Jevtić, Aleksandar

Link to this page

Authority KeyName Variants
a5b02200-3495-46d7-be90-31bd04f9c0f5
  • Jevtić, Aleksandar (1)
Projects

Author's Bibliography

Floating-Gate MOS Transistor with Dynamic Biasing as a Radiation Sensor

Ilić, Stefan; Jevtić, Aleksandar; Stanković, Srboljub; Ristić, Goran

(2020)

TY  - JOUR
AU  - Ilić, Stefan
AU  - Jevtić, Aleksandar
AU  - Stanković, Srboljub
AU  - Ristić, Goran
PY  - 2020
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/9053
AB  - This paper describes the possibility of using an Electrically Programmable Analog Device (EPAD) as a gamma radiation sensor. Zero-biased EPAD has the lowest fading and the highest sensitivity in the 300 Gy dose range. Dynamic bias of the control gate during irradiation was presented for the first time; this method achieved higher sensitivity compared to static-biased EPADs and better linear dependence. Due to the degradation of the transfer characteristics of EPAD during irradiation, a function of the safe operation area has been found that determines the maximum voltage at the control gate for the desired dose, which will not lead to degradation of the transistor. Using an energy band diagram, it was explained why the zero-biased EPAD has higher sensitivity than the static-biased EPAD.
T2  - Sensors
T1  - Floating-Gate MOS Transistor with Dynamic Biasing as a Radiation Sensor
VL  - 20
IS  - 11
SP  - 3329
DO  - 10.3390/s20113329
ER  - 
@article{
author = "Ilić, Stefan and Jevtić, Aleksandar and Stanković, Srboljub and Ristić, Goran",
year = "2020",
abstract = "This paper describes the possibility of using an Electrically Programmable Analog Device (EPAD) as a gamma radiation sensor. Zero-biased EPAD has the lowest fading and the highest sensitivity in the 300 Gy dose range. Dynamic bias of the control gate during irradiation was presented for the first time; this method achieved higher sensitivity compared to static-biased EPADs and better linear dependence. Due to the degradation of the transfer characteristics of EPAD during irradiation, a function of the safe operation area has been found that determines the maximum voltage at the control gate for the desired dose, which will not lead to degradation of the transistor. Using an energy band diagram, it was explained why the zero-biased EPAD has higher sensitivity than the static-biased EPAD.",
journal = "Sensors",
title = "Floating-Gate MOS Transistor with Dynamic Biasing as a Radiation Sensor",
volume = "20",
number = "11",
pages = "3329",
doi = "10.3390/s20113329"
}
Ilić, S., Jevtić, A., Stanković, S.,& Ristić, G.. (2020). Floating-Gate MOS Transistor with Dynamic Biasing as a Radiation Sensor. in Sensors, 20(11), 3329.
https://doi.org/10.3390/s20113329
Ilić S, Jevtić A, Stanković S, Ristić G. Floating-Gate MOS Transistor with Dynamic Biasing as a Radiation Sensor. in Sensors. 2020;20(11):3329.
doi:10.3390/s20113329 .
Ilić, Stefan, Jevtić, Aleksandar, Stanković, Srboljub, Ristić, Goran, "Floating-Gate MOS Transistor with Dynamic Biasing as a Radiation Sensor" in Sensors, 20, no. 11 (2020):3329,
https://doi.org/10.3390/s20113329 . .
12
2
10