Terzić, Anja

Link to this page

Authority KeyName Variants
30141707-60f3-4817-b3b1-5c9b5f41db6a
  • Terzić, Anja (1)
Projects

Author's Bibliography

Heavyweight Ultra-High-Performance Concrete with Micro-Reinforcement

Janković, Ksenija; Stanković, Srboljub; Bojović, Dragan; Stojanović, Marko; Antić Aranđelović, Lana; Terzić, Anja

(Belgrade : Serbian Ceramic Society, 2023)

TY  - CONF
AU  - Janković, Ksenija
AU  - Stanković, Srboljub
AU  - Bojović, Dragan
AU  - Stojanović, Marko
AU  - Antić Aranđelović, Lana
AU  - Terzić, Anja
PY  - 2023
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/11650
AB  - The impacts of nano-silica addition, steel micro-reinforcement, and aggregate type on the mechanical properties and durability of ultra-high-performance concrete (UHPC) were studied. As aggregates, quartz and barite were used. The amounts of steel fibers and nanosilica were alternated. Six concrete mixes were produced with quartz sand, and the remaining six concrete mixes were designed with barite sand. Fibers made about 3-5% of the concrete composition’s mass. In a 2-5% concentration, nano-silica was used as a cement replacement. The inclusion of nano-silica significantly boosted the compressive strength of UHPC. The compressive and flexural strengths were also positively impacted by fiber supplementation ranging from 3% to 5%. The amount of fiber utilized proved to be more influential than the aggregate used. The UHPC concrete's durability was increased as all samples were highly resistant to freezing and thawing cycles. UHPC designed with barite aggregate demonstrated good X and gamma ray absorption at energies below 300 keV.
PB  - Belgrade : Serbian Ceramic Society
C3  - Advanced Ceramics and Application :11th Serbian Ceramic Society Conference : program and the book of abstracts; September 18-20, 2023; Belgrade
T1  - Heavyweight Ultra-High-Performance Concrete with Micro-Reinforcement
SP  - 83
UR  - https://hdl.handle.net/21.15107/rcub_vinar_11650
ER  - 
@conference{
author = "Janković, Ksenija and Stanković, Srboljub and Bojović, Dragan and Stojanović, Marko and Antić Aranđelović, Lana and Terzić, Anja",
year = "2023",
abstract = "The impacts of nano-silica addition, steel micro-reinforcement, and aggregate type on the mechanical properties and durability of ultra-high-performance concrete (UHPC) were studied. As aggregates, quartz and barite were used. The amounts of steel fibers and nanosilica were alternated. Six concrete mixes were produced with quartz sand, and the remaining six concrete mixes were designed with barite sand. Fibers made about 3-5% of the concrete composition’s mass. In a 2-5% concentration, nano-silica was used as a cement replacement. The inclusion of nano-silica significantly boosted the compressive strength of UHPC. The compressive and flexural strengths were also positively impacted by fiber supplementation ranging from 3% to 5%. The amount of fiber utilized proved to be more influential than the aggregate used. The UHPC concrete's durability was increased as all samples were highly resistant to freezing and thawing cycles. UHPC designed with barite aggregate demonstrated good X and gamma ray absorption at energies below 300 keV.",
publisher = "Belgrade : Serbian Ceramic Society",
journal = "Advanced Ceramics and Application :11th Serbian Ceramic Society Conference : program and the book of abstracts; September 18-20, 2023; Belgrade",
title = "Heavyweight Ultra-High-Performance Concrete with Micro-Reinforcement",
pages = "83",
url = "https://hdl.handle.net/21.15107/rcub_vinar_11650"
}
Janković, K., Stanković, S., Bojović, D., Stojanović, M., Antić Aranđelović, L.,& Terzić, A.. (2023). Heavyweight Ultra-High-Performance Concrete with Micro-Reinforcement. in Advanced Ceramics and Application :11th Serbian Ceramic Society Conference : program and the book of abstracts; September 18-20, 2023; Belgrade
Belgrade : Serbian Ceramic Society., 83.
https://hdl.handle.net/21.15107/rcub_vinar_11650
Janković K, Stanković S, Bojović D, Stojanović M, Antić Aranđelović L, Terzić A. Heavyweight Ultra-High-Performance Concrete with Micro-Reinforcement. in Advanced Ceramics and Application :11th Serbian Ceramic Society Conference : program and the book of abstracts; September 18-20, 2023; Belgrade. 2023;:83.
https://hdl.handle.net/21.15107/rcub_vinar_11650 .
Janković, Ksenija, Stanković, Srboljub, Bojović, Dragan, Stojanović, Marko, Antić Aranđelović, Lana, Terzić, Anja, "Heavyweight Ultra-High-Performance Concrete with Micro-Reinforcement" in Advanced Ceramics and Application :11th Serbian Ceramic Society Conference : program and the book of abstracts; September 18-20, 2023; Belgrade (2023):83,
https://hdl.handle.net/21.15107/rcub_vinar_11650 .