Petronijević, Ivan

Link to this page

Authority KeyName Variants
b520b8e9-e357-486a-b974-66fa8ba97aba
  • Petronijević, Ivan (3)
Projects
Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200017 (University of Belgrade, Institute of Nuclear Sciences 'Vinča', Belgrade-Vinča) Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200162 (University of Belgrade, Faculty of Physics)
Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200116 (University of Belgrade, Faculty of Agriculture) Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200135 (University of Belgrade, Faculty of Technology and Metallurgy)
Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200175 (Institute of Technical Sciences of SASA, Belgrade) Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200026 (University of Belgrade, Institute of Chemistry, Technology and Metallurgy - IChTM)
Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200053 (University of Belgrade, Institute for Multidisciplinary Research) Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200126 (University of Belgrade, Faculty of Mining and Geology)
Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200132 (University of Kragujevac, Technical Faculty, Čačak) nfo:eu-repo/grantAgreement/MESTD/inst-2020/200116/RS//
US Department of Energy/National Nuclear Security Administration [NA0003979] US National Science Foundation [DMR EiR 2101041]
US National Science Foundation [NSF DMR PREM 2122044]

Author's Bibliography

Structural, Mechanical, and Barrier Properties of the Polyvinylidene Fluoride-Bacterial Nanocellulose-Based Hybrid Composite

Janićijević, Aleksandra; Filipović, Suzana; Sknepnek, Aleksandra; Salević-Jelić, Ana; Jančić-Heinemann, Radmila; Petrović, Miloš; Petronijević, Ivan; Stamenović, Marina; Živković, Predrag; Potkonjak, Nebojša; Pavlović, Vladimir B.

(2024)

TY  - JOUR
AU  - Janićijević, Aleksandra
AU  - Filipović, Suzana
AU  - Sknepnek, Aleksandra
AU  - Salević-Jelić, Ana
AU  - Jančić-Heinemann, Radmila
AU  - Petrović, Miloš
AU  - Petronijević, Ivan
AU  - Stamenović, Marina
AU  - Živković, Predrag
AU  - Potkonjak, Nebojša
AU  - Pavlović, Vladimir B.
PY  - 2024
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/13219
AB  - This study presents an analysis of films which consist of two layers; one layer is PVDF as the matrix, along with fillers BaTiO3 (BT), and the second is one bacterial nanocellulose (BNC) filled with Fe3O4. The mass fraction of BT in PVDF was 5%, and the samples were differentiated based on the duration of the mechanical activation of BT. This innovative PVDF laminate polymer with environmentally friendly fillers aligns with the concept of circular usage, resulting in a reduction in plastic content and potential improvement of the piezoelectric properties of the entire composite. This work presents new, multifunctional “green” packaging materials that potentially could be a good alternative to specific popular materials used for this purpose. The synthesis of the films was carried out using the hot press method. Tensile tests, water vapor permeability examination, and structural analyses using SEM-EDS and FTIR have been conducted. The sample PVDF/BT20/BNC/Fe3O4 exhibited the best barrier properties (impermeability to water vapor), while the highest tensile strength and toughness were exhibited by the PVDF/BT5/BNC/Fe3O4 sample.
T2  - Polymers
T1  - Structural, Mechanical, and Barrier Properties of the Polyvinylidene Fluoride-Bacterial Nanocellulose-Based Hybrid Composite
VL  - 16
IS  - 8
SP  - 1033
DO  - 10.3390/polym16081033
ER  - 
@article{
author = "Janićijević, Aleksandra and Filipović, Suzana and Sknepnek, Aleksandra and Salević-Jelić, Ana and Jančić-Heinemann, Radmila and Petrović, Miloš and Petronijević, Ivan and Stamenović, Marina and Živković, Predrag and Potkonjak, Nebojša and Pavlović, Vladimir B.",
year = "2024",
abstract = "This study presents an analysis of films which consist of two layers; one layer is PVDF as the matrix, along with fillers BaTiO3 (BT), and the second is one bacterial nanocellulose (BNC) filled with Fe3O4. The mass fraction of BT in PVDF was 5%, and the samples were differentiated based on the duration of the mechanical activation of BT. This innovative PVDF laminate polymer with environmentally friendly fillers aligns with the concept of circular usage, resulting in a reduction in plastic content and potential improvement of the piezoelectric properties of the entire composite. This work presents new, multifunctional “green” packaging materials that potentially could be a good alternative to specific popular materials used for this purpose. The synthesis of the films was carried out using the hot press method. Tensile tests, water vapor permeability examination, and structural analyses using SEM-EDS and FTIR have been conducted. The sample PVDF/BT20/BNC/Fe3O4 exhibited the best barrier properties (impermeability to water vapor), while the highest tensile strength and toughness were exhibited by the PVDF/BT5/BNC/Fe3O4 sample.",
journal = "Polymers",
title = "Structural, Mechanical, and Barrier Properties of the Polyvinylidene Fluoride-Bacterial Nanocellulose-Based Hybrid Composite",
volume = "16",
number = "8",
pages = "1033",
doi = "10.3390/polym16081033"
}
Janićijević, A., Filipović, S., Sknepnek, A., Salević-Jelić, A., Jančić-Heinemann, R., Petrović, M., Petronijević, I., Stamenović, M., Živković, P., Potkonjak, N.,& Pavlović, V. B.. (2024). Structural, Mechanical, and Barrier Properties of the Polyvinylidene Fluoride-Bacterial Nanocellulose-Based Hybrid Composite. in Polymers, 16(8), 1033.
https://doi.org/10.3390/polym16081033
Janićijević A, Filipović S, Sknepnek A, Salević-Jelić A, Jančić-Heinemann R, Petrović M, Petronijević I, Stamenović M, Živković P, Potkonjak N, Pavlović VB. Structural, Mechanical, and Barrier Properties of the Polyvinylidene Fluoride-Bacterial Nanocellulose-Based Hybrid Composite. in Polymers. 2024;16(8):1033.
doi:10.3390/polym16081033 .
Janićijević, Aleksandra, Filipović, Suzana, Sknepnek, Aleksandra, Salević-Jelić, Ana, Jančić-Heinemann, Radmila, Petrović, Miloš, Petronijević, Ivan, Stamenović, Marina, Živković, Predrag, Potkonjak, Nebojša, Pavlović, Vladimir B., "Structural, Mechanical, and Barrier Properties of the Polyvinylidene Fluoride-Bacterial Nanocellulose-Based Hybrid Composite" in Polymers, 16, no. 8 (2024):1033,
https://doi.org/10.3390/polym16081033 . .

BaTiO3/NixZn1−xFe2O4 (x = 0, 0.5, 1) Composites Synthesized by Thermal Decomposition: Magnetic, Dielectric and Ferroelectric Properties

Šuljagić, Marija; Petronijević, Ivan; Mirković, Miljana M.; Kremenović, Aleksandar S.; Džunuzović, Adis; Pavlović, Vladimir B.; Kalezić-Glišović, Aleksandra; Anđelković, Ljubica

(2023)

TY  - JOUR
AU  - Šuljagić, Marija
AU  - Petronijević, Ivan
AU  - Mirković, Miljana M.
AU  - Kremenović, Aleksandar S.
AU  - Džunuzović, Adis
AU  - Pavlović, Vladimir B.
AU  - Kalezić-Glišović, Aleksandra
AU  - Anđelković, Ljubica
PY  - 2023
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/10690
AB  - To investigate the influence of spinel structure and sintering temperature on the functional properties of BaTiO3/NixZn1−xFe2O4 (x = 0, 0.5, 1), NiFe2O4, ZnFe2O4, and Ni0.5Zn0.5Fe2O4 were in situ prepared by thermal decomposition onto BaTiO3 surface from acetylacetonate precursors. As-prepared powders were additionally sintered at 1150 °C and 1300 °C. X-ray powder diffraction (XRPD) and scanning electron microscopy (SEM) coupled with electron dispersive spectroscopy (EDS) were used for the detailed examination of phase composition and morphology. The magnetic, dielectric, and ferroelectric properties were investigated. The optimal phase composition in the BaTiO3/NiFe2O4 composite, sintered at 1150 °C, resulted in a wide frequency range stability. Additionally, particular phase composition indicates favorable properties such as low conductivity and ideal-like hysteresis loop behavior. The favorable properties of BaTiO3/NiFe2O4 make this particular composite an ideal material choice for further studies on applications of multi-ferroic devices.
T2  - Inorganics
T1  - BaTiO3/NixZn1−xFe2O4 (x = 0, 0.5, 1) Composites Synthesized by Thermal Decomposition: Magnetic, Dielectric and Ferroelectric Properties
VL  - 11
IS  - 2
SP  - 51
DO  - 10.3390/inorganics11020051
ER  - 
@article{
author = "Šuljagić, Marija and Petronijević, Ivan and Mirković, Miljana M. and Kremenović, Aleksandar S. and Džunuzović, Adis and Pavlović, Vladimir B. and Kalezić-Glišović, Aleksandra and Anđelković, Ljubica",
year = "2023",
abstract = "To investigate the influence of spinel structure and sintering temperature on the functional properties of BaTiO3/NixZn1−xFe2O4 (x = 0, 0.5, 1), NiFe2O4, ZnFe2O4, and Ni0.5Zn0.5Fe2O4 were in situ prepared by thermal decomposition onto BaTiO3 surface from acetylacetonate precursors. As-prepared powders were additionally sintered at 1150 °C and 1300 °C. X-ray powder diffraction (XRPD) and scanning electron microscopy (SEM) coupled with electron dispersive spectroscopy (EDS) were used for the detailed examination of phase composition and morphology. The magnetic, dielectric, and ferroelectric properties were investigated. The optimal phase composition in the BaTiO3/NiFe2O4 composite, sintered at 1150 °C, resulted in a wide frequency range stability. Additionally, particular phase composition indicates favorable properties such as low conductivity and ideal-like hysteresis loop behavior. The favorable properties of BaTiO3/NiFe2O4 make this particular composite an ideal material choice for further studies on applications of multi-ferroic devices.",
journal = "Inorganics",
title = "BaTiO3/NixZn1−xFe2O4 (x = 0, 0.5, 1) Composites Synthesized by Thermal Decomposition: Magnetic, Dielectric and Ferroelectric Properties",
volume = "11",
number = "2",
pages = "51",
doi = "10.3390/inorganics11020051"
}
Šuljagić, M., Petronijević, I., Mirković, M. M., Kremenović, A. S., Džunuzović, A., Pavlović, V. B., Kalezić-Glišović, A.,& Anđelković, L.. (2023). BaTiO3/NixZn1−xFe2O4 (x = 0, 0.5, 1) Composites Synthesized by Thermal Decomposition: Magnetic, Dielectric and Ferroelectric Properties. in Inorganics, 11(2), 51.
https://doi.org/10.3390/inorganics11020051
Šuljagić M, Petronijević I, Mirković MM, Kremenović AS, Džunuzović A, Pavlović VB, Kalezić-Glišović A, Anđelković L. BaTiO3/NixZn1−xFe2O4 (x = 0, 0.5, 1) Composites Synthesized by Thermal Decomposition: Magnetic, Dielectric and Ferroelectric Properties. in Inorganics. 2023;11(2):51.
doi:10.3390/inorganics11020051 .
Šuljagić, Marija, Petronijević, Ivan, Mirković, Miljana M., Kremenović, Aleksandar S., Džunuzović, Adis, Pavlović, Vladimir B., Kalezić-Glišović, Aleksandra, Anđelković, Ljubica, "BaTiO3/NixZn1−xFe2O4 (x = 0, 0.5, 1) Composites Synthesized by Thermal Decomposition: Magnetic, Dielectric and Ferroelectric Properties" in Inorganics, 11, no. 2 (2023):51,
https://doi.org/10.3390/inorganics11020051 . .
2
1

Dielectric and Structural Properties of the Hybrid Material Polyvinylidene Fluoride-Bacterial Nanocellulose-Based Composite

Janićijević, Aleksandra; Filipović, Suzana; Sknepnek, Aleksandra; Vlahović, Branislav; Đorđević, Nenad; Kovacević, Danijela; Mirković, Miljana; Petronijević, Ivan; Zivković, Predrag; Rogan, Jelena; Pavlović, Vladimir B.

(2023)

TY  - JOUR
AU  - Janićijević, Aleksandra
AU  - Filipović, Suzana
AU  - Sknepnek, Aleksandra
AU  - Vlahović, Branislav
AU  - Đorđević, Nenad
AU  - Kovacević, Danijela
AU  - Mirković, Miljana
AU  - Petronijević, Ivan
AU  - Zivković, Predrag
AU  - Rogan, Jelena
AU  - Pavlović, Vladimir B.
PY  - 2023
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/11872
AB  - In the search for environmentally friendly materials with a wide range of properties, polymer composites have emerged as a promising alternative due to their multifunctional properties. This study focuses on the synthesis of composite materials consisting of four components: bacterial nanocellulose (BNC) modified with magnetic Fe3O4 , and a mixture of BaTiO3 (BT) and polyvinylidene fluoride (PVDF). The BT powder was mechanically activated prior to mixing with PVDF. The influence of BT mechanical activation and BNC with magnetic particles on the PVDF matrix was investigated. The obtained composite films’ structural characteristics, morphology, and dielectric properties are presented. This research provides insights into the relationship between mechanical activation of the filler and structural and dielectric properties in the PVDF/BT/BNC/Fe3O4 system, creating the way for the development of materials with a wide range of diverse properties that support the concept of green technologies.
T2  - Polymers
T1  - Dielectric and Structural Properties of the Hybrid Material Polyvinylidene Fluoride-Bacterial Nanocellulose-Based Composite
VL  - 15
IS  - 20
SP  - 4080
DO  - 10.3390/polym15204080
ER  - 
@article{
author = "Janićijević, Aleksandra and Filipović, Suzana and Sknepnek, Aleksandra and Vlahović, Branislav and Đorđević, Nenad and Kovacević, Danijela and Mirković, Miljana and Petronijević, Ivan and Zivković, Predrag and Rogan, Jelena and Pavlović, Vladimir B.",
year = "2023",
abstract = "In the search for environmentally friendly materials with a wide range of properties, polymer composites have emerged as a promising alternative due to their multifunctional properties. This study focuses on the synthesis of composite materials consisting of four components: bacterial nanocellulose (BNC) modified with magnetic Fe3O4 , and a mixture of BaTiO3 (BT) and polyvinylidene fluoride (PVDF). The BT powder was mechanically activated prior to mixing with PVDF. The influence of BT mechanical activation and BNC with magnetic particles on the PVDF matrix was investigated. The obtained composite films’ structural characteristics, morphology, and dielectric properties are presented. This research provides insights into the relationship between mechanical activation of the filler and structural and dielectric properties in the PVDF/BT/BNC/Fe3O4 system, creating the way for the development of materials with a wide range of diverse properties that support the concept of green technologies.",
journal = "Polymers",
title = "Dielectric and Structural Properties of the Hybrid Material Polyvinylidene Fluoride-Bacterial Nanocellulose-Based Composite",
volume = "15",
number = "20",
pages = "4080",
doi = "10.3390/polym15204080"
}
Janićijević, A., Filipović, S., Sknepnek, A., Vlahović, B., Đorđević, N., Kovacević, D., Mirković, M., Petronijević, I., Zivković, P., Rogan, J.,& Pavlović, V. B.. (2023). Dielectric and Structural Properties of the Hybrid Material Polyvinylidene Fluoride-Bacterial Nanocellulose-Based Composite. in Polymers, 15(20), 4080.
https://doi.org/10.3390/polym15204080
Janićijević A, Filipović S, Sknepnek A, Vlahović B, Đorđević N, Kovacević D, Mirković M, Petronijević I, Zivković P, Rogan J, Pavlović VB. Dielectric and Structural Properties of the Hybrid Material Polyvinylidene Fluoride-Bacterial Nanocellulose-Based Composite. in Polymers. 2023;15(20):4080.
doi:10.3390/polym15204080 .
Janićijević, Aleksandra, Filipović, Suzana, Sknepnek, Aleksandra, Vlahović, Branislav, Đorđević, Nenad, Kovacević, Danijela, Mirković, Miljana, Petronijević, Ivan, Zivković, Predrag, Rogan, Jelena, Pavlović, Vladimir B., "Dielectric and Structural Properties of the Hybrid Material Polyvinylidene Fluoride-Bacterial Nanocellulose-Based Composite" in Polymers, 15, no. 20 (2023):4080,
https://doi.org/10.3390/polym15204080 . .
1