Orlovska, Irina V.

Link to this page

Authority KeyName Variants
a7f1a638-400f-49fe-9a25-846942b99695
  • Orlovska, Irina V. (2)

Author's Bibliography

Bacterial cellulose-lignin composite hydrogel as a promising agent in chronic wound healing

Zmejkoski, Danica; Spasojević, Dragica; Orlovska, Irina V.; Kozyrovska, Natalia O.; Soković, Marina; Glamočlija, Jasmina; Dmitrović, Svetlana; Matović, Branko; Tasić, Nikola B.; Maksimović, Vuk M.; Sosnin, Mikhail; Radotić, Ksenija

(2018)

TY  - JOUR
AU  - Zmejkoski, Danica
AU  - Spasojević, Dragica
AU  - Orlovska, Irina V.
AU  - Kozyrovska, Natalia O.
AU  - Soković, Marina
AU  - Glamočlija, Jasmina
AU  - Dmitrović, Svetlana
AU  - Matović, Branko
AU  - Tasić, Nikola B.
AU  - Maksimović, Vuk M.
AU  - Sosnin, Mikhail
AU  - Radotić, Ksenija
PY  - 2018
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/7769
AB  - Lignins and lignin-derived compounds are known to have antibacterial properties. The wound healing agents in the form of dressings produce faster skin repair and decrease pain in patients. In order to create an efficient antimicrobial agent in the form of dressing in the treatment of chronic wounds, a composite hydrogel of bacterial cellulose (BC) and dehydrogenative polymer of coniferyl alcohol (DHP), BC-DHP, was designed. Novel composite showed inhibitory or bactericidal effects against selected pathogenic bacteria, including clinically isolated ones. The highest release rate of DHP was in the first hour, while after 24 h there was still slow release of small amounts of DHP from BC-DHP during 72 h monitoring. High-performance liquid chromatography coupled with mass-spectrometry showed that BC-DHP releases DHP oligomers, which are proposed to be antimicrobially active DHP fractions. Scanning electron microscopy and atomic force microscopy micrographs proved a dose-dependent interaction of DHP with BC, which resulted in a decrease of the pore number and size in the cellulose membrane. The Fourier-transform infrared absorption spectra of the BC-DHP showed that DHP was partly bound to the BC matrix. The swelling and crystallinity degree were dose-dependent. All obtained results confirmed BC-DHP composite as a promising hydrogel for wounds healing.
T2  - International Journal of Biological Macromolecules
T1  - Bacterial cellulose-lignin composite hydrogel as a promising agent in chronic wound healing
VL  - 118
SP  - 494
EP  - 503
DO  - 10.1016/j.ijbiomac.2018.06.067
ER  - 
@article{
author = "Zmejkoski, Danica and Spasojević, Dragica and Orlovska, Irina V. and Kozyrovska, Natalia O. and Soković, Marina and Glamočlija, Jasmina and Dmitrović, Svetlana and Matović, Branko and Tasić, Nikola B. and Maksimović, Vuk M. and Sosnin, Mikhail and Radotić, Ksenija",
year = "2018",
abstract = "Lignins and lignin-derived compounds are known to have antibacterial properties. The wound healing agents in the form of dressings produce faster skin repair and decrease pain in patients. In order to create an efficient antimicrobial agent in the form of dressing in the treatment of chronic wounds, a composite hydrogel of bacterial cellulose (BC) and dehydrogenative polymer of coniferyl alcohol (DHP), BC-DHP, was designed. Novel composite showed inhibitory or bactericidal effects against selected pathogenic bacteria, including clinically isolated ones. The highest release rate of DHP was in the first hour, while after 24 h there was still slow release of small amounts of DHP from BC-DHP during 72 h monitoring. High-performance liquid chromatography coupled with mass-spectrometry showed that BC-DHP releases DHP oligomers, which are proposed to be antimicrobially active DHP fractions. Scanning electron microscopy and atomic force microscopy micrographs proved a dose-dependent interaction of DHP with BC, which resulted in a decrease of the pore number and size in the cellulose membrane. The Fourier-transform infrared absorption spectra of the BC-DHP showed that DHP was partly bound to the BC matrix. The swelling and crystallinity degree were dose-dependent. All obtained results confirmed BC-DHP composite as a promising hydrogel for wounds healing.",
journal = "International Journal of Biological Macromolecules",
title = "Bacterial cellulose-lignin composite hydrogel as a promising agent in chronic wound healing",
volume = "118",
pages = "494-503",
doi = "10.1016/j.ijbiomac.2018.06.067"
}
Zmejkoski, D., Spasojević, D., Orlovska, I. V., Kozyrovska, N. O., Soković, M., Glamočlija, J., Dmitrović, S., Matović, B., Tasić, N. B., Maksimović, V. M., Sosnin, M.,& Radotić, K.. (2018). Bacterial cellulose-lignin composite hydrogel as a promising agent in chronic wound healing. in International Journal of Biological Macromolecules, 118, 494-503.
https://doi.org/10.1016/j.ijbiomac.2018.06.067
Zmejkoski D, Spasojević D, Orlovska IV, Kozyrovska NO, Soković M, Glamočlija J, Dmitrović S, Matović B, Tasić NB, Maksimović VM, Sosnin M, Radotić K. Bacterial cellulose-lignin composite hydrogel as a promising agent in chronic wound healing. in International Journal of Biological Macromolecules. 2018;118:494-503.
doi:10.1016/j.ijbiomac.2018.06.067 .
Zmejkoski, Danica, Spasojević, Dragica, Orlovska, Irina V., Kozyrovska, Natalia O., Soković, Marina, Glamočlija, Jasmina, Dmitrović, Svetlana, Matović, Branko, Tasić, Nikola B., Maksimović, Vuk M., Sosnin, Mikhail, Radotić, Ksenija, "Bacterial cellulose-lignin composite hydrogel as a promising agent in chronic wound healing" in International Journal of Biological Macromolecules, 118 (2018):494-503,
https://doi.org/10.1016/j.ijbiomac.2018.06.067 . .
6
119
56
116

Regenerative therapy for the nonhealing cutaneous wounds

Orlovska, Irina V.; Yakovenko, I. O.; Haidak, Andriy H.; Zmejkoski, Danica; Kozyrovska, Natalia O.

(2018)

TY  - JOUR
AU  - Orlovska, Irina V.
AU  - Yakovenko, I. O.
AU  - Haidak, Andriy H.
AU  - Zmejkoski, Danica
AU  - Kozyrovska, Natalia O.
PY  - 2018
UR  - http://biopolymers.org.ua/doi/10.7124/bc.000979
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/8029
AB  - Regenerative medicine therapy is inspired by current research advances in cellular biology, genetic engineering, synthetic biology, material sciences and so far contributes to the traditional therapy, making resistant diseases curable. Nowadays, chronic wound healing is possible due to cell-based regenerative technologies and recent non-cell therapeutic approaches. Here we review clinical applications of human stem cells, as well as cellular and tissue products as alternatives to the traditional therapy of non-healing wounds. The cell-based technologies for tissue regeneration and bioengineering utilize stem cells that are either injected into bloodstream or positioned directly into the target area. Cell-free regeneration technologies require either stem cell products, i.e., secretomes or their separate components, extracellular membrane vesicles, or tissue products. The stem cell therapies are designed to replace critically absent components of wounded or degenerative tissue. The stem cell secretome can promote the repair of damaged tissues independently of parent cells. Extracellular membrane vesicles mimic and recapitulate the mechanisms of stem cells in tissue regeneration and therefore might be promising for chronic wound and severe burns healing. The tissue products traditionally remain efficient wound healing remedies along with emerging advanced technologies. © 2018 I. V. Orlovska et al.
T2  - Biopolymers and Cell
T1  - Regenerative therapy for the nonhealing cutaneous wounds
VL  - 34
IS  - 3
SP  - 171
EP  - 195
DO  - 10.7124/bc.000979
ER  - 
@article{
author = "Orlovska, Irina V. and Yakovenko, I. O. and Haidak, Andriy H. and Zmejkoski, Danica and Kozyrovska, Natalia O.",
year = "2018",
abstract = "Regenerative medicine therapy is inspired by current research advances in cellular biology, genetic engineering, synthetic biology, material sciences and so far contributes to the traditional therapy, making resistant diseases curable. Nowadays, chronic wound healing is possible due to cell-based regenerative technologies and recent non-cell therapeutic approaches. Here we review clinical applications of human stem cells, as well as cellular and tissue products as alternatives to the traditional therapy of non-healing wounds. The cell-based technologies for tissue regeneration and bioengineering utilize stem cells that are either injected into bloodstream or positioned directly into the target area. Cell-free regeneration technologies require either stem cell products, i.e., secretomes or their separate components, extracellular membrane vesicles, or tissue products. The stem cell therapies are designed to replace critically absent components of wounded or degenerative tissue. The stem cell secretome can promote the repair of damaged tissues independently of parent cells. Extracellular membrane vesicles mimic and recapitulate the mechanisms of stem cells in tissue regeneration and therefore might be promising for chronic wound and severe burns healing. The tissue products traditionally remain efficient wound healing remedies along with emerging advanced technologies. © 2018 I. V. Orlovska et al.",
journal = "Biopolymers and Cell",
title = "Regenerative therapy for the nonhealing cutaneous wounds",
volume = "34",
number = "3",
pages = "171-195",
doi = "10.7124/bc.000979"
}
Orlovska, I. V., Yakovenko, I. O., Haidak, A. H., Zmejkoski, D.,& Kozyrovska, N. O.. (2018). Regenerative therapy for the nonhealing cutaneous wounds. in Biopolymers and Cell, 34(3), 171-195.
https://doi.org/10.7124/bc.000979
Orlovska IV, Yakovenko IO, Haidak AH, Zmejkoski D, Kozyrovska NO. Regenerative therapy for the nonhealing cutaneous wounds. in Biopolymers and Cell. 2018;34(3):171-195.
doi:10.7124/bc.000979 .
Orlovska, Irina V., Yakovenko, I. O., Haidak, Andriy H., Zmejkoski, Danica, Kozyrovska, Natalia O., "Regenerative therapy for the nonhealing cutaneous wounds" in Biopolymers and Cell, 34, no. 3 (2018):171-195,
https://doi.org/10.7124/bc.000979 . .