Perović, Ivana

Link to this page

Authority KeyName Variants
orcid::0000-0003-4459-1044
  • Perović, Ivana (14)
  • Perović, Ivana M. (11)
Projects
Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200017 (University of Belgrade, Institute of Nuclear Sciences 'Vinča', Belgrade-Vinča) Hydrogen Energy - Research and Development of New Materials: Electrolytic Hydrogen Production, Hydrogen Fuel Cells, Isotope Effects
Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200146 (University of Belgrade, Faculty of Physical Chemistry) HiSuperBat - High-Capacity Electrodes for Aqueous Rechargeable Multivalent-Ion Batteries and Supercapacitors: Next Step Towards a Hybrid Model
Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200051 (Institute of General and Physical Chemistry, Belgrade) Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200105 (University of Belgrade, Faculty of Mechanical Engineering)
Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200213 (Innovation Center of the Faculty of Mechanical Engineering) Synthesis, processing and characterization of nanostructured materials for application in the field of energy, mechanical engineering, environmental protection and biomedicine
FCT, Portugal - [contract no. ISTID/156-2018] Efficient use of resources in energy converting applications
Rational design and synthesis of biologically active and coordination compounds and functional materials, relevant for (bio)nanotechnology Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200026 (University of Belgrade, Institute of Chemistry, Technology and Metallurgy - IChTM)
Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200092 (University of Belgrade, Faculty of Civil Engineering) Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200107 (University of Kragujevac, Faculty of Engineering)
Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200175 (Institute of Technical Sciences of SASA, Belgrade) Lithium-ion batteries and fuel cells - research and development
Ministry of Education, Science and Technological Development of the Republic of Serbia Republic of Serbia. Innovation Fund [Proof of Concept ID 5755]

Author's Bibliography

On the use of WO42− as a third component to Co–Mo ionic activator for HER in alkaline water electrolysis

Perović, Ivana; Mitrović, Stefan; Brković, Snežana; Zdolšek, Nikola; Seović, Mina; Tasić, Gvozden; Pašti, Igor

(2024)

TY  - JOUR
AU  - Perović, Ivana
AU  - Mitrović, Stefan
AU  - Brković, Snežana
AU  - Zdolšek, Nikola
AU  - Seović, Mina
AU  - Tasić, Gvozden
AU  - Pašti, Igor
PY  - 2024
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/13130
AB  - This study investigates the impact of Co–Mo–W ionic activators on the hydrogen evolution reaction (HER) in alkaline electrolysis, comparing their performance to Co–Mo and Co–W systems. The research focuses on analyzing the catalytic efficiency of these activators under varying conditions, including temperature and current density variations. Key findings reveal that the Co–Mo–W activator enhances HER performance, with a significant 17% reduction in energy consumption compared to plain electrolyte, mirroring the efficiency of Co–Mo. Tafel analysis gave the insight of the reaction mechanism for HER for all activators, with Co–Mo–W exhibiting a lower Tafel slope, suggesting improved catalytic activity. Structural and morphological analysis of electrode coatings shows a highly developed surface for Co–Mo–W, with a roughness factor similar to or slightly lower than the most developed Co–Mo coating. The study concludes that the synergistic combination of Co, Mo, and W in a tri-component ionic activator offers a promising catalytic activity for HER, outperforming bi-component systems and presenting significant potential for industrial-scale alkaline water electrolysis applications.
T2  - International Journal of Hydrogen Energy
T1  - On the use of WO42− as a third component to Co–Mo ionic activator for HER in alkaline water electrolysis
VL  - 64
SP  - 196
EP  - 204
DO  - 10.1016/j.ijhydene.2024.03.267
ER  - 
@article{
author = "Perović, Ivana and Mitrović, Stefan and Brković, Snežana and Zdolšek, Nikola and Seović, Mina and Tasić, Gvozden and Pašti, Igor",
year = "2024",
abstract = "This study investigates the impact of Co–Mo–W ionic activators on the hydrogen evolution reaction (HER) in alkaline electrolysis, comparing their performance to Co–Mo and Co–W systems. The research focuses on analyzing the catalytic efficiency of these activators under varying conditions, including temperature and current density variations. Key findings reveal that the Co–Mo–W activator enhances HER performance, with a significant 17% reduction in energy consumption compared to plain electrolyte, mirroring the efficiency of Co–Mo. Tafel analysis gave the insight of the reaction mechanism for HER for all activators, with Co–Mo–W exhibiting a lower Tafel slope, suggesting improved catalytic activity. Structural and morphological analysis of electrode coatings shows a highly developed surface for Co–Mo–W, with a roughness factor similar to or slightly lower than the most developed Co–Mo coating. The study concludes that the synergistic combination of Co, Mo, and W in a tri-component ionic activator offers a promising catalytic activity for HER, outperforming bi-component systems and presenting significant potential for industrial-scale alkaline water electrolysis applications.",
journal = "International Journal of Hydrogen Energy",
title = "On the use of WO42− as a third component to Co–Mo ionic activator for HER in alkaline water electrolysis",
volume = "64",
pages = "196-204",
doi = "10.1016/j.ijhydene.2024.03.267"
}
Perović, I., Mitrović, S., Brković, S., Zdolšek, N., Seović, M., Tasić, G.,& Pašti, I.. (2024). On the use of WO42− as a third component to Co–Mo ionic activator for HER in alkaline water electrolysis. in International Journal of Hydrogen Energy, 64, 196-204.
https://doi.org/10.1016/j.ijhydene.2024.03.267
Perović I, Mitrović S, Brković S, Zdolšek N, Seović M, Tasić G, Pašti I. On the use of WO42− as a third component to Co–Mo ionic activator for HER in alkaline water electrolysis. in International Journal of Hydrogen Energy. 2024;64:196-204.
doi:10.1016/j.ijhydene.2024.03.267 .
Perović, Ivana, Mitrović, Stefan, Brković, Snežana, Zdolšek, Nikola, Seović, Mina, Tasić, Gvozden, Pašti, Igor, "On the use of WO42− as a third component to Co–Mo ionic activator for HER in alkaline water electrolysis" in International Journal of Hydrogen Energy, 64 (2024):196-204,
https://doi.org/10.1016/j.ijhydene.2024.03.267 . .

From E-Waste to Hydrogen Evolution: Harnessing Recycled Precious Metals for Catalytic Efficiency in Hydrogen Evolution Reactions

Mitrović, Stefan; Brković, Snežana; Živković, Sanja; Zdolšek, Nikola; Seović, Mina; Georgijević, Jelena M.; Perović, Ivana

(2023)

TY  - JOUR
AU  - Mitrović, Stefan
AU  - Brković, Snežana
AU  - Živković, Sanja
AU  - Zdolšek, Nikola
AU  - Seović, Mina
AU  - Georgijević, Jelena M.
AU  - Perović, Ivana
PY  - 2023
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/11873
AB  - Against the background of escalating global electronic waste (e-waste) and its rich reservoir of elements, this research addresses the exploitation of precious metals from discarded CPUs for potential applications in hydrogen production. The study systematically explores the influence of varied CPU sample preparation techniques on the formation of an electrode’s catalytic layer and the kinetics of the hydrogen evolution reaction (HER) in alkaline media. Four distinct e-waste samples, each subjected to different preparation protocols, were employed as sources in electrodeposition baths. The electrocatalytic efficiency of the resulting electrodeposited cathodes was evaluated, with the AR-CPU-1.4M electrode demonstrating superior properties. Morphological insights from SEM, coupled with elemental data from EDS and ICP analyses, revealed the intricate relationship between sample preparation, electrode characteristics, and HER kinetics. Notably, gold deposits and a prominent copper concentration emerged as defining attributes of our findings. This research underscores the potential of e-waste-derived metals, particularly in hydrogen production, providing an avenue for sustainable metal recovery and utilization.
T2  - Materials
T1  - From E-Waste to Hydrogen Evolution: Harnessing Recycled Precious Metals for Catalytic Efficiency in Hydrogen Evolution Reactions
VL  - 16
IS  - 20
SP  - 6795
DO  - 10.3390/ma16206795
ER  - 
@article{
author = "Mitrović, Stefan and Brković, Snežana and Živković, Sanja and Zdolšek, Nikola and Seović, Mina and Georgijević, Jelena M. and Perović, Ivana",
year = "2023",
abstract = "Against the background of escalating global electronic waste (e-waste) and its rich reservoir of elements, this research addresses the exploitation of precious metals from discarded CPUs for potential applications in hydrogen production. The study systematically explores the influence of varied CPU sample preparation techniques on the formation of an electrode’s catalytic layer and the kinetics of the hydrogen evolution reaction (HER) in alkaline media. Four distinct e-waste samples, each subjected to different preparation protocols, were employed as sources in electrodeposition baths. The electrocatalytic efficiency of the resulting electrodeposited cathodes was evaluated, with the AR-CPU-1.4M electrode demonstrating superior properties. Morphological insights from SEM, coupled with elemental data from EDS and ICP analyses, revealed the intricate relationship between sample preparation, electrode characteristics, and HER kinetics. Notably, gold deposits and a prominent copper concentration emerged as defining attributes of our findings. This research underscores the potential of e-waste-derived metals, particularly in hydrogen production, providing an avenue for sustainable metal recovery and utilization.",
journal = "Materials",
title = "From E-Waste to Hydrogen Evolution: Harnessing Recycled Precious Metals for Catalytic Efficiency in Hydrogen Evolution Reactions",
volume = "16",
number = "20",
pages = "6795",
doi = "10.3390/ma16206795"
}
Mitrović, S., Brković, S., Živković, S., Zdolšek, N., Seović, M., Georgijević, J. M.,& Perović, I.. (2023). From E-Waste to Hydrogen Evolution: Harnessing Recycled Precious Metals for Catalytic Efficiency in Hydrogen Evolution Reactions. in Materials, 16(20), 6795.
https://doi.org/10.3390/ma16206795
Mitrović S, Brković S, Živković S, Zdolšek N, Seović M, Georgijević JM, Perović I. From E-Waste to Hydrogen Evolution: Harnessing Recycled Precious Metals for Catalytic Efficiency in Hydrogen Evolution Reactions. in Materials. 2023;16(20):6795.
doi:10.3390/ma16206795 .
Mitrović, Stefan, Brković, Snežana, Živković, Sanja, Zdolšek, Nikola, Seović, Mina, Georgijević, Jelena M., Perović, Ivana, "From E-Waste to Hydrogen Evolution: Harnessing Recycled Precious Metals for Catalytic Efficiency in Hydrogen Evolution Reactions" in Materials, 16, no. 20 (2023):6795,
https://doi.org/10.3390/ma16206795 . .

Co-Mo in situ ionic activators for HER - energy consumption and reaction mechanism

Perović, Ivana; Mitrović, Stefan; Brković, Snežana; Zdolšek, Nikola; Seović, Mina; Tasić, Gvozden

(Zagreb : [s.n.], 2023)

TY  - CONF
AU  - Perović, Ivana
AU  - Mitrović, Stefan
AU  - Brković, Snežana
AU  - Zdolšek, Nikola
AU  - Seović, Mina
AU  - Tasić, Gvozden
PY  - 2023
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/12910
PB  - Zagreb : [s.n.]
C3  - RH2EC : May 24-26, 2023, Zagreb, Croatia : 2nd Renewable hydrogen energy convention
T1  - Co-Mo in situ ionic activators for HER - energy consumption and reaction mechanism
UR  - https://hdl.handle.net/21.15107/rcub_vinar_12910
ER  - 
@conference{
author = "Perović, Ivana and Mitrović, Stefan and Brković, Snežana and Zdolšek, Nikola and Seović, Mina and Tasić, Gvozden",
year = "2023",
publisher = "Zagreb : [s.n.]",
journal = "RH2EC : May 24-26, 2023, Zagreb, Croatia : 2nd Renewable hydrogen energy convention",
title = "Co-Mo in situ ionic activators for HER - energy consumption and reaction mechanism",
url = "https://hdl.handle.net/21.15107/rcub_vinar_12910"
}
Perović, I., Mitrović, S., Brković, S., Zdolšek, N., Seović, M.,& Tasić, G.. (2023). Co-Mo in situ ionic activators for HER - energy consumption and reaction mechanism. in RH2EC : May 24-26, 2023, Zagreb, Croatia : 2nd Renewable hydrogen energy convention
Zagreb : [s.n.]..
https://hdl.handle.net/21.15107/rcub_vinar_12910
Perović I, Mitrović S, Brković S, Zdolšek N, Seović M, Tasić G. Co-Mo in situ ionic activators for HER - energy consumption and reaction mechanism. in RH2EC : May 24-26, 2023, Zagreb, Croatia : 2nd Renewable hydrogen energy convention. 2023;.
https://hdl.handle.net/21.15107/rcub_vinar_12910 .
Perović, Ivana, Mitrović, Stefan, Brković, Snežana, Zdolšek, Nikola, Seović, Mina, Tasić, Gvozden, "Co-Mo in situ ionic activators for HER - energy consumption and reaction mechanism" in RH2EC : May 24-26, 2023, Zagreb, Croatia : 2nd Renewable hydrogen energy convention (2023),
https://hdl.handle.net/21.15107/rcub_vinar_12910 .

In-situ grafting of Fe and Cu nanoparticles on carbon for electrolytic hydrogen production

Georgijević, Jelena M.; Milikić, Jadranka; Zdolšek, Nikola; Brković, Snežana; Perović, Ivana; Laušević, Petar; Šljukić, Biljana

(Belgrade : Serbian Chemical Society, 2023)

TY  - CONF
AU  - Georgijević, Jelena M.
AU  - Milikić, Jadranka
AU  - Zdolšek, Nikola
AU  - Brković, Snežana
AU  - Perović, Ivana
AU  - Laušević, Petar
AU  - Šljukić, Biljana
PY  - 2023
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/12771
AB  - In order to reduce air pollution by green-house gases released during fossil fuels combustion, hydrogen has been suggested as an alternative, clean fuel [1]. The most promising method of obtaining green hydrogen (and oxygen) is electrolytic water splitting [2]. For splitting process to be efficient, it is necessary to useelectrocatalysts with high activity, but they should also be economically accessible. Ionic liquids are used in the most diverse fields of sciencedue to their unique physical and chemical properties, and in this regard, they can be used for the development of electrocatalystsby direct carbonization [3].  Within this study, carbon catalysts doped with iron and copper (Fe/C, Cu/C and FeCu/C) were prepared by carbonization of ionic liquids containing the corresponding metal and characterized for the hydrogen evolution reaction (HER) in alkaline (8 M KOH) media. Electrochemical measurements were made by cyclic voltammetry (CV), linear cyclic voltammetry (LSV), electrochemical impedance spectroscopy (EIS) and chronoamperometry (CA). All electrocatalysts showed good activity for HER. Tafel slope (b) values of -132, 155 and -151 mV dec-1 (Table 1) were obtained for HER at 25 oC for Fe/C, Cu/C and FeCu/C, respectively. Also, the exchange current density (j0) was determined and the values ranged from 1.28 to 2.94 10-2 mAcm-2. The results (Table 1) show that Fe/C, Cu/C and FeCu/Care promisingelectrocatalysts for hydrogen gas production by water splitting.
PB  - Belgrade : Serbian Chemical Society
C3  - 9th Symposium Chemistry and Environmental Protection : Book of Abstracts
T1  - In-situ grafting of Fe and Cu nanoparticles on carbon for electrolytic hydrogen production
SP  - 141
EP  - 142
UR  - https://hdl.handle.net/21.15107/rcub_vinar_12771
ER  - 
@conference{
author = "Georgijević, Jelena M. and Milikić, Jadranka and Zdolšek, Nikola and Brković, Snežana and Perović, Ivana and Laušević, Petar and Šljukić, Biljana",
year = "2023",
abstract = "In order to reduce air pollution by green-house gases released during fossil fuels combustion, hydrogen has been suggested as an alternative, clean fuel [1]. The most promising method of obtaining green hydrogen (and oxygen) is electrolytic water splitting [2]. For splitting process to be efficient, it is necessary to useelectrocatalysts with high activity, but they should also be economically accessible. Ionic liquids are used in the most diverse fields of sciencedue to their unique physical and chemical properties, and in this regard, they can be used for the development of electrocatalystsby direct carbonization [3].  Within this study, carbon catalysts doped with iron and copper (Fe/C, Cu/C and FeCu/C) were prepared by carbonization of ionic liquids containing the corresponding metal and characterized for the hydrogen evolution reaction (HER) in alkaline (8 M KOH) media. Electrochemical measurements were made by cyclic voltammetry (CV), linear cyclic voltammetry (LSV), electrochemical impedance spectroscopy (EIS) and chronoamperometry (CA). All electrocatalysts showed good activity for HER. Tafel slope (b) values of -132, 155 and -151 mV dec-1 (Table 1) were obtained for HER at 25 oC for Fe/C, Cu/C and FeCu/C, respectively. Also, the exchange current density (j0) was determined and the values ranged from 1.28 to 2.94 10-2 mAcm-2. The results (Table 1) show that Fe/C, Cu/C and FeCu/Care promisingelectrocatalysts for hydrogen gas production by water splitting.",
publisher = "Belgrade : Serbian Chemical Society",
journal = "9th Symposium Chemistry and Environmental Protection : Book of Abstracts",
title = "In-situ grafting of Fe and Cu nanoparticles on carbon for electrolytic hydrogen production",
pages = "141-142",
url = "https://hdl.handle.net/21.15107/rcub_vinar_12771"
}
Georgijević, J. M., Milikić, J., Zdolšek, N., Brković, S., Perović, I., Laušević, P.,& Šljukić, B.. (2023). In-situ grafting of Fe and Cu nanoparticles on carbon for electrolytic hydrogen production. in 9th Symposium Chemistry and Environmental Protection : Book of Abstracts
Belgrade : Serbian Chemical Society., 141-142.
https://hdl.handle.net/21.15107/rcub_vinar_12771
Georgijević JM, Milikić J, Zdolšek N, Brković S, Perović I, Laušević P, Šljukić B. In-situ grafting of Fe and Cu nanoparticles on carbon for electrolytic hydrogen production. in 9th Symposium Chemistry and Environmental Protection : Book of Abstracts. 2023;:141-142.
https://hdl.handle.net/21.15107/rcub_vinar_12771 .
Georgijević, Jelena M., Milikić, Jadranka, Zdolšek, Nikola, Brković, Snežana, Perović, Ivana, Laušević, Petar, Šljukić, Biljana, "In-situ grafting of Fe and Cu nanoparticles on carbon for electrolytic hydrogen production" in 9th Symposium Chemistry and Environmental Protection : Book of Abstracts (2023):141-142,
https://hdl.handle.net/21.15107/rcub_vinar_12771 .

Energy Transition and Hydrogen Evolution

Seović, Mina; Perović, Ivana; Brković, Snežana; Zdolšek, Nikola; Mitrović, Stefan; Georgijević, Jelena M.; Tasić, Gvozden

(2023)

TY  - JOUR
AU  - Seović, Mina
AU  - Perović, Ivana
AU  - Brković, Snežana
AU  - Zdolšek, Nikola
AU  - Mitrović, Stefan
AU  - Georgijević, Jelena M.
AU  - Tasić, Gvozden
PY  - 2023
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/12288
AB  - The escalating concerns over climate changes and environmental disturbances resulting from anthropogenic influence have propelled the scientific community to seek efficient models for the energy transition. Hydrogen emerges as a promising energy carrier with the potential to replace fossil fuels and mitigate global warming, a pressing threat to life on Earth. This research paper primarily focuses on the electrolytic production of hydrogen, deemed the environmentally acceptable method for this purpose. The central emphasis lies in enhancing the electrodes utilized in this process to elevate the significance of the Hydrogen Evolution Reaction (HER). By improving HER, a pivotal step in the hydrogen production process, the trajectory of civilization's evolution can be positively influenced.
AB  - Sve veća zabrinutost zbog klimatskih promena i ekoloških poremećaja koji su rezultat antropogenog uticaja naterali su naučnu zajednicu da traži efikasne modele za energetsku tranziciju. Vodonik se pojavljuje kao perspektivan nosilac energije sa potencijalom da zameni fosilna goriva i ublaži globalno zagrevanje, goruću pretnju životu na Zemlji. Ovaj istraživački rad se prvenstveno fokusira na elektrolitičku proizvodnju vodonika, koja se smatra ekološki prihvatljivom metodom za ovu svrhu. Centralni naglasak je na poboljšanju elektroda koje se koriste u ovom procesu kako bi se podigao značaj reakcije evolucije vodonika (HER). Poboljšanjem HER, ključnog koraka u procesu proizvodnje vodonika, može se pozitivno uticati na putanju evolucije civilizacije.
T2  - Ecologica
T1  - Energy Transition and Hydrogen Evolution
T1  - Energetska tranzicija i vodonična evolucija
VL  - 30
IS  - 112
SP  - 563
EP  - 568
DO  - 10.18485/ecologica.2023.30.112.8
ER  - 
@article{
author = "Seović, Mina and Perović, Ivana and Brković, Snežana and Zdolšek, Nikola and Mitrović, Stefan and Georgijević, Jelena M. and Tasić, Gvozden",
year = "2023",
abstract = "The escalating concerns over climate changes and environmental disturbances resulting from anthropogenic influence have propelled the scientific community to seek efficient models for the energy transition. Hydrogen emerges as a promising energy carrier with the potential to replace fossil fuels and mitigate global warming, a pressing threat to life on Earth. This research paper primarily focuses on the electrolytic production of hydrogen, deemed the environmentally acceptable method for this purpose. The central emphasis lies in enhancing the electrodes utilized in this process to elevate the significance of the Hydrogen Evolution Reaction (HER). By improving HER, a pivotal step in the hydrogen production process, the trajectory of civilization's evolution can be positively influenced., Sve veća zabrinutost zbog klimatskih promena i ekoloških poremećaja koji su rezultat antropogenog uticaja naterali su naučnu zajednicu da traži efikasne modele za energetsku tranziciju. Vodonik se pojavljuje kao perspektivan nosilac energije sa potencijalom da zameni fosilna goriva i ublaži globalno zagrevanje, goruću pretnju životu na Zemlji. Ovaj istraživački rad se prvenstveno fokusira na elektrolitičku proizvodnju vodonika, koja se smatra ekološki prihvatljivom metodom za ovu svrhu. Centralni naglasak je na poboljšanju elektroda koje se koriste u ovom procesu kako bi se podigao značaj reakcije evolucije vodonika (HER). Poboljšanjem HER, ključnog koraka u procesu proizvodnje vodonika, može se pozitivno uticati na putanju evolucije civilizacije.",
journal = "Ecologica",
title = "Energy Transition and Hydrogen Evolution, Energetska tranzicija i vodonična evolucija",
volume = "30",
number = "112",
pages = "563-568",
doi = "10.18485/ecologica.2023.30.112.8"
}
Seović, M., Perović, I., Brković, S., Zdolšek, N., Mitrović, S., Georgijević, J. M.,& Tasić, G.. (2023). Energy Transition and Hydrogen Evolution. in Ecologica, 30(112), 563-568.
https://doi.org/10.18485/ecologica.2023.30.112.8
Seović M, Perović I, Brković S, Zdolšek N, Mitrović S, Georgijević JM, Tasić G. Energy Transition and Hydrogen Evolution. in Ecologica. 2023;30(112):563-568.
doi:10.18485/ecologica.2023.30.112.8 .
Seović, Mina, Perović, Ivana, Brković, Snežana, Zdolšek, Nikola, Mitrović, Stefan, Georgijević, Jelena M., Tasić, Gvozden, "Energy Transition and Hydrogen Evolution" in Ecologica, 30, no. 112 (2023):563-568,
https://doi.org/10.18485/ecologica.2023.30.112.8 . .

Enhanced Catalytic Activity and Energy Savings with Ni-Zn-Mo Ionic Activators for Hydrogen Evolution in Alkaline Electrolysis

Perović, Ivana; Marčeta Kaninski, Milica; Tasić, Gvozden; Maslovara, Slađana Lj.; Laušević, Petar; Seović, Mina; Nikolić, Vladimir

(2023)

TY  - JOUR
AU  - Perović, Ivana
AU  - Marčeta Kaninski, Milica
AU  - Tasić, Gvozden
AU  - Maslovara, Slađana Lj.
AU  - Laušević, Petar
AU  - Seović, Mina
AU  - Nikolić, Vladimir
PY  - 2023
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/11435
AB  - Green hydrogen produced by alkaline electrolysis is a promising solution to address the world’s increasing energy demand while mitigating greenhouse gas emissions. However, the efficient and cost-effective production of green hydrogen via alkaline electrolysis requires improvements. This paper presents an in situ activation process that simplifies the alkaline electrolysis technology while enhancing the catalytic activity of electrodes for the hydrogen evolution reaction. The aim of this research is to enhance the energy efficiency of alkaline electrolysis and decrease the energy consumption for hydrogen production. To achieve this goal, ionic activators comprising Ni, Zn, and Mo were incorporated into the standard electrolyte solution. Our results demonstrate that the anticipated improvement in the catalytic activity of the d-metal combination, surpassing even that of precious metals, has been successfully attained. As a result, a 20% reduction in energy consumption (REC) for the hydrogen produced has been observed. The catalytic activity of the added activators for the hydrogen evolution reaction was discussed by analyzing the mechanism of the reaction via Tafel analysis and EIS techniques. These findings offer a promising approach to improve alkaline electrolysis and enhance the production of green hydrogen.
T2  - Materials
T1  - Enhanced Catalytic Activity and Energy Savings with Ni-Zn-Mo Ionic Activators for Hydrogen Evolution in Alkaline Electrolysis
VL  - 16
IS  - 15
SP  - 5268
DO  - 10.3390/ma16155268
ER  - 
@article{
author = "Perović, Ivana and Marčeta Kaninski, Milica and Tasić, Gvozden and Maslovara, Slađana Lj. and Laušević, Petar and Seović, Mina and Nikolić, Vladimir",
year = "2023",
abstract = "Green hydrogen produced by alkaline electrolysis is a promising solution to address the world’s increasing energy demand while mitigating greenhouse gas emissions. However, the efficient and cost-effective production of green hydrogen via alkaline electrolysis requires improvements. This paper presents an in situ activation process that simplifies the alkaline electrolysis technology while enhancing the catalytic activity of electrodes for the hydrogen evolution reaction. The aim of this research is to enhance the energy efficiency of alkaline electrolysis and decrease the energy consumption for hydrogen production. To achieve this goal, ionic activators comprising Ni, Zn, and Mo were incorporated into the standard electrolyte solution. Our results demonstrate that the anticipated improvement in the catalytic activity of the d-metal combination, surpassing even that of precious metals, has been successfully attained. As a result, a 20% reduction in energy consumption (REC) for the hydrogen produced has been observed. The catalytic activity of the added activators for the hydrogen evolution reaction was discussed by analyzing the mechanism of the reaction via Tafel analysis and EIS techniques. These findings offer a promising approach to improve alkaline electrolysis and enhance the production of green hydrogen.",
journal = "Materials",
title = "Enhanced Catalytic Activity and Energy Savings with Ni-Zn-Mo Ionic Activators for Hydrogen Evolution in Alkaline Electrolysis",
volume = "16",
number = "15",
pages = "5268",
doi = "10.3390/ma16155268"
}
Perović, I., Marčeta Kaninski, M., Tasić, G., Maslovara, S. Lj., Laušević, P., Seović, M.,& Nikolić, V.. (2023). Enhanced Catalytic Activity and Energy Savings with Ni-Zn-Mo Ionic Activators for Hydrogen Evolution in Alkaline Electrolysis. in Materials, 16(15), 5268.
https://doi.org/10.3390/ma16155268
Perović I, Marčeta Kaninski M, Tasić G, Maslovara SL, Laušević P, Seović M, Nikolić V. Enhanced Catalytic Activity and Energy Savings with Ni-Zn-Mo Ionic Activators for Hydrogen Evolution in Alkaline Electrolysis. in Materials. 2023;16(15):5268.
doi:10.3390/ma16155268 .
Perović, Ivana, Marčeta Kaninski, Milica, Tasić, Gvozden, Maslovara, Slađana Lj., Laušević, Petar, Seović, Mina, Nikolić, Vladimir, "Enhanced Catalytic Activity and Energy Savings with Ni-Zn-Mo Ionic Activators for Hydrogen Evolution in Alkaline Electrolysis" in Materials, 16, no. 15 (2023):5268,
https://doi.org/10.3390/ma16155268 . .

Investigation of tungsten-carbide-oxideas the anode catalysts supports for the proton exchange membrane fuel cells

Brković, Snežana; Marčeta Kaninski, Milica; Perović, Ivana; Maslovara, Slađana; Zdolšek, Nikola; Laušević, Petar; Nikolić, Vladimir

(Belgrade : Serbian Ceramic Society, 2023)

TY  - CONF
AU  - Brković, Snežana
AU  - Marčeta Kaninski, Milica
AU  - Perović, Ivana
AU  - Maslovara, Slađana
AU  - Zdolšek, Nikola
AU  - Laušević, Petar
AU  - Nikolić, Vladimir
PY  - 2023
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/11636
AB  - A significant research efforts are directed towards the development of compact energy supply devices, so-called stacks of fuel cells, which might be located near or at the point of energy consumption. For widespread use, the most practical are fuel cells with proton exchange membrane, which produce clean electricity, heat and water, at low temperatures. The price of the catalyst limits the mass production and large-scale utilization of fuel cells. Within our research, non-stoichiometric tungsten-carbide-oxide (WxCyOz) were developed as support for catalysts based on PtRu for PEM fuel cells. The conductivity, morphology and structure of the synthesized catalysts were investigated. Cyclic voltammetry, linear scan voltammetry and rotating disk electrode voltammetry were used to determine performance of obtained PtRu/WxCyOz catalysts. Special attention was given to the analysis of CO poisoning. The catalyst with the best performance (30% PtRu/WxCyOz) has higher number of active sites for HOR and the highest interfacial region which contributes the improved CO tolerance, in relation to the other tested catalysts. By testing this catalyst as an anode catalyst in a single PEM fuel cell, a significantly lower power drop was obtained (16,3%) compared to a single fuel cell that uses commercial catalysts (35,3%). These results highlight the potential of PtRu/WxCyOz catalysts in mitigating performance degradation caused by CO poisoning in PEM fuel cells.
PB  - Belgrade : Serbian Ceramic Society
C3  - Advanced Ceramics and Application :11th Serbian Ceramic Society Conference : program and the book of abstracts; September 18-20, 2023; Belgrade
T1  - Investigation of tungsten-carbide-oxideas the anode catalysts supports for the proton exchange membrane fuel cells
SP  - 48
UR  - https://hdl.handle.net/21.15107/rcub_vinar_11636
ER  - 
@conference{
author = "Brković, Snežana and Marčeta Kaninski, Milica and Perović, Ivana and Maslovara, Slađana and Zdolšek, Nikola and Laušević, Petar and Nikolić, Vladimir",
year = "2023",
abstract = "A significant research efforts are directed towards the development of compact energy supply devices, so-called stacks of fuel cells, which might be located near or at the point of energy consumption. For widespread use, the most practical are fuel cells with proton exchange membrane, which produce clean electricity, heat and water, at low temperatures. The price of the catalyst limits the mass production and large-scale utilization of fuel cells. Within our research, non-stoichiometric tungsten-carbide-oxide (WxCyOz) were developed as support for catalysts based on PtRu for PEM fuel cells. The conductivity, morphology and structure of the synthesized catalysts were investigated. Cyclic voltammetry, linear scan voltammetry and rotating disk electrode voltammetry were used to determine performance of obtained PtRu/WxCyOz catalysts. Special attention was given to the analysis of CO poisoning. The catalyst with the best performance (30% PtRu/WxCyOz) has higher number of active sites for HOR and the highest interfacial region which contributes the improved CO tolerance, in relation to the other tested catalysts. By testing this catalyst as an anode catalyst in a single PEM fuel cell, a significantly lower power drop was obtained (16,3%) compared to a single fuel cell that uses commercial catalysts (35,3%). These results highlight the potential of PtRu/WxCyOz catalysts in mitigating performance degradation caused by CO poisoning in PEM fuel cells.",
publisher = "Belgrade : Serbian Ceramic Society",
journal = "Advanced Ceramics and Application :11th Serbian Ceramic Society Conference : program and the book of abstracts; September 18-20, 2023; Belgrade",
title = "Investigation of tungsten-carbide-oxideas the anode catalysts supports for the proton exchange membrane fuel cells",
pages = "48",
url = "https://hdl.handle.net/21.15107/rcub_vinar_11636"
}
Brković, S., Marčeta Kaninski, M., Perović, I., Maslovara, S., Zdolšek, N., Laušević, P.,& Nikolić, V.. (2023). Investigation of tungsten-carbide-oxideas the anode catalysts supports for the proton exchange membrane fuel cells. in Advanced Ceramics and Application :11th Serbian Ceramic Society Conference : program and the book of abstracts; September 18-20, 2023; Belgrade
Belgrade : Serbian Ceramic Society., 48.
https://hdl.handle.net/21.15107/rcub_vinar_11636
Brković S, Marčeta Kaninski M, Perović I, Maslovara S, Zdolšek N, Laušević P, Nikolić V. Investigation of tungsten-carbide-oxideas the anode catalysts supports for the proton exchange membrane fuel cells. in Advanced Ceramics and Application :11th Serbian Ceramic Society Conference : program and the book of abstracts; September 18-20, 2023; Belgrade. 2023;:48.
https://hdl.handle.net/21.15107/rcub_vinar_11636 .
Brković, Snežana, Marčeta Kaninski, Milica, Perović, Ivana, Maslovara, Slađana, Zdolšek, Nikola, Laušević, Petar, Nikolić, Vladimir, "Investigation of tungsten-carbide-oxideas the anode catalysts supports for the proton exchange membrane fuel cells" in Advanced Ceramics and Application :11th Serbian Ceramic Society Conference : program and the book of abstracts; September 18-20, 2023; Belgrade (2023):48,
https://hdl.handle.net/21.15107/rcub_vinar_11636 .

Thermal decomposition kinetics of deep eutectic solvent (DES) based on choline chloride and magnesium chloride hexahydrate: New details on the reaction mechanism and enthalpy–entropy compensation (EEC)

Janković, Bojan Ž.; Manić, Nebojša; Perović, Ivana M.; Vujković, Milica; Zdolšek, Nikola

(2023)

TY  - JOUR
AU  - Janković, Bojan Ž.
AU  - Manić, Nebojša
AU  - Perović, Ivana M.
AU  - Vujković, Milica
AU  - Zdolšek, Nikola
PY  - 2023
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/10739
AB  - In recent years, deep eutectic solvents (DESs) have attracted considerable attention, and they have been applied in many fields, such as dissolution and separation, electrochemistry, materials preparation, reaction, and catalysis. In this paper, a detailed thermal decomposition mechanism of DES-type II (consisting choline chloride (ChCl) and magnesium chloride hexahydrate (MgCl2·6H2O) in a molar ratio 2:1 (MgCl2·6H2O-[Ch]Cl)) was explained, using thermal analysis techniques. Physicochemical clarification of overall thermal decomposition mechanism and the influence of enthalpy–entropy compensation (EEC) on reactions mechanism emerging are presented for the first time, in favor of this DES type. In the kinetic analysis of the decomposition process, two approaches were used: model-free (inverse) and model-based (direct) methods. It was found that thermodynamic principles in the form of EEC are the source of kinetic compensation effect (KCE) during MgCl2·6H2O-[Ch]Cl thermal decomposition, as a consequence of the effects of molecular interactions. Key phenomenon in the complex multiple step process represents a parallel dehydration steps of MgCl2·6H2O in DES, leading to formation of intermediates, such as [MgCl1(H2O)5]1+ and [MgCl2(H2O)4]. It was established that formation of final products (Mg(OH)2 and MgOHCl) requires a higher expenditure of energy to overcome a high potential barrier, where reaction system compensates this energy via hydrogen bonding disruption. This was confirmed by the identification of a specific ‘oscillator’, flagged as Hsingle bondOsingle bondH···Cl hydrogen bond donating system of the energy (“heat bath”). All kinetic parameters and mechanisms of individual reaction steps were confirmed by numerical optimization of the process and modulated dynamic predictions.
T2  - Journal of Molecular Liquids
T1  - Thermal decomposition kinetics of deep eutectic solvent (DES) based on choline chloride and magnesium chloride hexahydrate: New details on the reaction mechanism and enthalpy–entropy compensation (EEC)
VL  - 374
SP  - 121274
DO  - 10.1016/j.molliq.2023.121274
ER  - 
@article{
author = "Janković, Bojan Ž. and Manić, Nebojša and Perović, Ivana M. and Vujković, Milica and Zdolšek, Nikola",
year = "2023",
abstract = "In recent years, deep eutectic solvents (DESs) have attracted considerable attention, and they have been applied in many fields, such as dissolution and separation, electrochemistry, materials preparation, reaction, and catalysis. In this paper, a detailed thermal decomposition mechanism of DES-type II (consisting choline chloride (ChCl) and magnesium chloride hexahydrate (MgCl2·6H2O) in a molar ratio 2:1 (MgCl2·6H2O-[Ch]Cl)) was explained, using thermal analysis techniques. Physicochemical clarification of overall thermal decomposition mechanism and the influence of enthalpy–entropy compensation (EEC) on reactions mechanism emerging are presented for the first time, in favor of this DES type. In the kinetic analysis of the decomposition process, two approaches were used: model-free (inverse) and model-based (direct) methods. It was found that thermodynamic principles in the form of EEC are the source of kinetic compensation effect (KCE) during MgCl2·6H2O-[Ch]Cl thermal decomposition, as a consequence of the effects of molecular interactions. Key phenomenon in the complex multiple step process represents a parallel dehydration steps of MgCl2·6H2O in DES, leading to formation of intermediates, such as [MgCl1(H2O)5]1+ and [MgCl2(H2O)4]. It was established that formation of final products (Mg(OH)2 and MgOHCl) requires a higher expenditure of energy to overcome a high potential barrier, where reaction system compensates this energy via hydrogen bonding disruption. This was confirmed by the identification of a specific ‘oscillator’, flagged as Hsingle bondOsingle bondH···Cl hydrogen bond donating system of the energy (“heat bath”). All kinetic parameters and mechanisms of individual reaction steps were confirmed by numerical optimization of the process and modulated dynamic predictions.",
journal = "Journal of Molecular Liquids",
title = "Thermal decomposition kinetics of deep eutectic solvent (DES) based on choline chloride and magnesium chloride hexahydrate: New details on the reaction mechanism and enthalpy–entropy compensation (EEC)",
volume = "374",
pages = "121274",
doi = "10.1016/j.molliq.2023.121274"
}
Janković, B. Ž., Manić, N., Perović, I. M., Vujković, M.,& Zdolšek, N.. (2023). Thermal decomposition kinetics of deep eutectic solvent (DES) based on choline chloride and magnesium chloride hexahydrate: New details on the reaction mechanism and enthalpy–entropy compensation (EEC). in Journal of Molecular Liquids, 374, 121274.
https://doi.org/10.1016/j.molliq.2023.121274
Janković BŽ, Manić N, Perović IM, Vujković M, Zdolšek N. Thermal decomposition kinetics of deep eutectic solvent (DES) based on choline chloride and magnesium chloride hexahydrate: New details on the reaction mechanism and enthalpy–entropy compensation (EEC). in Journal of Molecular Liquids. 2023;374:121274.
doi:10.1016/j.molliq.2023.121274 .
Janković, Bojan Ž., Manić, Nebojša, Perović, Ivana M., Vujković, Milica, Zdolšek, Nikola, "Thermal decomposition kinetics of deep eutectic solvent (DES) based on choline chloride and magnesium chloride hexahydrate: New details on the reaction mechanism and enthalpy–entropy compensation (EEC)" in Journal of Molecular Liquids, 374 (2023):121274,
https://doi.org/10.1016/j.molliq.2023.121274 . .
5
5

Applicability of Construction and Demolition Waste in Geopolymers – A Screening Test

Jelić, Ivana V.; Savić, Aleksandar R.; Miljojčić, Tatjana; Šljivić-Ivanović, Marija; Dimović, Slavko; Janković, Marija M.; Perović, Ivana; Zakić, Dimitrije M.; Antonijević, Dragi Lj.

(Belgrade : University of Belgrade, Faculty of Mechanical Engineering, 2023)

TY  - CONF
AU  - Jelić, Ivana V.
AU  - Savić, Aleksandar R.
AU  - Miljojčić, Tatjana
AU  - Šljivić-Ivanović, Marija
AU  - Dimović, Slavko
AU  - Janković, Marija M.
AU  - Perović, Ivana
AU  - Zakić, Dimitrije M.
AU  - Antonijević, Dragi Lj.
PY  - 2023
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/11452
AB  - In this study, the applicability of construction and demolition waste (C&DW) in geopolymerization technology was investigated. The C&DW components, concrete and solid bricks, were collected from demolition sites in Belgrade, Republic of Serbia. The concrete sample came from a demolished fifty-year-old construction road, while the remains of solid bricks originated from a 1930s building. Prior to mechanical testing, the C&DW components were characterized by XRD analysis for their mineralogical composition. The results showed that the concrete waste consisted mainly of quartz (SiO2) and calcite (CaCO3), while the brick waste sample contained anorthite from the feldspar group (CaAl2Si2O8), wollastonite (Ca0.957Fe0.043O3Si) and mullite (Al2.4O4.8SiO6). The mechanical properties were examined using the screening method on three geopolymer mixtures, one of each mixture of concrete and brick powders and a mixture of both C&DW components. According to the standard SRPS EN 12390-3:2010 for cubic samples, the geopolymer samples were prepared with alkaline activators for testing the compressive strength as the dominant parameter in the mortar and concrete evaluation. The compressive strength values increased in the range of 2.4 MPa for concrete, 10.2 MPa for brick, and 10.8 MPa for the mixed geopolymer sample. The low compressive strength result of the concrete sample was the consequence of the mineral composition, i.e., the absence of aluminosilicate. However, the brick and the sample with a combination of both types of waste showed moderately satisfactory compressive strength, which could be the starting point for further investigations.
PB  - Belgrade : University of Belgrade, Faculty of Mechanical Engineering
C3  - CNN Tech 2023 - International conference of experimental and numerical investigations and new technologies : Programme and the Book of Abstracts; June 4-7, 2023; Zlatibor
T1  - Applicability of Construction and Demolition Waste in Geopolymers – A Screening Test
SP  - 81
EP  - 81
UR  - https://hdl.handle.net/21.15107/rcub_vinar_11452
ER  - 
@conference{
author = "Jelić, Ivana V. and Savić, Aleksandar R. and Miljojčić, Tatjana and Šljivić-Ivanović, Marija and Dimović, Slavko and Janković, Marija M. and Perović, Ivana and Zakić, Dimitrije M. and Antonijević, Dragi Lj.",
year = "2023",
abstract = "In this study, the applicability of construction and demolition waste (C&DW) in geopolymerization technology was investigated. The C&DW components, concrete and solid bricks, were collected from demolition sites in Belgrade, Republic of Serbia. The concrete sample came from a demolished fifty-year-old construction road, while the remains of solid bricks originated from a 1930s building. Prior to mechanical testing, the C&DW components were characterized by XRD analysis for their mineralogical composition. The results showed that the concrete waste consisted mainly of quartz (SiO2) and calcite (CaCO3), while the brick waste sample contained anorthite from the feldspar group (CaAl2Si2O8), wollastonite (Ca0.957Fe0.043O3Si) and mullite (Al2.4O4.8SiO6). The mechanical properties were examined using the screening method on three geopolymer mixtures, one of each mixture of concrete and brick powders and a mixture of both C&DW components. According to the standard SRPS EN 12390-3:2010 for cubic samples, the geopolymer samples were prepared with alkaline activators for testing the compressive strength as the dominant parameter in the mortar and concrete evaluation. The compressive strength values increased in the range of 2.4 MPa for concrete, 10.2 MPa for brick, and 10.8 MPa for the mixed geopolymer sample. The low compressive strength result of the concrete sample was the consequence of the mineral composition, i.e., the absence of aluminosilicate. However, the brick and the sample with a combination of both types of waste showed moderately satisfactory compressive strength, which could be the starting point for further investigations.",
publisher = "Belgrade : University of Belgrade, Faculty of Mechanical Engineering",
journal = "CNN Tech 2023 - International conference of experimental and numerical investigations and new technologies : Programme and the Book of Abstracts; June 4-7, 2023; Zlatibor",
title = "Applicability of Construction and Demolition Waste in Geopolymers – A Screening Test",
pages = "81-81",
url = "https://hdl.handle.net/21.15107/rcub_vinar_11452"
}
Jelić, I. V., Savić, A. R., Miljojčić, T., Šljivić-Ivanović, M., Dimović, S., Janković, M. M., Perović, I., Zakić, D. M.,& Antonijević, D. Lj.. (2023). Applicability of Construction and Demolition Waste in Geopolymers – A Screening Test. in CNN Tech 2023 - International conference of experimental and numerical investigations and new technologies : Programme and the Book of Abstracts; June 4-7, 2023; Zlatibor
Belgrade : University of Belgrade, Faculty of Mechanical Engineering., 81-81.
https://hdl.handle.net/21.15107/rcub_vinar_11452
Jelić IV, Savić AR, Miljojčić T, Šljivić-Ivanović M, Dimović S, Janković MM, Perović I, Zakić DM, Antonijević DL. Applicability of Construction and Demolition Waste in Geopolymers – A Screening Test. in CNN Tech 2023 - International conference of experimental and numerical investigations and new technologies : Programme and the Book of Abstracts; June 4-7, 2023; Zlatibor. 2023;:81-81.
https://hdl.handle.net/21.15107/rcub_vinar_11452 .
Jelić, Ivana V., Savić, Aleksandar R., Miljojčić, Tatjana, Šljivić-Ivanović, Marija, Dimović, Slavko, Janković, Marija M., Perović, Ivana, Zakić, Dimitrije M., Antonijević, Dragi Lj., "Applicability of Construction and Demolition Waste in Geopolymers – A Screening Test" in CNN Tech 2023 - International conference of experimental and numerical investigations and new technologies : Programme and the Book of Abstracts; June 4-7, 2023; Zlatibor (2023):81-81,
https://hdl.handle.net/21.15107/rcub_vinar_11452 .

Development of low carbon and energy-efficient geopolymer-based paving blocks

Jelić, Ivana; Savić, Aleksandar; Miljojčić, Tatjana; Šljivić-Ivanović, Marija; Dimović, Slavko; Janković, Marija; Perović, Ivana; Zakić, Dimitrije; Antonijević, Dragi

(2023)

TY  - JOUR
AU  - Jelić, Ivana
AU  - Savić, Aleksandar
AU  - Miljojčić, Tatjana
AU  - Šljivić-Ivanović, Marija
AU  - Dimović, Slavko
AU  - Janković, Marija
AU  - Perović, Ivana
AU  - Zakić, Dimitrije
AU  - Antonijević, Dragi
PY  - 2023
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/12100
AB  - The development of energy-efficient and low-carbon geopolymer-based paving blocks made from waste, as an environmental-friendly material, was evaluated. Ground concrete (GC) and solid brick (SB) powder, as the representatives of construction and demolition waste (C&DW), with the addition of fly ash (FA) and silica fume (SF), were used. Waste samples were characterized in terms of surface functional groups and radioactivity. The FT-IR spectra showed the required amorphous or semi-crystalline alumino-silicate structure. The gamma spectrometry confirmed waste samples' radiological safety. Hardened geopolymer samples were subjected to physical-mechanical investigation comprising of density, water content, compressive and flexural strengths determination. Based on strength characteristics, the three best prototype mixtures were selected and subjected to further compressive strength determination and durability assessment. Prototype sample SBFASFp1, with a compressive strength of 18.7 MPa, was shown the highest value of all samples, almost the same as the corresponding SBFASF1 sample. Freeze-thaw and the subsequent carbonation tests, as durability indicators, showed that the SBFASF1 sample had the slightest strength decrease, making it most durable in these conditions. These satisfactory test results showed the favorable effects of alternatives to cementitious materials, encouraging their utilization and contributing to the sustainability of the construction sector.
T2  - Science of Sintering
T1  - Development of low carbon and energy-efficient geopolymer-based paving blocks
IS  - InPress
SP  - 59
DO  - 10.2298/SOS231009059J
ER  - 
@article{
author = "Jelić, Ivana and Savić, Aleksandar and Miljojčić, Tatjana and Šljivić-Ivanović, Marija and Dimović, Slavko and Janković, Marija and Perović, Ivana and Zakić, Dimitrije and Antonijević, Dragi",
year = "2023",
abstract = "The development of energy-efficient and low-carbon geopolymer-based paving blocks made from waste, as an environmental-friendly material, was evaluated. Ground concrete (GC) and solid brick (SB) powder, as the representatives of construction and demolition waste (C&DW), with the addition of fly ash (FA) and silica fume (SF), were used. Waste samples were characterized in terms of surface functional groups and radioactivity. The FT-IR spectra showed the required amorphous or semi-crystalline alumino-silicate structure. The gamma spectrometry confirmed waste samples' radiological safety. Hardened geopolymer samples were subjected to physical-mechanical investigation comprising of density, water content, compressive and flexural strengths determination. Based on strength characteristics, the three best prototype mixtures were selected and subjected to further compressive strength determination and durability assessment. Prototype sample SBFASFp1, with a compressive strength of 18.7 MPa, was shown the highest value of all samples, almost the same as the corresponding SBFASF1 sample. Freeze-thaw and the subsequent carbonation tests, as durability indicators, showed that the SBFASF1 sample had the slightest strength decrease, making it most durable in these conditions. These satisfactory test results showed the favorable effects of alternatives to cementitious materials, encouraging their utilization and contributing to the sustainability of the construction sector.",
journal = "Science of Sintering",
title = "Development of low carbon and energy-efficient geopolymer-based paving blocks",
number = "InPress",
pages = "59",
doi = "10.2298/SOS231009059J"
}
Jelić, I., Savić, A., Miljojčić, T., Šljivić-Ivanović, M., Dimović, S., Janković, M., Perović, I., Zakić, D.,& Antonijević, D.. (2023). Development of low carbon and energy-efficient geopolymer-based paving blocks. in Science of Sintering(InPress), 59.
https://doi.org/10.2298/SOS231009059J
Jelić I, Savić A, Miljojčić T, Šljivić-Ivanović M, Dimović S, Janković M, Perović I, Zakić D, Antonijević D. Development of low carbon and energy-efficient geopolymer-based paving blocks. in Science of Sintering. 2023;(InPress):59.
doi:10.2298/SOS231009059J .
Jelić, Ivana, Savić, Aleksandar, Miljojčić, Tatjana, Šljivić-Ivanović, Marija, Dimović, Slavko, Janković, Marija, Perović, Ivana, Zakić, Dimitrije, Antonijević, Dragi, "Development of low carbon and energy-efficient geopolymer-based paving blocks" in Science of Sintering, no. InPress (2023):59,
https://doi.org/10.2298/SOS231009059J . .

Deep Eutectic Solvent for Facile Synthesis of Mn3O4@N-Doped Carbon for Aqueous Multivalent-Based Supercapacitors: New Concept for Increasing Capacitance and Operating Voltage

Zdolšek, Nikola; Perović, Ivana; Brković, Snežana M.; Tasić, Gvozden S.; Milović, Miloš; Vujković, Milica

(2022)

TY  - JOUR
AU  - Zdolšek, Nikola
AU  - Perović, Ivana
AU  - Brković, Snežana M.
AU  - Tasić, Gvozden S.
AU  - Milović, Miloš
AU  - Vujković, Milica
PY  - 2022
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/11004
AB  - The capacitance and operating voltage of supercapacitors as well as their energy density have been increased by development of different materials and electrolytes. In this paper, two strategies, for the first time, were used to improve energy density: Mn3O4- and N-dual doped carbon electrode and aqueous mixture of multivalent ions as electrolyte. Mn3O4- and N-dual doped carbon was prepared by a novel and cost-effective procedure using deep eutectic solvent. XRD, XPS, and FTIR confirmed presence of Mn3O4 and nitrogen, while SEM and EDS elemental mapping showed micrometer-sized nanosheets with uniform distribution of C, O, N, and Mn atoms. Charge storage behavior of carbon was tested in aqueous multivalent-based electrolytes and their mixture (Ca2+-Al3+). Regarding both specific capacitance and workable voltage, the Ca2+-Al3+ mixed electrolyte was found as the best optimal solution. The calcium addition to the Al-electrolyte allows the higher operating voltage than in the case of individual Al(NO3)3 electrolyte while the addition of Al3+ ion in the Ca(NO3)2 electrolyte improves the multivalent-ion charge storage ability of carbon. As a result, the specific energy density of two-electrode Mn3O4@N-doped carbon//Al(NO3)2+Ca(NO3)2//Mn3O4@N-doped carbon supercapacitor (34 Wh kg−1 at 0.1 A g−1) overpasses the reported values obtained for Mn-based carbon supercapacitors using conventional aqueous electrolytes.
T2  - Materials
T1  - Deep Eutectic Solvent for Facile Synthesis of Mn3O4@N-Doped Carbon for Aqueous Multivalent-Based Supercapacitors: New Concept for Increasing Capacitance and Operating Voltage
VL  - 15
IS  - 23
SP  - 8540
DO  - 10.3390/ma15238540
ER  - 
@article{
author = "Zdolšek, Nikola and Perović, Ivana and Brković, Snežana M. and Tasić, Gvozden S. and Milović, Miloš and Vujković, Milica",
year = "2022",
abstract = "The capacitance and operating voltage of supercapacitors as well as their energy density have been increased by development of different materials and electrolytes. In this paper, two strategies, for the first time, were used to improve energy density: Mn3O4- and N-dual doped carbon electrode and aqueous mixture of multivalent ions as electrolyte. Mn3O4- and N-dual doped carbon was prepared by a novel and cost-effective procedure using deep eutectic solvent. XRD, XPS, and FTIR confirmed presence of Mn3O4 and nitrogen, while SEM and EDS elemental mapping showed micrometer-sized nanosheets with uniform distribution of C, O, N, and Mn atoms. Charge storage behavior of carbon was tested in aqueous multivalent-based electrolytes and their mixture (Ca2+-Al3+). Regarding both specific capacitance and workable voltage, the Ca2+-Al3+ mixed electrolyte was found as the best optimal solution. The calcium addition to the Al-electrolyte allows the higher operating voltage than in the case of individual Al(NO3)3 electrolyte while the addition of Al3+ ion in the Ca(NO3)2 electrolyte improves the multivalent-ion charge storage ability of carbon. As a result, the specific energy density of two-electrode Mn3O4@N-doped carbon//Al(NO3)2+Ca(NO3)2//Mn3O4@N-doped carbon supercapacitor (34 Wh kg−1 at 0.1 A g−1) overpasses the reported values obtained for Mn-based carbon supercapacitors using conventional aqueous electrolytes.",
journal = "Materials",
title = "Deep Eutectic Solvent for Facile Synthesis of Mn3O4@N-Doped Carbon for Aqueous Multivalent-Based Supercapacitors: New Concept for Increasing Capacitance and Operating Voltage",
volume = "15",
number = "23",
pages = "8540",
doi = "10.3390/ma15238540"
}
Zdolšek, N., Perović, I., Brković, S. M., Tasić, G. S., Milović, M.,& Vujković, M.. (2022). Deep Eutectic Solvent for Facile Synthesis of Mn3O4@N-Doped Carbon for Aqueous Multivalent-Based Supercapacitors: New Concept for Increasing Capacitance and Operating Voltage. in Materials, 15(23), 8540.
https://doi.org/10.3390/ma15238540
Zdolšek N, Perović I, Brković SM, Tasić GS, Milović M, Vujković M. Deep Eutectic Solvent for Facile Synthesis of Mn3O4@N-Doped Carbon for Aqueous Multivalent-Based Supercapacitors: New Concept for Increasing Capacitance and Operating Voltage. in Materials. 2022;15(23):8540.
doi:10.3390/ma15238540 .
Zdolšek, Nikola, Perović, Ivana, Brković, Snežana M., Tasić, Gvozden S., Milović, Miloš, Vujković, Milica, "Deep Eutectic Solvent for Facile Synthesis of Mn3O4@N-Doped Carbon for Aqueous Multivalent-Based Supercapacitors: New Concept for Increasing Capacitance and Operating Voltage" in Materials, 15, no. 23 (2022):8540,
https://doi.org/10.3390/ma15238540 . .
3
3

On the Green Path of Innovation — Hydrogen from Laser-Assisted Alkaline Electrolysis

Seović, Mina; Milovanović, Dubravka; Tasić, Gvozden S.; Zdolšek, Nikola; Mitrović, Stefan; Brković, Snežana M.; Perović, Ivana

(2022)

TY  - JOUR
AU  - Seović, Mina
AU  - Milovanović, Dubravka
AU  - Tasić, Gvozden S.
AU  - Zdolšek, Nikola
AU  - Mitrović, Stefan
AU  - Brković, Snežana M.
AU  - Perović, Ivana
PY  - 2022
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/11005
AB  - The dominant problem that needs to be solved today is the issue of energy sources and how to use them, which must be ecological and sustainable - in a word, green. As the best candidate for a global solution to this problem, hydrogen produced electrolytically stood out as a green fuel with no carbon footprint. However, for a hydrogen-based economy to have a realistic and sustainable perspective in the future, it largely depends on its efficient and economically viable production that would meet the market's needs. Special attention in this paper is devoted to the influence of laser radiation on the possibility of improving the process of alkaline electrolysis for obtaining hydrogen, as well as on increasing the amount of separated hydrogen when the electrolytic cell is directly irradiated with a laser beam during the electrolysis process itself. After the experiments, it was determined that the application of direct irradiation of the electrolyte with a green laser at 532 nm wavelength significantly increases the amount of hydrogen produced and reduces the voltage of the electrolytic process, which is directly related to the increase in the energy efficiency of the overall hydrogen production process.
AB  - Dominantan problem koji danas treba rešiti je pitanje energenata i načina njihove upotrebe koji moraju biti ekološki i održivi – jednom rečju zeleni. Kao najbolji kandidat za globalno rešenje ovog problema istakao se vodonik proizveden elektolitičkim putem, kao zeleno gorivo bez ugljeničnih otisaka. Da bi ekonomija zasnovana na vodoniku imala realnu i održivu perspektivu u budućnosti, u velikoj meri zavisi od njegove efikasne i ekonomski podobne proizvodnje koja bi zadovoljila potrebe tržišta. Posebna pažnja u ovom radu posvećena je uticaju laserskog zračenja na mogućnost poboljšanja procesa alkalne elektrolize za dobijanje vodonika, kao i na povećanje količine izdvojenog vodonika pri direktnom ozračivanju elektrolitičke ćelije laserskim snopom tokom samog procesa elektrolize. Nakon izvršenih eksperimenata utvrđeno je da se primenom direktnog ozračivanja elektrolita zelenim laserom talasne dužine 532 nm u značajnoj meri povećava količina proizvedenog vodonika i smanjuje napon elektrolitičkog procesa, što je u direktnoj vezi sa povećanjem energetske efikasnosti ukupnog procesa dobijanja vodonika.
T2  - Ecologica
T1  - On the Green Path of Innovation — Hydrogen from Laser-Assisted Alkaline Electrolysis
T1  - Na zelenom putu inovacija – vodonik iz laserski potpomognute alkalne elektrolize
VL  - 29
IS  - 107
SP  - 359
EP  - 363
DO  - 10.18485/ecologica.2022.29.107.9
ER  - 
@article{
author = "Seović, Mina and Milovanović, Dubravka and Tasić, Gvozden S. and Zdolšek, Nikola and Mitrović, Stefan and Brković, Snežana M. and Perović, Ivana",
year = "2022",
abstract = "The dominant problem that needs to be solved today is the issue of energy sources and how to use them, which must be ecological and sustainable - in a word, green. As the best candidate for a global solution to this problem, hydrogen produced electrolytically stood out as a green fuel with no carbon footprint. However, for a hydrogen-based economy to have a realistic and sustainable perspective in the future, it largely depends on its efficient and economically viable production that would meet the market's needs. Special attention in this paper is devoted to the influence of laser radiation on the possibility of improving the process of alkaline electrolysis for obtaining hydrogen, as well as on increasing the amount of separated hydrogen when the electrolytic cell is directly irradiated with a laser beam during the electrolysis process itself. After the experiments, it was determined that the application of direct irradiation of the electrolyte with a green laser at 532 nm wavelength significantly increases the amount of hydrogen produced and reduces the voltage of the electrolytic process, which is directly related to the increase in the energy efficiency of the overall hydrogen production process., Dominantan problem koji danas treba rešiti je pitanje energenata i načina njihove upotrebe koji moraju biti ekološki i održivi – jednom rečju zeleni. Kao najbolji kandidat za globalno rešenje ovog problema istakao se vodonik proizveden elektolitičkim putem, kao zeleno gorivo bez ugljeničnih otisaka. Da bi ekonomija zasnovana na vodoniku imala realnu i održivu perspektivu u budućnosti, u velikoj meri zavisi od njegove efikasne i ekonomski podobne proizvodnje koja bi zadovoljila potrebe tržišta. Posebna pažnja u ovom radu posvećena je uticaju laserskog zračenja na mogućnost poboljšanja procesa alkalne elektrolize za dobijanje vodonika, kao i na povećanje količine izdvojenog vodonika pri direktnom ozračivanju elektrolitičke ćelije laserskim snopom tokom samog procesa elektrolize. Nakon izvršenih eksperimenata utvrđeno je da se primenom direktnog ozračivanja elektrolita zelenim laserom talasne dužine 532 nm u značajnoj meri povećava količina proizvedenog vodonika i smanjuje napon elektrolitičkog procesa, što je u direktnoj vezi sa povećanjem energetske efikasnosti ukupnog procesa dobijanja vodonika.",
journal = "Ecologica",
title = "On the Green Path of Innovation — Hydrogen from Laser-Assisted Alkaline Electrolysis, Na zelenom putu inovacija – vodonik iz laserski potpomognute alkalne elektrolize",
volume = "29",
number = "107",
pages = "359-363",
doi = "10.18485/ecologica.2022.29.107.9"
}
Seović, M., Milovanović, D., Tasić, G. S., Zdolšek, N., Mitrović, S., Brković, S. M.,& Perović, I.. (2022). On the Green Path of Innovation — Hydrogen from Laser-Assisted Alkaline Electrolysis. in Ecologica, 29(107), 359-363.
https://doi.org/10.18485/ecologica.2022.29.107.9
Seović M, Milovanović D, Tasić GS, Zdolšek N, Mitrović S, Brković SM, Perović I. On the Green Path of Innovation — Hydrogen from Laser-Assisted Alkaline Electrolysis. in Ecologica. 2022;29(107):359-363.
doi:10.18485/ecologica.2022.29.107.9 .
Seović, Mina, Milovanović, Dubravka, Tasić, Gvozden S., Zdolšek, Nikola, Mitrović, Stefan, Brković, Snežana M., Perović, Ivana, "On the Green Path of Innovation — Hydrogen from Laser-Assisted Alkaline Electrolysis" in Ecologica, 29, no. 107 (2022):359-363,
https://doi.org/10.18485/ecologica.2022.29.107.9 . .

Deep Eutectic Solvent (DES) for In Situ Templating Carbon Material: Carbon Characterization and Application in Supercapacitors Containing Multivalent Ions

Zdolšek, Nikola; Janković, Bojan Ž.; Milović, Miloš; Brković, Snežana M.; Krstić, Jugoslav B.; Perović, Ivana M.; Vujković, Milica

(2022)

TY  - JOUR
AU  - Zdolšek, Nikola
AU  - Janković, Bojan Ž.
AU  - Milović, Miloš
AU  - Brković, Snežana M.
AU  - Krstić, Jugoslav B.
AU  - Perović, Ivana M.
AU  - Vujković, Milica
PY  - 2022
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/10571
AB  - The development of carbon materials with desirable textures and new aqueous electrolytes is the key strategy to improve the performance of supercapacitors. Herein, a deep eutectic solvent (DES) was used for in situ templating of a carbon material. A carbon material was characterized (XRD, N2-physisorption, FTIR, SEM and EDS) and used as an electrode material for the first time in multivalent-based supercapacitors. In situ templating of carbon was performed using a novel DES, which serves as a precursor for carbon and for in situ generation of MgO. The generation of MgO and its roles in templating of carbon were discussed. Templating of carbon with MgO lead to an increase in surface area and a microporous texture. The obtained carbon was tested in multivalent-ion (Al3+ and Mg2+) electrolytes and compared with H2SO4. The charge-storage mechanism was investigated and elaborated. The highest specific capacitance was obtained for the Al(NO3)3 electrolyte, while the operating voltage follows the order: Mg(NO3)2 > Al(NO3)3 > H2SO4. Electrical double-layer capacitance (versus pseudocapacitance) was dominant in all investigated electrolytes. The larger operating voltage in multivalent electrolytes is a consequence of the lower fraction of free water, which suppresses hydrogen evolution (when compared with H2SO4). The GCD was experimentally performed on the Al(NO3)3 electrolyte, which showed good cyclic stability, with an energy density of 22.3 Wh kg−1 at 65 W kg−1.
T2  - Batteries
T1  - Deep Eutectic Solvent (DES) for In Situ Templating Carbon Material: Carbon Characterization and Application in Supercapacitors Containing Multivalent Ions
VL  - 8
IS  - 12
SP  - 284
DO  - 10.3390/batteries8120284
ER  - 
@article{
author = "Zdolšek, Nikola and Janković, Bojan Ž. and Milović, Miloš and Brković, Snežana M. and Krstić, Jugoslav B. and Perović, Ivana M. and Vujković, Milica",
year = "2022",
abstract = "The development of carbon materials with desirable textures and new aqueous electrolytes is the key strategy to improve the performance of supercapacitors. Herein, a deep eutectic solvent (DES) was used for in situ templating of a carbon material. A carbon material was characterized (XRD, N2-physisorption, FTIR, SEM and EDS) and used as an electrode material for the first time in multivalent-based supercapacitors. In situ templating of carbon was performed using a novel DES, which serves as a precursor for carbon and for in situ generation of MgO. The generation of MgO and its roles in templating of carbon were discussed. Templating of carbon with MgO lead to an increase in surface area and a microporous texture. The obtained carbon was tested in multivalent-ion (Al3+ and Mg2+) electrolytes and compared with H2SO4. The charge-storage mechanism was investigated and elaborated. The highest specific capacitance was obtained for the Al(NO3)3 electrolyte, while the operating voltage follows the order: Mg(NO3)2 > Al(NO3)3 > H2SO4. Electrical double-layer capacitance (versus pseudocapacitance) was dominant in all investigated electrolytes. The larger operating voltage in multivalent electrolytes is a consequence of the lower fraction of free water, which suppresses hydrogen evolution (when compared with H2SO4). The GCD was experimentally performed on the Al(NO3)3 electrolyte, which showed good cyclic stability, with an energy density of 22.3 Wh kg−1 at 65 W kg−1.",
journal = "Batteries",
title = "Deep Eutectic Solvent (DES) for In Situ Templating Carbon Material: Carbon Characterization and Application in Supercapacitors Containing Multivalent Ions",
volume = "8",
number = "12",
pages = "284",
doi = "10.3390/batteries8120284"
}
Zdolšek, N., Janković, B. Ž., Milović, M., Brković, S. M., Krstić, J. B., Perović, I. M.,& Vujković, M.. (2022). Deep Eutectic Solvent (DES) for In Situ Templating Carbon Material: Carbon Characterization and Application in Supercapacitors Containing Multivalent Ions. in Batteries, 8(12), 284.
https://doi.org/10.3390/batteries8120284
Zdolšek N, Janković BŽ, Milović M, Brković SM, Krstić JB, Perović IM, Vujković M. Deep Eutectic Solvent (DES) for In Situ Templating Carbon Material: Carbon Characterization and Application in Supercapacitors Containing Multivalent Ions. in Batteries. 2022;8(12):284.
doi:10.3390/batteries8120284 .
Zdolšek, Nikola, Janković, Bojan Ž., Milović, Miloš, Brković, Snežana M., Krstić, Jugoslav B., Perović, Ivana M., Vujković, Milica, "Deep Eutectic Solvent (DES) for In Situ Templating Carbon Material: Carbon Characterization and Application in Supercapacitors Containing Multivalent Ions" in Batteries, 8, no. 12 (2022):284,
https://doi.org/10.3390/batteries8120284 . .

Degradation of rhodamine B Dye on graphite anode: kinetic and electrochemical behavior

Brdarić, Tanja; Aćimović, Danka; Savić, Branislava; Vasić Anićijević, Dragana D.; Ječmenica Dučić, Marija; Perović, Ivana; Maksin, Danijela

(2021)

TY  - CONF
AU  - Brdarić, Tanja
AU  - Aćimović, Danka
AU  - Savić, Branislava
AU  - Vasić Anićijević, Dragana D.
AU  - Ječmenica Dučić, Marija
AU  - Perović, Ivana
AU  - Maksin, Danijela
PY  - 2021
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/10711
AB  - The aim of this study was to investigate the removal efficiency of Rhodamine B dye from NaCl aqueous solution by electrochemical oxidation on the graphite anode with a specific focus on the kinetics of the process. After 60 minutes of galvanostatic electrolysis on the applied current density of 25 mA cm-2 removal efficiency of about 97.6% was obtained. The degradation of Rhodamine B fitted well with the first-order kinetics.
C3  - PHYSICAL CHEMISTRY 2021 : 15th international conference on fundamental and applied aspects of physical chemistry
T1  - Degradation of rhodamine B Dye on graphite anode: kinetic and electrochemical behavior
SP  - 287
EP  - 290
UR  - https://hdl.handle.net/21.15107/rcub_vinar_10711
ER  - 
@conference{
author = "Brdarić, Tanja and Aćimović, Danka and Savić, Branislava and Vasić Anićijević, Dragana D. and Ječmenica Dučić, Marija and Perović, Ivana and Maksin, Danijela",
year = "2021",
abstract = "The aim of this study was to investigate the removal efficiency of Rhodamine B dye from NaCl aqueous solution by electrochemical oxidation on the graphite anode with a specific focus on the kinetics of the process. After 60 minutes of galvanostatic electrolysis on the applied current density of 25 mA cm-2 removal efficiency of about 97.6% was obtained. The degradation of Rhodamine B fitted well with the first-order kinetics.",
journal = "PHYSICAL CHEMISTRY 2021 : 15th international conference on fundamental and applied aspects of physical chemistry",
title = "Degradation of rhodamine B Dye on graphite anode: kinetic and electrochemical behavior",
pages = "287-290",
url = "https://hdl.handle.net/21.15107/rcub_vinar_10711"
}
Brdarić, T., Aćimović, D., Savić, B., Vasić Anićijević, D. D., Ječmenica Dučić, M., Perović, I.,& Maksin, D.. (2021). Degradation of rhodamine B Dye on graphite anode: kinetic and electrochemical behavior. in PHYSICAL CHEMISTRY 2021 : 15th international conference on fundamental and applied aspects of physical chemistry, 287-290.
https://hdl.handle.net/21.15107/rcub_vinar_10711
Brdarić T, Aćimović D, Savić B, Vasić Anićijević DD, Ječmenica Dučić M, Perović I, Maksin D. Degradation of rhodamine B Dye on graphite anode: kinetic and electrochemical behavior. in PHYSICAL CHEMISTRY 2021 : 15th international conference on fundamental and applied aspects of physical chemistry. 2021;:287-290.
https://hdl.handle.net/21.15107/rcub_vinar_10711 .
Brdarić, Tanja, Aćimović, Danka, Savić, Branislava, Vasić Anićijević, Dragana D., Ječmenica Dučić, Marija, Perović, Ivana, Maksin, Danijela, "Degradation of rhodamine B Dye on graphite anode: kinetic and electrochemical behavior" in PHYSICAL CHEMISTRY 2021 : 15th international conference on fundamental and applied aspects of physical chemistry (2021):287-290,
https://hdl.handle.net/21.15107/rcub_vinar_10711 .

Synthesis and characterization of Co-Mo bimetallic carbides

Šaponjić, Aleksandra; Šaponjić, Đorđe; Perović, Ivana M.; Vuković, Marina; Nikolić, Vladimir M.; Marčeta Kaninski, Milica; Kokunešoski, Maja

(2019)

TY  - JOUR
AU  - Šaponjić, Aleksandra
AU  - Šaponjić, Đorđe
AU  - Perović, Ivana M.
AU  - Vuković, Marina
AU  - Nikolić, Vladimir M.
AU  - Marčeta Kaninski, Milica
AU  - Kokunešoski, Maja
PY  - 2019
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/8598
AB  - Co-Mo carbides were prepared by impregnation with aqueous solution of metal salts and sucrose into ordered mesoporous SBA-15 silica template using carbothermal hydrogen reduction. Bimetallic Co-Mo carbide obtained by using carbothermal hydrogen reduction of Co-Mo precursors is formed when the Co-Mo molar ratio is 1.0. The obtained samples were characterized by X-ray diffraction, scanning electron microscopy and energy dispersive X-ray analysis. Electrochemical characterization of obtained materials wеre performed by cyclic voltammetry in acid solution.
T2  - Science of Sintering
T1  - Synthesis and characterization of Co-Mo bimetallic carbides
VL  - 51
IS  - 3
SP  - 319
EP  - 326
DO  - 10.2298/SOS1903319S
ER  - 
@article{
author = "Šaponjić, Aleksandra and Šaponjić, Đorđe and Perović, Ivana M. and Vuković, Marina and Nikolić, Vladimir M. and Marčeta Kaninski, Milica and Kokunešoski, Maja",
year = "2019",
abstract = "Co-Mo carbides were prepared by impregnation with aqueous solution of metal salts and sucrose into ordered mesoporous SBA-15 silica template using carbothermal hydrogen reduction. Bimetallic Co-Mo carbide obtained by using carbothermal hydrogen reduction of Co-Mo precursors is formed when the Co-Mo molar ratio is 1.0. The obtained samples were characterized by X-ray diffraction, scanning electron microscopy and energy dispersive X-ray analysis. Electrochemical characterization of obtained materials wеre performed by cyclic voltammetry in acid solution.",
journal = "Science of Sintering",
title = "Synthesis and characterization of Co-Mo bimetallic carbides",
volume = "51",
number = "3",
pages = "319-326",
doi = "10.2298/SOS1903319S"
}
Šaponjić, A., Šaponjić, Đ., Perović, I. M., Vuković, M., Nikolić, V. M., Marčeta Kaninski, M.,& Kokunešoski, M.. (2019). Synthesis and characterization of Co-Mo bimetallic carbides. in Science of Sintering, 51(3), 319-326.
https://doi.org/10.2298/SOS1903319S
Šaponjić A, Šaponjić Đ, Perović IM, Vuković M, Nikolić VM, Marčeta Kaninski M, Kokunešoski M. Synthesis and characterization of Co-Mo bimetallic carbides. in Science of Sintering. 2019;51(3):319-326.
doi:10.2298/SOS1903319S .
Šaponjić, Aleksandra, Šaponjić, Đorđe, Perović, Ivana M., Vuković, Marina, Nikolić, Vladimir M., Marčeta Kaninski, Milica, Kokunešoski, Maja, "Synthesis and characterization of Co-Mo bimetallic carbides" in Science of Sintering, 51, no. 3 (2019):319-326,
https://doi.org/10.2298/SOS1903319S . .
2
2
2

Co/Mo bimetallic carbides with potential applications as catalyst support in pem fuel cells - synthesis and characterization

Šaponjić, Aleksandra; Kokunešoski, Maja; Perović, Ivana; Vuković, Marina; Šaponjić, Đorđe; Nikolić, Vladimir; Marčeta Kaninski, Milica

(University of Belgrade, Faculty of Mining and Geology, Belgrade, Serbia, 2017)

TY  - CONF
AU  - Šaponjić, Aleksandra
AU  - Kokunešoski, Maja
AU  - Perović, Ivana
AU  - Vuković, Marina
AU  - Šaponjić, Đorđe
AU  - Nikolić, Vladimir
AU  - Marčeta Kaninski, Milica
PY  - 2017
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/11301
AB  - Co/Mo carbides were prepared by co-impregnation with aqueous solution of metal salts and sucrose into ordered mesoporous SBA-15 silica template using carbothermal hydrogen reduction. The obtained samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDS) . Electrochemical characterization of obtained materials was performed by cyclic voltammetry in acide solution. Bimetallic CoMo carbide obtained by using carbothermal hydrogen reduction of Co Mo precursors is formed when the Co/Mo molar ratio is 1.0.
PB  - University of Belgrade, Faculty of Mining and Geology, Belgrade, Serbia
C3  - 6th International Symposium Mining and Enviromental Protection Proceedings
T1  - Co/Mo bimetallic carbides with potential applications as catalyst support in pem fuel cells - synthesis and characterization
SP  - 375
EP  - 380
UR  - https://hdl.handle.net/21.15107/rcub_vinar_11301
ER  - 
@conference{
author = "Šaponjić, Aleksandra and Kokunešoski, Maja and Perović, Ivana and Vuković, Marina and Šaponjić, Đorđe and Nikolić, Vladimir and Marčeta Kaninski, Milica",
year = "2017",
abstract = "Co/Mo carbides were prepared by co-impregnation with aqueous solution of metal salts and sucrose into ordered mesoporous SBA-15 silica template using carbothermal hydrogen reduction. The obtained samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDS) . Electrochemical characterization of obtained materials was performed by cyclic voltammetry in acide solution. Bimetallic CoMo carbide obtained by using carbothermal hydrogen reduction of Co Mo precursors is formed when the Co/Mo molar ratio is 1.0.",
publisher = "University of Belgrade, Faculty of Mining and Geology, Belgrade, Serbia",
journal = "6th International Symposium Mining and Enviromental Protection Proceedings",
title = "Co/Mo bimetallic carbides with potential applications as catalyst support in pem fuel cells - synthesis and characterization",
pages = "375-380",
url = "https://hdl.handle.net/21.15107/rcub_vinar_11301"
}
Šaponjić, A., Kokunešoski, M., Perović, I., Vuković, M., Šaponjić, Đ., Nikolić, V.,& Marčeta Kaninski, M.. (2017). Co/Mo bimetallic carbides with potential applications as catalyst support in pem fuel cells - synthesis and characterization. in 6th International Symposium Mining and Enviromental Protection Proceedings
University of Belgrade, Faculty of Mining and Geology, Belgrade, Serbia., 375-380.
https://hdl.handle.net/21.15107/rcub_vinar_11301
Šaponjić A, Kokunešoski M, Perović I, Vuković M, Šaponjić Đ, Nikolić V, Marčeta Kaninski M. Co/Mo bimetallic carbides with potential applications as catalyst support in pem fuel cells - synthesis and characterization. in 6th International Symposium Mining and Enviromental Protection Proceedings. 2017;:375-380.
https://hdl.handle.net/21.15107/rcub_vinar_11301 .
Šaponjić, Aleksandra, Kokunešoski, Maja, Perović, Ivana, Vuković, Marina, Šaponjić, Đorđe, Nikolić, Vladimir, Marčeta Kaninski, Milica, "Co/Mo bimetallic carbides with potential applications as catalyst support in pem fuel cells - synthesis and characterization" in 6th International Symposium Mining and Enviromental Protection Proceedings (2017):375-380,
https://hdl.handle.net/21.15107/rcub_vinar_11301 .

Novel Non-Stoichiometric Tungsten Oxide Based Catalyst Support for the Increased CO Tolerance in PEMFC

Marčeta Kaninski, Milica; Brković, Snežana M.; Perović, Ivana; Laušević, Petar; Pašti, Igor A.; Šaponjić, Đorđe; Nikolić, Vladimir M.

(2016)

TY  - CONF
AU  - Marčeta Kaninski, Milica
AU  - Brković, Snežana M.
AU  - Perović, Ivana
AU  - Laušević, Petar
AU  - Pašti, Igor A.
AU  - Šaponjić, Đorđe
AU  - Nikolić, Vladimir M.
PY  - 2016
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/11570
AB  - Cost and durability are two major factors that delay large-scale production and commercialization of PEMFC's. One of the technologically ready application of the proton exchange membrane fuel cells (PEMFC) is in the combined heat and power systems (µCHP), which are used in the individual households or buildings. The performance of the µCHP systems greatly depends on the purity of the hydrogen stream, which is produced via methane reforming process. To overcome low CO tolerance of the commercially used Pt electrocatalyst and to lower the catalyst content we have prepared non-stoichiometric tungsten oxide as a Pt based catalyst support. We have prepared several catalysts designated as 10% Pt/WO3-C, 20% Pt/WO3-C, 40% Pt/WO3-C. The structure and morphology characteristics of the prepared catalysts were investigated using XRD, TEM and SEM/EDX techniques. Investigations concerning electroactivity of these catalysts towards the hydrogen oxidation reaction (HOR) were performed using cyclic voltammetry, linear sweep voltammetry, forming an ultra thin catalyst layer onto RDE. Mechanism and the kinetics of the prepared catalysts towards HOR were evaluated and if was found that increased mass activity of the 10% Pt/WO3-C could be attributed to the interactive naure of the WO3 catalyst support. Obtained results clearly show increased CO tolerance of Pt/WO3-C catalyst compared to commercial Pt/C, which was confirmed by lowering the stripping potential of the CO, adsorbed on the surface of the 10% Pt/WO3-C. catalyst is more facile than that on commercial 40% Pt/C. These catalysts were employed as anode catalyst in the MEA, and the performance of single cell PEMFC were compared to commercial catalyst.
C3  - PRiME 2016/230th ECS Meeting October 2, 2016 - October 7, 2016 Honolulu, HI
T1  - Novel Non-Stoichiometric Tungsten Oxide Based Catalyst Support for the Increased CO Tolerance in PEMFC
VL  - MA2016-02
IS  - 38
SP  - 2629
EP  - 2629
DO  - 10.1149/MA2016-02/38/2629
ER  - 
@conference{
author = "Marčeta Kaninski, Milica and Brković, Snežana M. and Perović, Ivana and Laušević, Petar and Pašti, Igor A. and Šaponjić, Đorđe and Nikolić, Vladimir M.",
year = "2016",
abstract = "Cost and durability are two major factors that delay large-scale production and commercialization of PEMFC's. One of the technologically ready application of the proton exchange membrane fuel cells (PEMFC) is in the combined heat and power systems (µCHP), which are used in the individual households or buildings. The performance of the µCHP systems greatly depends on the purity of the hydrogen stream, which is produced via methane reforming process. To overcome low CO tolerance of the commercially used Pt electrocatalyst and to lower the catalyst content we have prepared non-stoichiometric tungsten oxide as a Pt based catalyst support. We have prepared several catalysts designated as 10% Pt/WO3-C, 20% Pt/WO3-C, 40% Pt/WO3-C. The structure and morphology characteristics of the prepared catalysts were investigated using XRD, TEM and SEM/EDX techniques. Investigations concerning electroactivity of these catalysts towards the hydrogen oxidation reaction (HOR) were performed using cyclic voltammetry, linear sweep voltammetry, forming an ultra thin catalyst layer onto RDE. Mechanism and the kinetics of the prepared catalysts towards HOR were evaluated and if was found that increased mass activity of the 10% Pt/WO3-C could be attributed to the interactive naure of the WO3 catalyst support. Obtained results clearly show increased CO tolerance of Pt/WO3-C catalyst compared to commercial Pt/C, which was confirmed by lowering the stripping potential of the CO, adsorbed on the surface of the 10% Pt/WO3-C. catalyst is more facile than that on commercial 40% Pt/C. These catalysts were employed as anode catalyst in the MEA, and the performance of single cell PEMFC were compared to commercial catalyst.",
journal = "PRiME 2016/230th ECS Meeting October 2, 2016 - October 7, 2016 Honolulu, HI",
title = "Novel Non-Stoichiometric Tungsten Oxide Based Catalyst Support for the Increased CO Tolerance in PEMFC",
volume = "MA2016-02",
number = "38",
pages = "2629-2629",
doi = "10.1149/MA2016-02/38/2629"
}
Marčeta Kaninski, M., Brković, S. M., Perović, I., Laušević, P., Pašti, I. A., Šaponjić, Đ.,& Nikolić, V. M.. (2016). Novel Non-Stoichiometric Tungsten Oxide Based Catalyst Support for the Increased CO Tolerance in PEMFC. in PRiME 2016/230th ECS Meeting October 2, 2016 - October 7, 2016 Honolulu, HI, MA2016-02(38), 2629-2629.
https://doi.org/10.1149/MA2016-02/38/2629
Marčeta Kaninski M, Brković SM, Perović I, Laušević P, Pašti IA, Šaponjić Đ, Nikolić VM. Novel Non-Stoichiometric Tungsten Oxide Based Catalyst Support for the Increased CO Tolerance in PEMFC. in PRiME 2016/230th ECS Meeting October 2, 2016 - October 7, 2016 Honolulu, HI. 2016;MA2016-02(38):2629-2629.
doi:10.1149/MA2016-02/38/2629 .
Marčeta Kaninski, Milica, Brković, Snežana M., Perović, Ivana, Laušević, Petar, Pašti, Igor A., Šaponjić, Đorđe, Nikolić, Vladimir M., "Novel Non-Stoichiometric Tungsten Oxide Based Catalyst Support for the Increased CO Tolerance in PEMFC" in PRiME 2016/230th ECS Meeting October 2, 2016 - October 7, 2016 Honolulu, HI, MA2016-02, no. 38 (2016):2629-2629,
https://doi.org/10.1149/MA2016-02/38/2629 . .

Ab Initio Study of Graphene Interaction with O-2, O, and O-

Vasić Anićijević, Dragana D.; Perović, Ivana M.; Maslovara, Slađana Lj.; Brković, Snežana M.; Žugić, Dragana; Laušević, Zoran; Marčeta Kaninski, Milica

(2016)

TY  - JOUR
AU  - Vasić Anićijević, Dragana D.
AU  - Perović, Ivana M.
AU  - Maslovara, Slađana Lj.
AU  - Brković, Snežana M.
AU  - Žugić, Dragana
AU  - Laušević, Zoran
AU  - Marčeta Kaninski, Milica
PY  - 2016
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/1404
AB  - A systematic ab initio (DFT-GGA) study of adsorption of various oxygen species on graphene has been performed in order to find out general trends and provide a good starting point to analyze the oxidation of more complex carbon materials. Particular attention was paid to finding an appropriate supercell model. According to our findings, atomic O is characterized by stable adsorption on graphene and very strong adsorption on defective graphene. On the other hand, O-2 does not adsorb on graphene and is allowed to diffuse freely to the defect, where it is expected to dissociate into two strongly adsorbed O atoms. The obtained results were compared with available theoretical data in the literature and good agreement was achieved.
T2  - Macedonian Journal of Chemistry and Chemical Engineering
T1  - Ab Initio Study of Graphene Interaction with O-2, O, and O-
VL  - 35
IS  - 2
SP  - 271
EP  - 274
DO  - 10.20450/mjcce.2016.1038
ER  - 
@article{
author = "Vasić Anićijević, Dragana D. and Perović, Ivana M. and Maslovara, Slađana Lj. and Brković, Snežana M. and Žugić, Dragana and Laušević, Zoran and Marčeta Kaninski, Milica",
year = "2016",
abstract = "A systematic ab initio (DFT-GGA) study of adsorption of various oxygen species on graphene has been performed in order to find out general trends and provide a good starting point to analyze the oxidation of more complex carbon materials. Particular attention was paid to finding an appropriate supercell model. According to our findings, atomic O is characterized by stable adsorption on graphene and very strong adsorption on defective graphene. On the other hand, O-2 does not adsorb on graphene and is allowed to diffuse freely to the defect, where it is expected to dissociate into two strongly adsorbed O atoms. The obtained results were compared with available theoretical data in the literature and good agreement was achieved.",
journal = "Macedonian Journal of Chemistry and Chemical Engineering",
title = "Ab Initio Study of Graphene Interaction with O-2, O, and O-",
volume = "35",
number = "2",
pages = "271-274",
doi = "10.20450/mjcce.2016.1038"
}
Vasić Anićijević, D. D., Perović, I. M., Maslovara, S. Lj., Brković, S. M., Žugić, D., Laušević, Z.,& Marčeta Kaninski, M.. (2016). Ab Initio Study of Graphene Interaction with O-2, O, and O-. in Macedonian Journal of Chemistry and Chemical Engineering, 35(2), 271-274.
https://doi.org/10.20450/mjcce.2016.1038
Vasić Anićijević DD, Perović IM, Maslovara SL, Brković SM, Žugić D, Laušević Z, Marčeta Kaninski M. Ab Initio Study of Graphene Interaction with O-2, O, and O-. in Macedonian Journal of Chemistry and Chemical Engineering. 2016;35(2):271-274.
doi:10.20450/mjcce.2016.1038 .
Vasić Anićijević, Dragana D., Perović, Ivana M., Maslovara, Slađana Lj., Brković, Snežana M., Žugić, Dragana, Laušević, Zoran, Marčeta Kaninski, Milica, "Ab Initio Study of Graphene Interaction with O-2, O, and O-" in Macedonian Journal of Chemistry and Chemical Engineering, 35, no. 2 (2016):271-274,
https://doi.org/10.20450/mjcce.2016.1038 . .
2
1
6

On the tungsten carbide synthesis for PEM fuel cell application - Problems, challenges and advantages

Nikolić, Vladimir M.; Perović, Ivana M.; Gavrilov, Nemanja M.; Pašti, Igor A.; Šaponjić, Aleksandra; Vulić, Predrag J.; Karić, Slavko D.; Babić, Biljana M.; Marčeta Kaninski, Milica

(2014)

TY  - JOUR
AU  - Nikolić, Vladimir M.
AU  - Perović, Ivana M.
AU  - Gavrilov, Nemanja M.
AU  - Pašti, Igor A.
AU  - Šaponjić, Aleksandra
AU  - Vulić, Predrag J.
AU  - Karić, Slavko D.
AU  - Babić, Biljana M.
AU  - Marčeta Kaninski, Milica
PY  - 2014
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/6072
AB  - Fuel cell application of tungsten carbide is revisited starting with four different tungsten carbide precursors used for high temperature synthesis. It was shown that the final products greatly depend on the nature of the precursor. Using tungsten peroxide/2-propanol derived precursor almost pure WC was obtained which was subjected to further electrochemical investigation. It was shown that it is necessary to decorate WC with Pt nanoparticles in order to obtain satisfactory fuel cell performance, but catalytic activity of Pt/WC anode catalyst is not expected to overcome the activity of Pt/C. It is argued that new synthetic routes for the preparation of WC should be directed towards obtaining highly dispersed WC, that is, WC with high external surface area available for Pt deposition, rather than high specific surface area WC with large contribution of micropores having no importance when it comes to the use of WC as a catalyst support. The true benefit of the use of WC as catalyst support is found in increased CO tolerance/CO oxidation activity of WC-supported Pt catalysts. Qualitative mechanistic view on increased CO oxidation activity of Pt/WC is offered. Copyright (C) 2014, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.
T2  - International Journal of Hydrogen Energy
T1  - On the tungsten carbide synthesis for PEM fuel cell application - Problems, challenges and advantages
VL  - 39
IS  - 21
SP  - 11175
EP  - 11185
DO  - 10.1016/j.ijhydene.2014.05.078
ER  - 
@article{
author = "Nikolić, Vladimir M. and Perović, Ivana M. and Gavrilov, Nemanja M. and Pašti, Igor A. and Šaponjić, Aleksandra and Vulić, Predrag J. and Karić, Slavko D. and Babić, Biljana M. and Marčeta Kaninski, Milica",
year = "2014",
abstract = "Fuel cell application of tungsten carbide is revisited starting with four different tungsten carbide precursors used for high temperature synthesis. It was shown that the final products greatly depend on the nature of the precursor. Using tungsten peroxide/2-propanol derived precursor almost pure WC was obtained which was subjected to further electrochemical investigation. It was shown that it is necessary to decorate WC with Pt nanoparticles in order to obtain satisfactory fuel cell performance, but catalytic activity of Pt/WC anode catalyst is not expected to overcome the activity of Pt/C. It is argued that new synthetic routes for the preparation of WC should be directed towards obtaining highly dispersed WC, that is, WC with high external surface area available for Pt deposition, rather than high specific surface area WC with large contribution of micropores having no importance when it comes to the use of WC as a catalyst support. The true benefit of the use of WC as catalyst support is found in increased CO tolerance/CO oxidation activity of WC-supported Pt catalysts. Qualitative mechanistic view on increased CO oxidation activity of Pt/WC is offered. Copyright (C) 2014, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.",
journal = "International Journal of Hydrogen Energy",
title = "On the tungsten carbide synthesis for PEM fuel cell application - Problems, challenges and advantages",
volume = "39",
number = "21",
pages = "11175-11185",
doi = "10.1016/j.ijhydene.2014.05.078"
}
Nikolić, V. M., Perović, I. M., Gavrilov, N. M., Pašti, I. A., Šaponjić, A., Vulić, P. J., Karić, S. D., Babić, B. M.,& Marčeta Kaninski, M.. (2014). On the tungsten carbide synthesis for PEM fuel cell application - Problems, challenges and advantages. in International Journal of Hydrogen Energy, 39(21), 11175-11185.
https://doi.org/10.1016/j.ijhydene.2014.05.078
Nikolić VM, Perović IM, Gavrilov NM, Pašti IA, Šaponjić A, Vulić PJ, Karić SD, Babić BM, Marčeta Kaninski M. On the tungsten carbide synthesis for PEM fuel cell application - Problems, challenges and advantages. in International Journal of Hydrogen Energy. 2014;39(21):11175-11185.
doi:10.1016/j.ijhydene.2014.05.078 .
Nikolić, Vladimir M., Perović, Ivana M., Gavrilov, Nemanja M., Pašti, Igor A., Šaponjić, Aleksandra, Vulić, Predrag J., Karić, Slavko D., Babić, Biljana M., Marčeta Kaninski, Milica, "On the tungsten carbide synthesis for PEM fuel cell application - Problems, challenges and advantages" in International Journal of Hydrogen Energy, 39, no. 21 (2014):11175-11185,
https://doi.org/10.1016/j.ijhydene.2014.05.078 . .
3
23
22
25

Novel ternary Ni-Co-Mo based ionic activator for efficient alkaline water electrolysis

Maslovara, Slađana Lj.; Marčeta Kaninski, Milica; Perović, Ivana M.; Laušević, Petar; Tasić, Gvozden S.; Radak, Bojan; Nikolić, Vladimir M.

(2013)

TY  - JOUR
AU  - Maslovara, Slađana Lj.
AU  - Marčeta Kaninski, Milica
AU  - Perović, Ivana M.
AU  - Laušević, Petar
AU  - Tasić, Gvozden S.
AU  - Radak, Bojan
AU  - Nikolić, Vladimir M.
PY  - 2013
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/5779
AB  - In this manuscript we have presented the results of the use of ternary ionic activator in the alkaline water electrolysis. Novel Ni-Co-Mo based ionic activator was added in-situ to standard electrolyte. Energy consumption of the alkaline electrolyzer was determined at different current densities and elevated temperatures. Energy saving was higher at higher temperatures and higher operating current densities. Results showed that the reduction in energy consumption using Ni-Co-Mo based ionic activator was about 17%, compared to standard 6 M KOH. SEM morphology investigation proved the deposition of nickel, cobalt and molybdenum species on the cathode, greatly increasing the active surface area. UV/VIS spectroscopy was used to monitor changes in the electrolyte composition during the electrolytic process, and results show the decrease in the ionic activator concentration in the 6 M KOH. Our experiments point out a strong possibility of the usage of these ternary ionic activators in industrial alkaline electrolyzers. Copyright (C) 2013, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.
T2  - International Journal of Hydrogen Energy
T1  - Novel ternary Ni-Co-Mo based ionic activator for efficient alkaline water electrolysis
VL  - 38
IS  - 36
SP  - 15928
EP  - 15933
DO  - 10.1016/j.ijhydene.2013.10.039
ER  - 
@article{
author = "Maslovara, Slađana Lj. and Marčeta Kaninski, Milica and Perović, Ivana M. and Laušević, Petar and Tasić, Gvozden S. and Radak, Bojan and Nikolić, Vladimir M.",
year = "2013",
abstract = "In this manuscript we have presented the results of the use of ternary ionic activator in the alkaline water electrolysis. Novel Ni-Co-Mo based ionic activator was added in-situ to standard electrolyte. Energy consumption of the alkaline electrolyzer was determined at different current densities and elevated temperatures. Energy saving was higher at higher temperatures and higher operating current densities. Results showed that the reduction in energy consumption using Ni-Co-Mo based ionic activator was about 17%, compared to standard 6 M KOH. SEM morphology investigation proved the deposition of nickel, cobalt and molybdenum species on the cathode, greatly increasing the active surface area. UV/VIS spectroscopy was used to monitor changes in the electrolyte composition during the electrolytic process, and results show the decrease in the ionic activator concentration in the 6 M KOH. Our experiments point out a strong possibility of the usage of these ternary ionic activators in industrial alkaline electrolyzers. Copyright (C) 2013, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.",
journal = "International Journal of Hydrogen Energy",
title = "Novel ternary Ni-Co-Mo based ionic activator for efficient alkaline water electrolysis",
volume = "38",
number = "36",
pages = "15928-15933",
doi = "10.1016/j.ijhydene.2013.10.039"
}
Maslovara, S. Lj., Marčeta Kaninski, M., Perović, I. M., Laušević, P., Tasić, G. S., Radak, B.,& Nikolić, V. M.. (2013). Novel ternary Ni-Co-Mo based ionic activator for efficient alkaline water electrolysis. in International Journal of Hydrogen Energy, 38(36), 15928-15933.
https://doi.org/10.1016/j.ijhydene.2013.10.039
Maslovara SL, Marčeta Kaninski M, Perović IM, Laušević P, Tasić GS, Radak B, Nikolić VM. Novel ternary Ni-Co-Mo based ionic activator for efficient alkaline water electrolysis. in International Journal of Hydrogen Energy. 2013;38(36):15928-15933.
doi:10.1016/j.ijhydene.2013.10.039 .
Maslovara, Slađana Lj., Marčeta Kaninski, Milica, Perović, Ivana M., Laušević, Petar, Tasić, Gvozden S., Radak, Bojan, Nikolić, Vladimir M., "Novel ternary Ni-Co-Mo based ionic activator for efficient alkaline water electrolysis" in International Journal of Hydrogen Energy, 38, no. 36 (2013):15928-15933,
https://doi.org/10.1016/j.ijhydene.2013.10.039 . .
15
10
15

Electrocatalytic activity of ZnCoMo based ionic activators for alkaline hydrogen evolution-Part II

Miulović, Snežana M.; Maslovara, Slađana Lj.; Perović, Ivana M.; Nikolić, Vladimir M.; Marčeta Kaninski, Milica

(2013)

TY  - JOUR
AU  - Miulović, Snežana M.
AU  - Maslovara, Slađana Lj.
AU  - Perović, Ivana M.
AU  - Nikolić, Vladimir M.
AU  - Marčeta Kaninski, Milica
PY  - 2013
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/5315
AB  - Nickel electrodes are widely used in industrial water electrolysis cells for electrochemical production of hydrogen. To avoid extensive deactivation problems and enhance the efficiency of the electrolyser cathode, in this work in situ activation is proposed using ionic activator (i.a.) based on combination of three d-metals: Zn, Co and Mo. Polarization curves, obtained at different temperatures (303-343 K), reveal that the addition of ZnCoMo based La. did not change reaction mechanism when compared to the HER mechanism on nickel cathode in standard electrolyte. The electrochemical impedance spectroscopy measurements were employed to further investigate the origin of obtained electrocatalytic effect on the HER. The morphology of obtained coatings was examined by scanning electron microscopy. (C) 2012 Elsevier B.V. All rights reserved.
T2  - Applied Catalysis. A: General
T1  - Electrocatalytic activity of ZnCoMo based ionic activators for alkaline hydrogen evolution-Part II
VL  - 451
SP  - 220
EP  - 226
DO  - 10.1016/j.apcata.2012.09.056
ER  - 
@article{
author = "Miulović, Snežana M. and Maslovara, Slađana Lj. and Perović, Ivana M. and Nikolić, Vladimir M. and Marčeta Kaninski, Milica",
year = "2013",
abstract = "Nickel electrodes are widely used in industrial water electrolysis cells for electrochemical production of hydrogen. To avoid extensive deactivation problems and enhance the efficiency of the electrolyser cathode, in this work in situ activation is proposed using ionic activator (i.a.) based on combination of three d-metals: Zn, Co and Mo. Polarization curves, obtained at different temperatures (303-343 K), reveal that the addition of ZnCoMo based La. did not change reaction mechanism when compared to the HER mechanism on nickel cathode in standard electrolyte. The electrochemical impedance spectroscopy measurements were employed to further investigate the origin of obtained electrocatalytic effect on the HER. The morphology of obtained coatings was examined by scanning electron microscopy. (C) 2012 Elsevier B.V. All rights reserved.",
journal = "Applied Catalysis. A: General",
title = "Electrocatalytic activity of ZnCoMo based ionic activators for alkaline hydrogen evolution-Part II",
volume = "451",
pages = "220-226",
doi = "10.1016/j.apcata.2012.09.056"
}
Miulović, S. M., Maslovara, S. Lj., Perović, I. M., Nikolić, V. M.,& Marčeta Kaninski, M.. (2013). Electrocatalytic activity of ZnCoMo based ionic activators for alkaline hydrogen evolution-Part II. in Applied Catalysis. A: General, 451, 220-226.
https://doi.org/10.1016/j.apcata.2012.09.056
Miulović SM, Maslovara SL, Perović IM, Nikolić VM, Marčeta Kaninski M. Electrocatalytic activity of ZnCoMo based ionic activators for alkaline hydrogen evolution-Part II. in Applied Catalysis. A: General. 2013;451:220-226.
doi:10.1016/j.apcata.2012.09.056 .
Miulović, Snežana M., Maslovara, Slađana Lj., Perović, Ivana M., Nikolić, Vladimir M., Marčeta Kaninski, Milica, "Electrocatalytic activity of ZnCoMo based ionic activators for alkaline hydrogen evolution-Part II" in Applied Catalysis. A: General, 451 (2013):220-226,
https://doi.org/10.1016/j.apcata.2012.09.056 . .
22
20
21

Enhanced Performance of the Solid Alkaline Fuel Cell Using PVA-KOH Membrane

Žugić, Dragana; Perović, Ivana M.; Nikolić, Vladimir M.; Maslovara, Slađana Lj.; Marčeta Kaninski, Milica

(2013)

TY  - JOUR
AU  - Žugić, Dragana
AU  - Perović, Ivana M.
AU  - Nikolić, Vladimir M.
AU  - Maslovara, Slađana Lj.
AU  - Marčeta Kaninski, Milica
PY  - 2013
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/5377
AB  - Poly(vinyl alcohol) (PVA) is a polyhydroxy polymer, which is very common in practical applications because of its easy preparation and biodegradability. In this work, the alkaline solid polymer electrolyte membrane, based on potassium hydroxide doped PVA, was proposed for the fuel cell applications, aiming at a new cost-effective, easy preparing and chemical stable alkaline anion exchange membrane using physical cross-linking procedure. The membrane electrode assemblies (MEAs) using KOH doped PVA as membranes, were prepared with commercial platinum catalyst. We have investigated the performance of the solid alkaline fuel cell (SAFC) and results are presented to show current-voltage characteristics.
T2  - International Journal of Electrochemical Science
T1  - Enhanced Performance of the Solid Alkaline Fuel Cell Using PVA-KOH Membrane
VL  - 8
IS  - 1
SP  - 949
EP  - 957
UR  - https://hdl.handle.net/21.15107/rcub_vinar_5377
ER  - 
@article{
author = "Žugić, Dragana and Perović, Ivana M. and Nikolić, Vladimir M. and Maslovara, Slađana Lj. and Marčeta Kaninski, Milica",
year = "2013",
abstract = "Poly(vinyl alcohol) (PVA) is a polyhydroxy polymer, which is very common in practical applications because of its easy preparation and biodegradability. In this work, the alkaline solid polymer electrolyte membrane, based on potassium hydroxide doped PVA, was proposed for the fuel cell applications, aiming at a new cost-effective, easy preparing and chemical stable alkaline anion exchange membrane using physical cross-linking procedure. The membrane electrode assemblies (MEAs) using KOH doped PVA as membranes, were prepared with commercial platinum catalyst. We have investigated the performance of the solid alkaline fuel cell (SAFC) and results are presented to show current-voltage characteristics.",
journal = "International Journal of Electrochemical Science",
title = "Enhanced Performance of the Solid Alkaline Fuel Cell Using PVA-KOH Membrane",
volume = "8",
number = "1",
pages = "949-957",
url = "https://hdl.handle.net/21.15107/rcub_vinar_5377"
}
Žugić, D., Perović, I. M., Nikolić, V. M., Maslovara, S. Lj.,& Marčeta Kaninski, M.. (2013). Enhanced Performance of the Solid Alkaline Fuel Cell Using PVA-KOH Membrane. in International Journal of Electrochemical Science, 8(1), 949-957.
https://hdl.handle.net/21.15107/rcub_vinar_5377
Žugić D, Perović IM, Nikolić VM, Maslovara SL, Marčeta Kaninski M. Enhanced Performance of the Solid Alkaline Fuel Cell Using PVA-KOH Membrane. in International Journal of Electrochemical Science. 2013;8(1):949-957.
https://hdl.handle.net/21.15107/rcub_vinar_5377 .
Žugić, Dragana, Perović, Ivana M., Nikolić, Vladimir M., Maslovara, Slađana Lj., Marčeta Kaninski, Milica, "Enhanced Performance of the Solid Alkaline Fuel Cell Using PVA-KOH Membrane" in International Journal of Electrochemical Science, 8, no. 1 (2013):949-957,
https://hdl.handle.net/21.15107/rcub_vinar_5377 .
21

Investigation of tungsten carbide supported Pd or Pt as anode catalysts for PEM fuel cells

Nikolić, Vladimir M.; Žugić, Dragana; Perović, Ivana M.; Šaponjić, Aleksandra; Babić, Biljana M.; Pašti, Igor A.; Marčeta Kaninski, Milica

(2013)

TY  - JOUR
AU  - Nikolić, Vladimir M.
AU  - Žugić, Dragana
AU  - Perović, Ivana M.
AU  - Šaponjić, Aleksandra
AU  - Babić, Biljana M.
AU  - Pašti, Igor A.
AU  - Marčeta Kaninski, Milica
PY  - 2013
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/5665
AB  - In this contribution, we present results of electrochemical characterization of prepared tungsten carbide supported palladium and platinum and Vulcan XC-72 supported palladium. These catalysts were employed as anode catalysts in PEMFC and results are compared to commercial platinum catalyst. Platinum seems to be irreplaceable as a proton exchange membrane fuel cell (PEMFC) catalyst for both the anode and the cathode, yet the high price and limited natural resources are holding back the commercialization of the PEMFCs. Tungsten carbide is recognized as promising catalyst support having the best conductivity among interstitial carbides. Higher natural resources and significantly lower price make palladium good candidate for replacement of the platinum catalyst. The presented results show that all prepared catalysts are very active for the hydrogen oxidation reaction. Linear sweep voltammetry curves of Pd/C and Pd/WC show existence of peaks at 0.07 V vs. RHE, which is assigned to absorbed hydrogen. H-2 vertical bar Pd/WC vertical bar Nafion117 vertical bar Pt/C vertical bar O-2 fuel cell has almost the same efficiency and similar power output as commercial platinum catalyst. Copyright (C) 2013, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.
T2  - International Journal of Hydrogen Energy
T1  - Investigation of tungsten carbide supported Pd or Pt as anode catalysts for PEM fuel cells
VL  - 38
IS  - 26
SP  - 11340
EP  - 11345
DO  - 10.1016/j.ijhydene.2013.06.094
ER  - 
@article{
author = "Nikolić, Vladimir M. and Žugić, Dragana and Perović, Ivana M. and Šaponjić, Aleksandra and Babić, Biljana M. and Pašti, Igor A. and Marčeta Kaninski, Milica",
year = "2013",
abstract = "In this contribution, we present results of electrochemical characterization of prepared tungsten carbide supported palladium and platinum and Vulcan XC-72 supported palladium. These catalysts were employed as anode catalysts in PEMFC and results are compared to commercial platinum catalyst. Platinum seems to be irreplaceable as a proton exchange membrane fuel cell (PEMFC) catalyst for both the anode and the cathode, yet the high price and limited natural resources are holding back the commercialization of the PEMFCs. Tungsten carbide is recognized as promising catalyst support having the best conductivity among interstitial carbides. Higher natural resources and significantly lower price make palladium good candidate for replacement of the platinum catalyst. The presented results show that all prepared catalysts are very active for the hydrogen oxidation reaction. Linear sweep voltammetry curves of Pd/C and Pd/WC show existence of peaks at 0.07 V vs. RHE, which is assigned to absorbed hydrogen. H-2 vertical bar Pd/WC vertical bar Nafion117 vertical bar Pt/C vertical bar O-2 fuel cell has almost the same efficiency and similar power output as commercial platinum catalyst. Copyright (C) 2013, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.",
journal = "International Journal of Hydrogen Energy",
title = "Investigation of tungsten carbide supported Pd or Pt as anode catalysts for PEM fuel cells",
volume = "38",
number = "26",
pages = "11340-11345",
doi = "10.1016/j.ijhydene.2013.06.094"
}
Nikolić, V. M., Žugić, D., Perović, I. M., Šaponjić, A., Babić, B. M., Pašti, I. A.,& Marčeta Kaninski, M.. (2013). Investigation of tungsten carbide supported Pd or Pt as anode catalysts for PEM fuel cells. in International Journal of Hydrogen Energy, 38(26), 11340-11345.
https://doi.org/10.1016/j.ijhydene.2013.06.094
Nikolić VM, Žugić D, Perović IM, Šaponjić A, Babić BM, Pašti IA, Marčeta Kaninski M. Investigation of tungsten carbide supported Pd or Pt as anode catalysts for PEM fuel cells. in International Journal of Hydrogen Energy. 2013;38(26):11340-11345.
doi:10.1016/j.ijhydene.2013.06.094 .
Nikolić, Vladimir M., Žugić, Dragana, Perović, Ivana M., Šaponjić, Aleksandra, Babić, Biljana M., Pašti, Igor A., Marčeta Kaninski, Milica, "Investigation of tungsten carbide supported Pd or Pt as anode catalysts for PEM fuel cells" in International Journal of Hydrogen Energy, 38, no. 26 (2013):11340-11345,
https://doi.org/10.1016/j.ijhydene.2013.06.094 . .
1
27
23
26

Energy consumption of the electrolytic hydrogen production using Ni-W based activators-Part I

Maksić, Aleksandar; Miulović, Snežana M.; Nikolić, Vladimir M.; Perović, Ivana M.; Marčeta Kaninski, Milica

(2011)

TY  - JOUR
AU  - Maksić, Aleksandar
AU  - Miulović, Snežana M.
AU  - Nikolić, Vladimir M.
AU  - Perović, Ivana M.
AU  - Marčeta Kaninski, Milica
PY  - 2011
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/4522
AB  - The aim of this work is to investigate the energy consumption of alkaline electrolyser with the in situ added ionic activators. Several concentrations of nickel and tungsten based ionic activators were used in the same alkaline electrolyser, and the energy consumption was calculated and compared to conventional electrolyte. The electrolyser operated at several current densities and temperatures, in order to obtain the optimal concentration of the ionic activators. We have obtained lowering of the energy needed to produce certain amounts of hydrogen for about 15% compared to standard electrolyte, just using simplified process of the in situ activation with Ni and W based ionic activators. Alkaline electrolyser operated with the selected concentration of d-metals has shown long term stability under industrial conditions. (C) 2011 Elsevier B.V. All rights reserved.
T2  - Applied Catalysis. A: General
T1  - Energy consumption of the electrolytic hydrogen production using Ni-W based activators-Part I
VL  - 405
IS  - 1-2
SP  - 25
EP  - 28
DO  - 10.1016/j.apcata.2011.07.017
ER  - 
@article{
author = "Maksić, Aleksandar and Miulović, Snežana M. and Nikolić, Vladimir M. and Perović, Ivana M. and Marčeta Kaninski, Milica",
year = "2011",
abstract = "The aim of this work is to investigate the energy consumption of alkaline electrolyser with the in situ added ionic activators. Several concentrations of nickel and tungsten based ionic activators were used in the same alkaline electrolyser, and the energy consumption was calculated and compared to conventional electrolyte. The electrolyser operated at several current densities and temperatures, in order to obtain the optimal concentration of the ionic activators. We have obtained lowering of the energy needed to produce certain amounts of hydrogen for about 15% compared to standard electrolyte, just using simplified process of the in situ activation with Ni and W based ionic activators. Alkaline electrolyser operated with the selected concentration of d-metals has shown long term stability under industrial conditions. (C) 2011 Elsevier B.V. All rights reserved.",
journal = "Applied Catalysis. A: General",
title = "Energy consumption of the electrolytic hydrogen production using Ni-W based activators-Part I",
volume = "405",
number = "1-2",
pages = "25-28",
doi = "10.1016/j.apcata.2011.07.017"
}
Maksić, A., Miulović, S. M., Nikolić, V. M., Perović, I. M.,& Marčeta Kaninski, M.. (2011). Energy consumption of the electrolytic hydrogen production using Ni-W based activators-Part I. in Applied Catalysis. A: General, 405(1-2), 25-28.
https://doi.org/10.1016/j.apcata.2011.07.017
Maksić A, Miulović SM, Nikolić VM, Perović IM, Marčeta Kaninski M. Energy consumption of the electrolytic hydrogen production using Ni-W based activators-Part I. in Applied Catalysis. A: General. 2011;405(1-2):25-28.
doi:10.1016/j.apcata.2011.07.017 .
Maksić, Aleksandar, Miulović, Snežana M., Nikolić, Vladimir M., Perović, Ivana M., Marčeta Kaninski, Milica, "Energy consumption of the electrolytic hydrogen production using Ni-W based activators-Part I" in Applied Catalysis. A: General, 405, no. 1-2 (2011):25-28,
https://doi.org/10.1016/j.apcata.2011.07.017 . .
10
8
10

Electrochemical characterization of the Ni-W catalyst formed in situ during alkaline electrolytic hydrogen production-Part II

Marčeta Kaninski, Milica; Šaponjić, Đorđe; Perović, Ivana M.; Maksić, Aleksandar; Nikolić, Vladimir M.

(2011)

TY  - JOUR
AU  - Marčeta Kaninski, Milica
AU  - Šaponjić, Đorđe
AU  - Perović, Ivana M.
AU  - Maksić, Aleksandar
AU  - Nikolić, Vladimir M.
PY  - 2011
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/4523
AB  - Objective of this work was to investigate the electrocatalytic efficiency using quasi-potentiostatic, galvanostatic and impedance spectroscopy techniques of the Ni-W catalysts obtained by in situ electrodeposition in an alkaline, GM KOH, electrolyser. Synergetic effect is observed, with its maximum at industrial conditions (high temperature and current density). The Tafel slopes are similar to 120 mV and exchange current densities are in the range of 10(-4) mA cm(-2). Results are presented to show the Tafel slopes, the exchange current densities, the apparent energy of activation and the apparent electrochemical surface of the in situ formed Ni-W catalyst. Obtained results could have significant impact on the industrial process for the alkaline hydrogen production and suggest to good catalytic performance not only from the increase of the real surface area of the electrodes, but also from the true catalytic effect. (C) 2011 Elsevier B.V. All rights reserved.
T2  - Applied Catalysis. A: General
T1  - Electrochemical characterization of the Ni-W catalyst formed in situ during alkaline electrolytic hydrogen production-Part II
VL  - 405
IS  - 1-2
SP  - 29
EP  - 35
DO  - 10.1016/j.apcata.2011.07.015
ER  - 
@article{
author = "Marčeta Kaninski, Milica and Šaponjić, Đorđe and Perović, Ivana M. and Maksić, Aleksandar and Nikolić, Vladimir M.",
year = "2011",
abstract = "Objective of this work was to investigate the electrocatalytic efficiency using quasi-potentiostatic, galvanostatic and impedance spectroscopy techniques of the Ni-W catalysts obtained by in situ electrodeposition in an alkaline, GM KOH, electrolyser. Synergetic effect is observed, with its maximum at industrial conditions (high temperature and current density). The Tafel slopes are similar to 120 mV and exchange current densities are in the range of 10(-4) mA cm(-2). Results are presented to show the Tafel slopes, the exchange current densities, the apparent energy of activation and the apparent electrochemical surface of the in situ formed Ni-W catalyst. Obtained results could have significant impact on the industrial process for the alkaline hydrogen production and suggest to good catalytic performance not only from the increase of the real surface area of the electrodes, but also from the true catalytic effect. (C) 2011 Elsevier B.V. All rights reserved.",
journal = "Applied Catalysis. A: General",
title = "Electrochemical characterization of the Ni-W catalyst formed in situ during alkaline electrolytic hydrogen production-Part II",
volume = "405",
number = "1-2",
pages = "29-35",
doi = "10.1016/j.apcata.2011.07.015"
}
Marčeta Kaninski, M., Šaponjić, Đ., Perović, I. M., Maksić, A.,& Nikolić, V. M.. (2011). Electrochemical characterization of the Ni-W catalyst formed in situ during alkaline electrolytic hydrogen production-Part II. in Applied Catalysis. A: General, 405(1-2), 29-35.
https://doi.org/10.1016/j.apcata.2011.07.015
Marčeta Kaninski M, Šaponjić Đ, Perović IM, Maksić A, Nikolić VM. Electrochemical characterization of the Ni-W catalyst formed in situ during alkaline electrolytic hydrogen production-Part II. in Applied Catalysis. A: General. 2011;405(1-2):29-35.
doi:10.1016/j.apcata.2011.07.015 .
Marčeta Kaninski, Milica, Šaponjić, Đorđe, Perović, Ivana M., Maksić, Aleksandar, Nikolić, Vladimir M., "Electrochemical characterization of the Ni-W catalyst formed in situ during alkaline electrolytic hydrogen production-Part II" in Applied Catalysis. A: General, 405, no. 1-2 (2011):29-35,
https://doi.org/10.1016/j.apcata.2011.07.015 . .
20
16
20