Plavec, Janez

Link to this page

Authority KeyName Variants
e552f59b-e28b-4adb-8142-aa829bdac0b3
  • Plavec, Janez (2)
Projects

Author's Bibliography

Fullerenol nanoparticles as a new delivery system for doxorubicin

Jović, Danica S.; Seke, Mariana; Đorđević, Aleksandar N.; Mrđanović, Jasminka Ž.; Aleksić, Lidija D.; Bogdanović, Gordana M.; Pavić, Aleksandar B.; Plavec, Janez

(2016)

TY  - JOUR
AU  - Jović, Danica S.
AU  - Seke, Mariana
AU  - Đorđević, Aleksandar N.
AU  - Mrđanović, Jasminka Ž.
AU  - Aleksić, Lidija D.
AU  - Bogdanović, Gordana M.
AU  - Pavić, Aleksandar B.
AU  - Plavec, Janez
PY  - 2016
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/1042
AB  - Doxorubicin is a very potent chemotherapeutic drug, however its side effects limit its clinical use. The aim of this research was to investigate the properties of a fullerenol/doxorubicin nanocomposite, its potentially cytotoxic and genotoxic effects on malignant cell lines, as well as its toxicity towards zebra fish embryos. Chromatographic, NMR and mass spectral analysis of the nanocomposite imply that interactions between doxorubicin and fullerenol are non-covalent bonds. The stability of the nanocomposite was confirmed by the use of atomic force microscopy, dynamic light scattering and transmission electron microscopy. The nanocomposite, compared to the free doxorubicin at equivalent concentrations, significantly decreased the viability of MCF-7 and MDA-MB-231 cells. The flow cytometry results indicated that doxorubicin-loaded fullerenol could remarkably increase the uptake of doxorubicin suggesting that fullerenol might be a promising intracellular targeting carrier for the efficient delivery of antitumor drugs into tumor cells. The nanocomposite also affected cell cycle distribution. A genotoxicity test showed that the nanocomposite at all examined concentrations on MCF-7 and at lower concentrations on MDA-MB-231 cells caused DNA damage. Consequently, cell proliferation was notably reduced when compared with controls. Results of the zebrafish embryotoxicity assay showed a decreased overall toxicity, particularly cardiotoxicity and increased safety of the nanocomposite in comparison to doxorubicin alone, as manifested by a higher survival of embryos and less pericardial edema.
T2  - RSC Advances
T1  - Fullerenol nanoparticles as a new delivery system for doxorubicin
VL  - 6
IS  - 45
SP  - 38563
EP  - 38578
DO  - 10.1039/c6ra03879d
ER  - 
@article{
author = "Jović, Danica S. and Seke, Mariana and Đorđević, Aleksandar N. and Mrđanović, Jasminka Ž. and Aleksić, Lidija D. and Bogdanović, Gordana M. and Pavić, Aleksandar B. and Plavec, Janez",
year = "2016",
abstract = "Doxorubicin is a very potent chemotherapeutic drug, however its side effects limit its clinical use. The aim of this research was to investigate the properties of a fullerenol/doxorubicin nanocomposite, its potentially cytotoxic and genotoxic effects on malignant cell lines, as well as its toxicity towards zebra fish embryos. Chromatographic, NMR and mass spectral analysis of the nanocomposite imply that interactions between doxorubicin and fullerenol are non-covalent bonds. The stability of the nanocomposite was confirmed by the use of atomic force microscopy, dynamic light scattering and transmission electron microscopy. The nanocomposite, compared to the free doxorubicin at equivalent concentrations, significantly decreased the viability of MCF-7 and MDA-MB-231 cells. The flow cytometry results indicated that doxorubicin-loaded fullerenol could remarkably increase the uptake of doxorubicin suggesting that fullerenol might be a promising intracellular targeting carrier for the efficient delivery of antitumor drugs into tumor cells. The nanocomposite also affected cell cycle distribution. A genotoxicity test showed that the nanocomposite at all examined concentrations on MCF-7 and at lower concentrations on MDA-MB-231 cells caused DNA damage. Consequently, cell proliferation was notably reduced when compared with controls. Results of the zebrafish embryotoxicity assay showed a decreased overall toxicity, particularly cardiotoxicity and increased safety of the nanocomposite in comparison to doxorubicin alone, as manifested by a higher survival of embryos and less pericardial edema.",
journal = "RSC Advances",
title = "Fullerenol nanoparticles as a new delivery system for doxorubicin",
volume = "6",
number = "45",
pages = "38563-38578",
doi = "10.1039/c6ra03879d"
}
Jović, D. S., Seke, M., Đorđević, A. N., Mrđanović, J. Ž., Aleksić, L. D., Bogdanović, G. M., Pavić, A. B.,& Plavec, J.. (2016). Fullerenol nanoparticles as a new delivery system for doxorubicin. in RSC Advances, 6(45), 38563-38578.
https://doi.org/10.1039/c6ra03879d
Jović DS, Seke M, Đorđević AN, Mrđanović JŽ, Aleksić LD, Bogdanović GM, Pavić AB, Plavec J. Fullerenol nanoparticles as a new delivery system for doxorubicin. in RSC Advances. 2016;6(45):38563-38578.
doi:10.1039/c6ra03879d .
Jović, Danica S., Seke, Mariana, Đorđević, Aleksandar N., Mrđanović, Jasminka Ž., Aleksić, Lidija D., Bogdanović, Gordana M., Pavić, Aleksandar B., Plavec, Janez, "Fullerenol nanoparticles as a new delivery system for doxorubicin" in RSC Advances, 6, no. 45 (2016):38563-38578,
https://doi.org/10.1039/c6ra03879d . .
23
20
22

Influence of ultrasonic processing on the macromolecular properties of poly (D,L-lactide-co-glycolide) alone and in its biocomposite with hydroxyapatite

Vukomanovic, Marija; Mitrić, Miodrag; Škapin, Srečo Davor; Zagar, Ema; Plavec, Janez; Ignjatović, Nenad L.; Uskoković, Dragan

(2010)

TY  - JOUR
AU  - Vukomanovic, Marija
AU  - Mitrić, Miodrag
AU  - Škapin, Srečo Davor
AU  - Zagar, Ema
AU  - Plavec, Janez
AU  - Ignjatović, Nenad L.
AU  - Uskoković, Dragan
PY  - 2010
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/3943
AB  - In this work poly(D,L-lactide-co-glycolide) (PLGA) and a poly(D,L-lactide-co-glycolide)/hydroxyapatite (PLGA/HAp) composite processed in an ultrasonic field at higher (25 degrees C) and lower (8 degrees C) temperatures were studied with respect to the molecular properties of the obtained materials. The processing of the PLGA and the PLGA/HAp composite in an ultrasonic field resulted in a change of molar mass averages of the polymer/polymeric part of these materials, while an amorphous structure and a 50:50 lactide-to-glycolide co-monomer ratio were preserved without the formation of crystalline oligomers. However, mobility of polymeric chains obtained after ultrasonic processing was lower indicating ordering the structure of polymeric chains as a result of processing. Additionally, it was observed that the mobility of the PLGA macromolecules was lower within the composite in comparison with the mobility of the chains within the PLGA alone in the case when both were obtained after ultrasonic processing. This was a consequence of the structure formation through the interactions between the PLGA and the HAp. Based on these results different degradation rate of PLGA in composite can be expected, which is important in the application of this material for the controlled drug delivery of medicaments. (C) 2010 Elsevier B.V. All rights reserved.
T2  - Ultrasonics Sonochemistry
T1  - Influence of ultrasonic processing on the macromolecular properties of poly (D,L-lactide-co-glycolide) alone and in its biocomposite with hydroxyapatite
VL  - 17
IS  - 5
SP  - 902
EP  - 908
DO  - 10.1016/j.ultsonch.2010.01.007
ER  - 
@article{
author = "Vukomanovic, Marija and Mitrić, Miodrag and Škapin, Srečo Davor and Zagar, Ema and Plavec, Janez and Ignjatović, Nenad L. and Uskoković, Dragan",
year = "2010",
abstract = "In this work poly(D,L-lactide-co-glycolide) (PLGA) and a poly(D,L-lactide-co-glycolide)/hydroxyapatite (PLGA/HAp) composite processed in an ultrasonic field at higher (25 degrees C) and lower (8 degrees C) temperatures were studied with respect to the molecular properties of the obtained materials. The processing of the PLGA and the PLGA/HAp composite in an ultrasonic field resulted in a change of molar mass averages of the polymer/polymeric part of these materials, while an amorphous structure and a 50:50 lactide-to-glycolide co-monomer ratio were preserved without the formation of crystalline oligomers. However, mobility of polymeric chains obtained after ultrasonic processing was lower indicating ordering the structure of polymeric chains as a result of processing. Additionally, it was observed that the mobility of the PLGA macromolecules was lower within the composite in comparison with the mobility of the chains within the PLGA alone in the case when both were obtained after ultrasonic processing. This was a consequence of the structure formation through the interactions between the PLGA and the HAp. Based on these results different degradation rate of PLGA in composite can be expected, which is important in the application of this material for the controlled drug delivery of medicaments. (C) 2010 Elsevier B.V. All rights reserved.",
journal = "Ultrasonics Sonochemistry",
title = "Influence of ultrasonic processing on the macromolecular properties of poly (D,L-lactide-co-glycolide) alone and in its biocomposite with hydroxyapatite",
volume = "17",
number = "5",
pages = "902-908",
doi = "10.1016/j.ultsonch.2010.01.007"
}
Vukomanovic, M., Mitrić, M., Škapin, S. D., Zagar, E., Plavec, J., Ignjatović, N. L.,& Uskoković, D.. (2010). Influence of ultrasonic processing on the macromolecular properties of poly (D,L-lactide-co-glycolide) alone and in its biocomposite with hydroxyapatite. in Ultrasonics Sonochemistry, 17(5), 902-908.
https://doi.org/10.1016/j.ultsonch.2010.01.007
Vukomanovic M, Mitrić M, Škapin SD, Zagar E, Plavec J, Ignjatović NL, Uskoković D. Influence of ultrasonic processing on the macromolecular properties of poly (D,L-lactide-co-glycolide) alone and in its biocomposite with hydroxyapatite. in Ultrasonics Sonochemistry. 2010;17(5):902-908.
doi:10.1016/j.ultsonch.2010.01.007 .
Vukomanovic, Marija, Mitrić, Miodrag, Škapin, Srečo Davor, Zagar, Ema, Plavec, Janez, Ignjatović, Nenad L., Uskoković, Dragan, "Influence of ultrasonic processing on the macromolecular properties of poly (D,L-lactide-co-glycolide) alone and in its biocomposite with hydroxyapatite" in Ultrasonics Sonochemistry, 17, no. 5 (2010):902-908,
https://doi.org/10.1016/j.ultsonch.2010.01.007 . .
8
6
8