Kovačević, Aleksander G.

Link to this page

Authority KeyName Variants
bbaa5fda-91b1-4edf-abe5-3b944d2a45ae
  • Kovačević, Aleksander G. (2)
Projects

Author's Bibliography

Inducing LIPSS on multilayer thin metal films by femtosecond laser beam of different orientations

Kovačević, Aleksander G.; Petrović, Suzana; Salatić, Branislav; Lekić, Marina; Vasić, Borislav Z.; Gajić, Radoš; Pantelić, Dejan; Jelenković, Branislav

(2020)

TY  - JOUR
AU  - Kovačević, Aleksander G.
AU  - Petrović, Suzana
AU  - Salatić, Branislav
AU  - Lekić, Marina
AU  - Vasić, Borislav Z.
AU  - Gajić, Radoš
AU  - Pantelić, Dejan
AU  - Jelenković, Branislav
PY  - 2020
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/9015
AB  - The occurrence of laser-induced periodic surface structures (LIPSS) has been known for a while. Multilayer thin films, like Al/Ti, are suitable for LIPSS formation and attractive for applications—due to their wearing behavior and corrosion resistance; LIPSS generation may improve their properties as well. LIPSS properties depend not only on the material but also on the beam characteristics, like wavelength, polarization and scanning directions, etc. After exposing with NIR femtosecond pulses from Coherent Mira 900 laser system in several beam exposures, we have analyzed the samples of thin metal film systems with Tescan Mira3 SEM and NTegra AFM. The formation of LIPSS is most probably due to the generation of surface plasmon polariton, through the periodic distribution of energy in the interaction zone which lead to thermal processes in layers and interfaces. Two types of LIPSS were generated, which differ in shape, orientation and in ablation pronounced or not. For consecutive interactions in the same direction, LIPSS maintained its orientation, while for orthogonal passes LIPSS with mutually orthogonal orientation were generated. LIPSS period fluctuated between 320 and 380 nm and structures with pronounced ablation have significantly smaller width. Probable mechanism is that for greater accumulated energy pronounced ablation takes place giving LIPSS in the form of trenches or grooves, while for less accumulated energy the buildup of the material—probably due to pronounced oxidation—lead to LIPSS in the form of hills or ridges.
T2  - Optical and Quantum Electronics
T1  - Inducing LIPSS on multilayer thin metal films by femtosecond laser beam of different orientations
VL  - 52
IS  - 6
SP  - 301
DO  - 10.1007/s11082-020-02398-2
ER  - 
@article{
author = "Kovačević, Aleksander G. and Petrović, Suzana and Salatić, Branislav and Lekić, Marina and Vasić, Borislav Z. and Gajić, Radoš and Pantelić, Dejan and Jelenković, Branislav",
year = "2020",
abstract = "The occurrence of laser-induced periodic surface structures (LIPSS) has been known for a while. Multilayer thin films, like Al/Ti, are suitable for LIPSS formation and attractive for applications—due to their wearing behavior and corrosion resistance; LIPSS generation may improve their properties as well. LIPSS properties depend not only on the material but also on the beam characteristics, like wavelength, polarization and scanning directions, etc. After exposing with NIR femtosecond pulses from Coherent Mira 900 laser system in several beam exposures, we have analyzed the samples of thin metal film systems with Tescan Mira3 SEM and NTegra AFM. The formation of LIPSS is most probably due to the generation of surface plasmon polariton, through the periodic distribution of energy in the interaction zone which lead to thermal processes in layers and interfaces. Two types of LIPSS were generated, which differ in shape, orientation and in ablation pronounced or not. For consecutive interactions in the same direction, LIPSS maintained its orientation, while for orthogonal passes LIPSS with mutually orthogonal orientation were generated. LIPSS period fluctuated between 320 and 380 nm and structures with pronounced ablation have significantly smaller width. Probable mechanism is that for greater accumulated energy pronounced ablation takes place giving LIPSS in the form of trenches or grooves, while for less accumulated energy the buildup of the material—probably due to pronounced oxidation—lead to LIPSS in the form of hills or ridges.",
journal = "Optical and Quantum Electronics",
title = "Inducing LIPSS on multilayer thin metal films by femtosecond laser beam of different orientations",
volume = "52",
number = "6",
pages = "301",
doi = "10.1007/s11082-020-02398-2"
}
Kovačević, A. G., Petrović, S., Salatić, B., Lekić, M., Vasić, B. Z., Gajić, R., Pantelić, D.,& Jelenković, B.. (2020). Inducing LIPSS on multilayer thin metal films by femtosecond laser beam of different orientations. in Optical and Quantum Electronics, 52(6), 301.
https://doi.org/10.1007/s11082-020-02398-2
Kovačević AG, Petrović S, Salatić B, Lekić M, Vasić BZ, Gajić R, Pantelić D, Jelenković B. Inducing LIPSS on multilayer thin metal films by femtosecond laser beam of different orientations. in Optical and Quantum Electronics. 2020;52(6):301.
doi:10.1007/s11082-020-02398-2 .
Kovačević, Aleksander G., Petrović, Suzana, Salatić, Branislav, Lekić, Marina, Vasić, Borislav Z., Gajić, Radoš, Pantelić, Dejan, Jelenković, Branislav, "Inducing LIPSS on multilayer thin metal films by femtosecond laser beam of different orientations" in Optical and Quantum Electronics, 52, no. 6 (2020):301,
https://doi.org/10.1007/s11082-020-02398-2 . .

Molding Wetting by Laser-Induced Nanostructures

Kovačević, Aleksander G.; Petrović, Suzana; Mimidis, Alexandros; Stratakis, Emmanuel; Pantelić, Dejan; Kolarić, Branko

(2020)

TY  - JOUR
AU  - Kovačević, Aleksander G.
AU  - Petrović, Suzana
AU  - Mimidis, Alexandros
AU  - Stratakis, Emmanuel
AU  - Pantelić, Dejan
AU  - Kolarić, Branko
PY  - 2020
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/9632
AB  - The influence of material characteristics—i.e., type or surface texture—to wetting properties is nowadays increased by the implementation of ultrafast lasers for nanostructuring. In this account, we exposed multilayer thin metal film samples of different materials to a femtosecond laser beam at a 1030 nm wavelength. The interaction generated high-quality laser-induced periodic surface structures (LIPSS) of spatial periods between 740 and 790 nm and with maximal average corrugation height below 100 nm. The contact angle (CA) values of the water droplets on the surface were estimated and the values between unmodified and modified samples were compared. Even though the laser interaction changed both the surface morphology and the chemical composition, the wetting properties were predominantly influenced by the small change in morphology causing the increase in the contact angle of ~80%, which could not be explained classically. The influence of both surface corrugation and chemical composition to the wetting properties has been thoroughly investigated, discussed and explained. The presented results clearly confirm that femtosecond patterning can be used to mold wetting properties.
T2  - Applied Sciences
T1  - Molding Wetting by Laser-Induced Nanostructures
VL  - 10
IS  - 17
SP  - 6008
DO  - 10.3390/app10176008
ER  - 
@article{
author = "Kovačević, Aleksander G. and Petrović, Suzana and Mimidis, Alexandros and Stratakis, Emmanuel and Pantelić, Dejan and Kolarić, Branko",
year = "2020",
abstract = "The influence of material characteristics—i.e., type or surface texture—to wetting properties is nowadays increased by the implementation of ultrafast lasers for nanostructuring. In this account, we exposed multilayer thin metal film samples of different materials to a femtosecond laser beam at a 1030 nm wavelength. The interaction generated high-quality laser-induced periodic surface structures (LIPSS) of spatial periods between 740 and 790 nm and with maximal average corrugation height below 100 nm. The contact angle (CA) values of the water droplets on the surface were estimated and the values between unmodified and modified samples were compared. Even though the laser interaction changed both the surface morphology and the chemical composition, the wetting properties were predominantly influenced by the small change in morphology causing the increase in the contact angle of ~80%, which could not be explained classically. The influence of both surface corrugation and chemical composition to the wetting properties has been thoroughly investigated, discussed and explained. The presented results clearly confirm that femtosecond patterning can be used to mold wetting properties.",
journal = "Applied Sciences",
title = "Molding Wetting by Laser-Induced Nanostructures",
volume = "10",
number = "17",
pages = "6008",
doi = "10.3390/app10176008"
}
Kovačević, A. G., Petrović, S., Mimidis, A., Stratakis, E., Pantelić, D.,& Kolarić, B.. (2020). Molding Wetting by Laser-Induced Nanostructures. in Applied Sciences, 10(17), 6008.
https://doi.org/10.3390/app10176008
Kovačević AG, Petrović S, Mimidis A, Stratakis E, Pantelić D, Kolarić B. Molding Wetting by Laser-Induced Nanostructures. in Applied Sciences. 2020;10(17):6008.
doi:10.3390/app10176008 .
Kovačević, Aleksander G., Petrović, Suzana, Mimidis, Alexandros, Stratakis, Emmanuel, Pantelić, Dejan, Kolarić, Branko, "Molding Wetting by Laser-Induced Nanostructures" in Applied Sciences, 10, no. 17 (2020):6008,
https://doi.org/10.3390/app10176008 . .