Tekić, Danijela

Link to this page

Authority KeyName Variants
orcid::0000-0003-2102-3116
  • Tekić, Danijela (3)
Projects

Author's Bibliography

Sustainable recovery of cobalt and lithium from lithium-ion battery cathode material by combining sulfate leachates and aqueous biphasic systems based on tetrabutylphosphonium-ionic liquids

Mušović, Jasmina; Tekić, Danijela; Marić, Slađana; Jocić, Ana; Stanković, Dalibor; Dimitrijević, Aleksandra

(2024)

TY  - JOUR
AU  - Mušović, Jasmina
AU  - Tekić, Danijela
AU  - Marić, Slađana
AU  - Jocić, Ana
AU  - Stanković, Dalibor
AU  - Dimitrijević, Aleksandra
PY  - 2024
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/13218
AB  - The consistent expansion of the lithium-ion battery (LIB) market, coupled with their relatively brief lifespan, necessitates the development of efficient and sustainable LIB recycling strategies. Recycling is crucial not only for the recovery of critical metals like Co(II) and Li(I) from the cathode material as a secondary resource but also from an environmental perspective. This study explores the use of a series of aqueous biphasic systems (ABS) with synthesized tetrabutylphosphonium ionic liquids (ILs) and ammonium sulfate as extraction platforms for metals from LIB cathode. Firstly, liquid–liquid equilibrium phase diagrams for each ABS were established, and partitioning experiments were conducted to assess the Co(II), Ni(II), Mn(II), and Li(I) recovery efficiencies. We observed distinct partitioning behaviors for the metals, with tetrabutylphosphonium diethylenetriaminepentaacetate, [TBP][DTPA], showing recovery efficiencies exceeding 98% for Co(II), Ni(II), and Mn(II). At the same time, Li(I) was predominantly retained in the aqueous salt-rich phase. By fine-tuning ABS operational parameters such as pH, temperature, system composition, and phase ratio, we identified optimal conditions for extracting metals from the cathode material of lithium-cobalt-oxide (LCO) batteries using sulfate lixiviate. Introducing [TBP][DTPA] after the leaching process induced ABS, achieving remarkable recovery efficiency over 95% for Co(II) in the IL-rich phase, with all Li(I) remaining in the lower phase. Cobalt was subsequently extracted using oxalic acid to precipitate as Co-oxalate from concentrate, while Li(I) was isolated from the aqueous phase using ammonium carbonate. After the “cleaning” of the IL-rich phase, the [TBP][DTPA] was recovered and reused in four consecutive cycles, with small detected losses on the recovery efficiency of Co(II) and Li(I). Therefore, our innovative strategy combines sulfate-based lixiviants with IL-ABS technology, thereby enhancing selectivity and sustainability within one of the most efficient lixiviant systems widely employed in the industry. This technological advancement presents a promising pathway for the recycling of spent batteries, offering substantial environmental advantages within the well-established and extensively utilized realm of metal recovery technology in the industry.
T2  - Separation and Purification Technology
T1  - Sustainable recovery of cobalt and lithium from lithium-ion battery cathode material by combining sulfate leachates and aqueous biphasic systems based on tetrabutylphosphonium-ionic liquids
VL  - 348
SP  - 127707
DO  - 10.1016/j.seppur.2024.127707
ER  - 
@article{
author = "Mušović, Jasmina and Tekić, Danijela and Marić, Slađana and Jocić, Ana and Stanković, Dalibor and Dimitrijević, Aleksandra",
year = "2024",
abstract = "The consistent expansion of the lithium-ion battery (LIB) market, coupled with their relatively brief lifespan, necessitates the development of efficient and sustainable LIB recycling strategies. Recycling is crucial not only for the recovery of critical metals like Co(II) and Li(I) from the cathode material as a secondary resource but also from an environmental perspective. This study explores the use of a series of aqueous biphasic systems (ABS) with synthesized tetrabutylphosphonium ionic liquids (ILs) and ammonium sulfate as extraction platforms for metals from LIB cathode. Firstly, liquid–liquid equilibrium phase diagrams for each ABS were established, and partitioning experiments were conducted to assess the Co(II), Ni(II), Mn(II), and Li(I) recovery efficiencies. We observed distinct partitioning behaviors for the metals, with tetrabutylphosphonium diethylenetriaminepentaacetate, [TBP][DTPA], showing recovery efficiencies exceeding 98% for Co(II), Ni(II), and Mn(II). At the same time, Li(I) was predominantly retained in the aqueous salt-rich phase. By fine-tuning ABS operational parameters such as pH, temperature, system composition, and phase ratio, we identified optimal conditions for extracting metals from the cathode material of lithium-cobalt-oxide (LCO) batteries using sulfate lixiviate. Introducing [TBP][DTPA] after the leaching process induced ABS, achieving remarkable recovery efficiency over 95% for Co(II) in the IL-rich phase, with all Li(I) remaining in the lower phase. Cobalt was subsequently extracted using oxalic acid to precipitate as Co-oxalate from concentrate, while Li(I) was isolated from the aqueous phase using ammonium carbonate. After the “cleaning” of the IL-rich phase, the [TBP][DTPA] was recovered and reused in four consecutive cycles, with small detected losses on the recovery efficiency of Co(II) and Li(I). Therefore, our innovative strategy combines sulfate-based lixiviants with IL-ABS technology, thereby enhancing selectivity and sustainability within one of the most efficient lixiviant systems widely employed in the industry. This technological advancement presents a promising pathway for the recycling of spent batteries, offering substantial environmental advantages within the well-established and extensively utilized realm of metal recovery technology in the industry.",
journal = "Separation and Purification Technology",
title = "Sustainable recovery of cobalt and lithium from lithium-ion battery cathode material by combining sulfate leachates and aqueous biphasic systems based on tetrabutylphosphonium-ionic liquids",
volume = "348",
pages = "127707",
doi = "10.1016/j.seppur.2024.127707"
}
Mušović, J., Tekić, D., Marić, S., Jocić, A., Stanković, D.,& Dimitrijević, A.. (2024). Sustainable recovery of cobalt and lithium from lithium-ion battery cathode material by combining sulfate leachates and aqueous biphasic systems based on tetrabutylphosphonium-ionic liquids. in Separation and Purification Technology, 348, 127707.
https://doi.org/10.1016/j.seppur.2024.127707
Mušović J, Tekić D, Marić S, Jocić A, Stanković D, Dimitrijević A. Sustainable recovery of cobalt and lithium from lithium-ion battery cathode material by combining sulfate leachates and aqueous biphasic systems based on tetrabutylphosphonium-ionic liquids. in Separation and Purification Technology. 2024;348:127707.
doi:10.1016/j.seppur.2024.127707 .
Mušović, Jasmina, Tekić, Danijela, Marić, Slađana, Jocić, Ana, Stanković, Dalibor, Dimitrijević, Aleksandra, "Sustainable recovery of cobalt and lithium from lithium-ion battery cathode material by combining sulfate leachates and aqueous biphasic systems based on tetrabutylphosphonium-ionic liquids" in Separation and Purification Technology, 348 (2024):127707,
https://doi.org/10.1016/j.seppur.2024.127707 . .
2

Customizable cholinium-based aqueous biphasic systems as ecofriendly extraction platform for removal of pesticide from wastewaters

Marić, Slađana; Jocić, Ana; Tekić, Danijela; Mušović, Jasmina; Milićević, Jelena; Dimitrijević, Aleksandra

(2024)

TY  - JOUR
AU  - Marić, Slađana
AU  - Jocić, Ana
AU  - Tekić, Danijela
AU  - Mušović, Jasmina
AU  - Milićević, Jelena
AU  - Dimitrijević, Aleksandra
PY  - 2024
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/12838
AB  - This study explores the use of a series of cholinium ionic liquids (ILs) or salts in combination with polypropylene glycol 400 to form aqueous biphasic systems (ABS) for extracting various polarity pesticides (dicamba, clomazone, pyraclostrobin, and deltamethrin) from water. We assessed five cholinium-based salting-out agents ([Ch][DHP], [Ch]Cl, [Ch][Ac], [Ch][Lac], and [Ch][Nic]), chosen for their structural diversity and unique properties, such as high salting-out potential and different ability to undergo specific interactions. Liquid-liquid equilibrium phase diagrams were established, and partition experiments were conducted to evaluate extraction efficiency. Different partition patterns were obtained for studied pesticides, with [Ch][DHP] demonstrating the highest efficiency exceeding 90 % for each target pesticide due to its strong salting-out ability. On the other hand, more diverse partition trends due to specific interactions were obtained for low-melting cholinium-ILs ABS. The effect of pH and temperature on the partitioning behavior in [Ch][Ac]-based ABS highlighted the cholinium ILs extraction system's customizable nature. Focusing on [Ch]Cl for its eco-friendly aspects, widespread availability and excellent extraction performance, we optimized parameters for the removal of pesticides from real samples, applying the technology to spiked agricultural wastewater with an extraction efficiency of over 99 %. Our findings demonstrate the potential of cholinium-based IL-ABS in reducing environmental pollution through efficient pesticide extraction.
T2  - Separation and Purification Technology
T1  - Customizable cholinium-based aqueous biphasic systems as ecofriendly extraction platform for removal of pesticide from wastewaters
VL  - 340
SP  - 126609
DO  - 10.1016/j.seppur.2024.126609
ER  - 
@article{
author = "Marić, Slađana and Jocić, Ana and Tekić, Danijela and Mušović, Jasmina and Milićević, Jelena and Dimitrijević, Aleksandra",
year = "2024",
abstract = "This study explores the use of a series of cholinium ionic liquids (ILs) or salts in combination with polypropylene glycol 400 to form aqueous biphasic systems (ABS) for extracting various polarity pesticides (dicamba, clomazone, pyraclostrobin, and deltamethrin) from water. We assessed five cholinium-based salting-out agents ([Ch][DHP], [Ch]Cl, [Ch][Ac], [Ch][Lac], and [Ch][Nic]), chosen for their structural diversity and unique properties, such as high salting-out potential and different ability to undergo specific interactions. Liquid-liquid equilibrium phase diagrams were established, and partition experiments were conducted to evaluate extraction efficiency. Different partition patterns were obtained for studied pesticides, with [Ch][DHP] demonstrating the highest efficiency exceeding 90 % for each target pesticide due to its strong salting-out ability. On the other hand, more diverse partition trends due to specific interactions were obtained for low-melting cholinium-ILs ABS. The effect of pH and temperature on the partitioning behavior in [Ch][Ac]-based ABS highlighted the cholinium ILs extraction system's customizable nature. Focusing on [Ch]Cl for its eco-friendly aspects, widespread availability and excellent extraction performance, we optimized parameters for the removal of pesticides from real samples, applying the technology to spiked agricultural wastewater with an extraction efficiency of over 99 %. Our findings demonstrate the potential of cholinium-based IL-ABS in reducing environmental pollution through efficient pesticide extraction.",
journal = "Separation and Purification Technology",
title = "Customizable cholinium-based aqueous biphasic systems as ecofriendly extraction platform for removal of pesticide from wastewaters",
volume = "340",
pages = "126609",
doi = "10.1016/j.seppur.2024.126609"
}
Marić, S., Jocić, A., Tekić, D., Mušović, J., Milićević, J.,& Dimitrijević, A.. (2024). Customizable cholinium-based aqueous biphasic systems as ecofriendly extraction platform for removal of pesticide from wastewaters. in Separation and Purification Technology, 340, 126609.
https://doi.org/10.1016/j.seppur.2024.126609
Marić S, Jocić A, Tekić D, Mušović J, Milićević J, Dimitrijević A. Customizable cholinium-based aqueous biphasic systems as ecofriendly extraction platform for removal of pesticide from wastewaters. in Separation and Purification Technology. 2024;340:126609.
doi:10.1016/j.seppur.2024.126609 .
Marić, Slađana, Jocić, Ana, Tekić, Danijela, Mušović, Jasmina, Milićević, Jelena, Dimitrijević, Aleksandra, "Customizable cholinium-based aqueous biphasic systems as ecofriendly extraction platform for removal of pesticide from wastewaters" in Separation and Purification Technology, 340 (2024):126609,
https://doi.org/10.1016/j.seppur.2024.126609 . .
2
1

Green Extraction Strategy Using Bio-Based Aqueous Biphasic Systems for Polyphenol Valorization from Grape By-Product

Dimitrijević, Aleksandra; Marić, Slađana; Jocić, Ana; Tekić, Danijela; Mušović, Jasmina; Amaral, Joana S.

(2024)

TY  - JOUR
AU  - Dimitrijević, Aleksandra
AU  - Marić, Slađana
AU  - Jocić, Ana
AU  - Tekić, Danijela
AU  - Mušović, Jasmina
AU  - Amaral, Joana S.
PY  - 2024
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/13029
AB  - Polyphenols are natural compounds with enhanced antioxidant properties. They are present in relatively high concentrations in fruit/vegetable by-products. Therefore, there is a need for the development of efficient and cost-effective methods for the separation and purification of these valuable compounds. Traditional extraction with organic solvents needs to be switched to novel methods that are more efficient, with reduced extraction times and low consumption of organic solvents. Aiming at developing sustainable processes for the separation and purification of phenolic compounds, we used three model compounds, namely resveratrol, quercetin, and gallic acid, to investigate ionic liquid-based aqueous biphasic systems (IL-ABSs) formed by choliniumbased IL in combination with polypropylene glycol with a molecular mass of 400 g/mol (PPG400). The ABS composition in the two-phase region was selected according to a previously determined phase diagram. Extraction studies indicated the preferential partition of resveratrol and quercetin toward the hydrophobic PPG-rich phase that is mainly dominated by its hydrophobic nature and the strong salting-out effect of ILs. On the other hand, due to its considerably hydrophilic nature, gallic acid preferentially migrates toward the IL phase. The achieved results from grape stem extract demonstrated high extraction efficiencies of cholinium dihydrogen phosphate (~99% for resveratrol for the PPG phase and 78% for gallic acid for the IL phase), with considerable selectivity, demonstrating promising outcomes for potential applications.
T2  - Foods
T1  - Green Extraction Strategy Using Bio-Based Aqueous Biphasic Systems for Polyphenol Valorization from Grape By-Product
VL  - 13
IS  - 6
SP  - 954
DO  - 10.3390/foods13060954
ER  - 
@article{
author = "Dimitrijević, Aleksandra and Marić, Slađana and Jocić, Ana and Tekić, Danijela and Mušović, Jasmina and Amaral, Joana S.",
year = "2024",
abstract = "Polyphenols are natural compounds with enhanced antioxidant properties. They are present in relatively high concentrations in fruit/vegetable by-products. Therefore, there is a need for the development of efficient and cost-effective methods for the separation and purification of these valuable compounds. Traditional extraction with organic solvents needs to be switched to novel methods that are more efficient, with reduced extraction times and low consumption of organic solvents. Aiming at developing sustainable processes for the separation and purification of phenolic compounds, we used three model compounds, namely resveratrol, quercetin, and gallic acid, to investigate ionic liquid-based aqueous biphasic systems (IL-ABSs) formed by choliniumbased IL in combination with polypropylene glycol with a molecular mass of 400 g/mol (PPG400). The ABS composition in the two-phase region was selected according to a previously determined phase diagram. Extraction studies indicated the preferential partition of resveratrol and quercetin toward the hydrophobic PPG-rich phase that is mainly dominated by its hydrophobic nature and the strong salting-out effect of ILs. On the other hand, due to its considerably hydrophilic nature, gallic acid preferentially migrates toward the IL phase. The achieved results from grape stem extract demonstrated high extraction efficiencies of cholinium dihydrogen phosphate (~99% for resveratrol for the PPG phase and 78% for gallic acid for the IL phase), with considerable selectivity, demonstrating promising outcomes for potential applications.",
journal = "Foods",
title = "Green Extraction Strategy Using Bio-Based Aqueous Biphasic Systems for Polyphenol Valorization from Grape By-Product",
volume = "13",
number = "6",
pages = "954",
doi = "10.3390/foods13060954"
}
Dimitrijević, A., Marić, S., Jocić, A., Tekić, D., Mušović, J.,& Amaral, J. S.. (2024). Green Extraction Strategy Using Bio-Based Aqueous Biphasic Systems for Polyphenol Valorization from Grape By-Product. in Foods, 13(6), 954.
https://doi.org/10.3390/foods13060954
Dimitrijević A, Marić S, Jocić A, Tekić D, Mušović J, Amaral JS. Green Extraction Strategy Using Bio-Based Aqueous Biphasic Systems for Polyphenol Valorization from Grape By-Product. in Foods. 2024;13(6):954.
doi:10.3390/foods13060954 .
Dimitrijević, Aleksandra, Marić, Slađana, Jocić, Ana, Tekić, Danijela, Mušović, Jasmina, Amaral, Joana S., "Green Extraction Strategy Using Bio-Based Aqueous Biphasic Systems for Polyphenol Valorization from Grape By-Product" in Foods, 13, no. 6 (2024):954,
https://doi.org/10.3390/foods13060954 . .