaud, Uludag, Mahmut, Van Neste, Christophe, Trpković, Andreja, Bajić, Vladan P., Bajić, Vladimir B., Isenović, Esma R., "Literature-Based Enrichment Insights into Redox Control of Vascular Biology" in Oxidative Medicine and Cellular Longevity, 2019 (2019):1769437,
https://doi.org/10.1155/2019/1769437 . .
8
3
8