Radotić, Ksenija

Link to this page

Authority KeyName Variants
ca9316e8-0574-48a2-a22c-0d622b8f3c96
  • Radotić, Ksenija (7)
Projects
Synthesis, processing and characterization of nanostructured materials for application in the field of energy, mechanical engineering, environmental protection and biomedicine Study of structure-function relationships in the plant cell wall and modifications of the wall structure by enzyme engineering
Characterization and application of fungal metabolites and assessment of new biofungicides potential bilateral project Structural anisotropy of plant cell walls of various origin and their constituent polymers, using differential polarized laser scanning microscopy (DP-LSM)
The membranes as sites of interaction between the intracellular and apoplastic environments: studies of the bioenergetics and signaling using biophysical and biochemical techniques. Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200053 (University of Belgrade, Institute for Multidisciplinary Research)
Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200116 (University of Belgrade, Faculty of Agriculture) Identification of predictive molecular markers for cancer progression, response to therapy and disease outcome
Simultaneous Bioremediation and Soilification of Degraded Areas to Preserve Natural Resources of Biologically Active Substances, and Development and Production of Biomaterials and Dietetic Products Advanced technologies for monitoring and environmental protection from chemical pollutants and radiation burden
Functional, Functionalized and Advanced Nanomaterials Zero- to Three-Dimensional Nanostructures for Application in Electronics and Renewable Energy Sources: Synthesis, Characterization and Processing
National Academy of Sciences of Ukraine (47/2015-2016)

Author's Bibliography

Cell wall response to UV radiation in needles of Picea omorika

Mitrović, Aleksandra Lj.; Simonović-Radosavljević, Jasna; Prokopijević, Miloš; Spasojević, Dragica; Kovačević, Jovana; Prodanović, Olivera; Todorović, Bratislav; Matović, Branko; Stanković, Mira; Maksimović, Vuk; Mutavdžić, Dragosav; Skočić, Miloš; Pešić, Mirjana; Prokić, Ljiljana; Radotić, Ksenija

(2021)

TY  - JOUR
AU  - Mitrović, Aleksandra Lj.
AU  - Simonović-Radosavljević, Jasna
AU  - Prokopijević, Miloš
AU  - Spasojević, Dragica
AU  - Kovačević, Jovana
AU  - Prodanović, Olivera
AU  - Todorović, Bratislav
AU  - Matović, Branko
AU  - Stanković, Mira
AU  - Maksimović, Vuk
AU  - Mutavdžić, Dragosav
AU  - Skočić, Miloš
AU  - Pešić, Mirjana
AU  - Prokić, Ljiljana
AU  - Radotić, Ksenija
PY  - 2021
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/9129
AB  - The UV-B represents the minor fraction of the solar spectrum, while UV-C is not contained in natural solar radiation, but both radiation types can cause damaging effects in plants. Cell walls (CWs) are one of the targets for external stressors. Juvenile P. omorika trees were treated either with 21 day-high doses UV-B or with 7 day- UV-C in open-top chambers. Using spectroscopic and biochemical techniques, it was shown that the response to UV radiation includes numerous modifications in needle CW structure: relative content of xylan, xyloglucan, lignin and cellulose decreased; cellulose crystallinity changed; yield of lignin monomers with stronger connection of C[dbnd]C in side chain with the ring increased; re-distribution of inter- and intra-polymer H-bonds occurred. The recovery was mediated by an increase in the activities and changes in isoform profiles of CW bound covalent peroxidases (POD) and polyphenol oxidases (PO) (UV–B), and ionic POD and covalent PO (UV–C). A connection between activities of specific POD/PO isoforms and phenolic species (m- and p-coumaric acid, pinoresinol and cinnamic acid derivatives) was demonstrated, and supported by changes in the sRNA profile. In vivo fluorometry showed phenolics accumulation in needle epidermal CWs. These results imply transversal connections between polymers and changed mechanical properties of needle CW as a response to UV. The CW alterations enabled maintenance of physiological functions, as indicated by the preserved chlorophyll content and/or organization. The current study provides evidence that in conifers, needle CW response to both UV-B and UV-C includes biochemical modifications and structural remodeling. © 2021 Elsevier Masson SAS
T2  - Plant Physiology and Biochemistry
T1  - Cell wall response to UV radiation in needles of Picea omorika
VL  - 161
SP  - 176
EP  - 190
DO  - 10.1016/j.plaphy.2021.02.007
ER  - 
@article{
author = "Mitrović, Aleksandra Lj. and Simonović-Radosavljević, Jasna and Prokopijević, Miloš and Spasojević, Dragica and Kovačević, Jovana and Prodanović, Olivera and Todorović, Bratislav and Matović, Branko and Stanković, Mira and Maksimović, Vuk and Mutavdžić, Dragosav and Skočić, Miloš and Pešić, Mirjana and Prokić, Ljiljana and Radotić, Ksenija",
year = "2021",
url = "https://vinar.vin.bg.ac.rs/handle/123456789/9129",
abstract = "The UV-B represents the minor fraction of the solar spectrum, while UV-C is not contained in natural solar radiation, but both radiation types can cause damaging effects in plants. Cell walls (CWs) are one of the targets for external stressors. Juvenile P. omorika trees were treated either with 21 day-high doses UV-B or with 7 day- UV-C in open-top chambers. Using spectroscopic and biochemical techniques, it was shown that the response to UV radiation includes numerous modifications in needle CW structure: relative content of xylan, xyloglucan, lignin and cellulose decreased; cellulose crystallinity changed; yield of lignin monomers with stronger connection of C[dbnd]C in side chain with the ring increased; re-distribution of inter- and intra-polymer H-bonds occurred. The recovery was mediated by an increase in the activities and changes in isoform profiles of CW bound covalent peroxidases (POD) and polyphenol oxidases (PO) (UV–B), and ionic POD and covalent PO (UV–C). A connection between activities of specific POD/PO isoforms and phenolic species (m- and p-coumaric acid, pinoresinol and cinnamic acid derivatives) was demonstrated, and supported by changes in the sRNA profile. In vivo fluorometry showed phenolics accumulation in needle epidermal CWs. These results imply transversal connections between polymers and changed mechanical properties of needle CW as a response to UV. The CW alterations enabled maintenance of physiological functions, as indicated by the preserved chlorophyll content and/or organization. The current study provides evidence that in conifers, needle CW response to both UV-B and UV-C includes biochemical modifications and structural remodeling. © 2021 Elsevier Masson SAS",
journal = "Plant Physiology and Biochemistry",
title = "Cell wall response to UV radiation in needles of Picea omorika",
volume = "161",
pages = "176-190",
doi = "10.1016/j.plaphy.2021.02.007"
}
Mitrović, A. Lj., Simonović-Radosavljević, J., Prokopijević, M., Spasojević, D., Kovačević, J., Prodanović, O., Todorović, B., Matović, B., Stanković, M., Maksimović, V., Mutavdžić, D., Skočić, M., Pešić, M., Prokić, L.,& Radotić, K. (2021). Cell wall response to UV radiation in needles of Picea omorika.
Plant Physiology and Biochemistry, 161, 176-190.
https://doi.org/10.1016/j.plaphy.2021.02.007
Mitrović AL, Simonović-Radosavljević J, Prokopijević M, Spasojević D, Kovačević J, Prodanović O, Todorović B, Matović B, Stanković M, Maksimović V, Mutavdžić D, Skočić M, Pešić M, Prokić L, Radotić K. Cell wall response to UV radiation in needles of Picea omorika. Plant Physiology and Biochemistry. 2021;161:176-190
Mitrović Aleksandra Lj., Simonović-Radosavljević Jasna, Prokopijević Miloš, Spasojević Dragica, Kovačević Jovana, Prodanović Olivera, Todorović Bratislav, Matović Branko, Stanković Mira, Maksimović Vuk, Mutavdžić Dragosav, Skočić Miloš, Pešić Mirjana, Prokić Ljiljana, Radotić Ksenija, "Cell wall response to UV radiation in needles of Picea omorika" Plant Physiology and Biochemistry, 161 (2021):176-190,
https://doi.org/10.1016/j.plaphy.2021.02.007 .

Effects of Ag + Ion Doping on UV Radiation Absorption and Luminescence Profiles of Fluorapatite Nanomaterials Obtained by Neutralization Method

Milojkov, Dušan V.; Stanić, Vojislav; Dimović, Slavko; Mutavdžić, Dragosav R.; Živković-Radovanović, Vukosava; Janjić, Goran V.; Radotić, Ksenija

(2019)

TY  - JOUR
AU  - Milojkov, Dušan V.
AU  - Stanić, Vojislav
AU  - Dimović, Slavko
AU  - Mutavdžić, Dragosav R.
AU  - Živković-Radovanović, Vukosava
AU  - Janjić, Goran V.
AU  - Radotić, Ksenija
PY  - 2019
UR  - http://vinar.vin.bg.ac.rs/handle/123456789/8629
AB  - In the present study we have analyzed effects of Ag+ ions doping on energetic profiles of nanophosphors materials based on fluorapatite crystal system. The UV radiation absorption and luminescence properties of monophase fluorapatite (FAP) and Ag+ doped fluorapatite (AgFAP) nanomaterials obtained by neutralization method were investigated using the photoluminescence spectrophotometry. The excitation-emission profiles of nanomaterials were analyzed statistically by MCR-ALS method and number of fluorophores was extracted. FAP lattice absorbed light at 350 nm in the UVA part of spectrum, and with increasing concentration of Ag+ ions new absorption maximum appeared at 270 nm in the UVC part. Fluorescence of FAP nanoparticles was in violet region of visible part of the spectrum, with a red shift to the green region when Ag+ was doped in lattice. MCR-ALS analyses of fluorescence spectra confirm formation of two maxima, at 484 and 505 nm, as a consequence of Ag+ ions doping in FAP lattice at Ca1 (4f) sites. The results of quantum chemical calculations showed that an Ag+ ion is stronger bonded to the binding site 1 (-1352:6 kcal/mol) than to the binding site 2 (-1249:0 kcal/mol). Considering that AgFAP1 nanopowder absorbs photons over all part of UV radiation spectrum, this material might be used as potential radiation protective nanomaterial. © 2019 Polish Academy of Sciences. All rights reserved.
T2  - Acta Physica Polonica A
T1  - Effects of Ag + Ion Doping on UV Radiation Absorption and Luminescence Profiles of Fluorapatite Nanomaterials Obtained by Neutralization Method
VL  - 136
IS  - 1
SP  - 86
EP  - 91
DO  - 10.12693/APhysPolA.136.86
ER  - 
@article{
author = "Milojkov, Dušan V. and Stanić, Vojislav and Dimović, Slavko and Mutavdžić, Dragosav R. and Živković-Radovanović, Vukosava and Janjić, Goran V. and Radotić, Ksenija",
year = "2019",
url = "http://vinar.vin.bg.ac.rs/handle/123456789/8629",
abstract = "In the present study we have analyzed effects of Ag+ ions doping on energetic profiles of nanophosphors materials based on fluorapatite crystal system. The UV radiation absorption and luminescence properties of monophase fluorapatite (FAP) and Ag+ doped fluorapatite (AgFAP) nanomaterials obtained by neutralization method were investigated using the photoluminescence spectrophotometry. The excitation-emission profiles of nanomaterials were analyzed statistically by MCR-ALS method and number of fluorophores was extracted. FAP lattice absorbed light at 350 nm in the UVA part of spectrum, and with increasing concentration of Ag+ ions new absorption maximum appeared at 270 nm in the UVC part. Fluorescence of FAP nanoparticles was in violet region of visible part of the spectrum, with a red shift to the green region when Ag+ was doped in lattice. MCR-ALS analyses of fluorescence spectra confirm formation of two maxima, at 484 and 505 nm, as a consequence of Ag+ ions doping in FAP lattice at Ca1 (4f) sites. The results of quantum chemical calculations showed that an Ag+ ion is stronger bonded to the binding site 1 (-1352:6 kcal/mol) than to the binding site 2 (-1249:0 kcal/mol). Considering that AgFAP1 nanopowder absorbs photons over all part of UV radiation spectrum, this material might be used as potential radiation protective nanomaterial. © 2019 Polish Academy of Sciences. All rights reserved.",
journal = "Acta Physica Polonica A",
title = "Effects of Ag + Ion Doping on UV Radiation Absorption and Luminescence Profiles of Fluorapatite Nanomaterials Obtained by Neutralization Method",
volume = "136",
number = "1",
pages = "86-91",
doi = "10.12693/APhysPolA.136.86"
}
Milojkov, D. V., Stanić, V., Dimović, S., Mutavdžić, D. R., Živković-Radovanović, V., Janjić, G. V.,& Radotić, K. (2019). Effects of Ag + Ion Doping on UV Radiation Absorption and Luminescence Profiles of Fluorapatite Nanomaterials Obtained by Neutralization Method.
Acta Physica Polonica A, 136(1), 86-91.
https://doi.org/10.12693/APhysPolA.136.86
Milojkov DV, Stanić V, Dimović S, Mutavdžić DR, Živković-Radovanović V, Janjić GV, Radotić K. Effects of Ag + Ion Doping on UV Radiation Absorption and Luminescence Profiles of Fluorapatite Nanomaterials Obtained by Neutralization Method. Acta Physica Polonica A. 2019;136(1):86-91
Milojkov Dušan V., Stanić Vojislav, Dimović Slavko, Mutavdžić Dragosav R., Živković-Radovanović Vukosava, Janjić Goran V., Radotić Ksenija, "Effects of Ag + Ion Doping on UV Radiation Absorption and Luminescence Profiles of Fluorapatite Nanomaterials Obtained by Neutralization Method" Acta Physica Polonica A, 136, no. 1 (2019):86-91,
https://doi.org/10.12693/APhysPolA.136.86 .

Bacterial cellulose-lignin composite hydrogel as a promising agent in chronic wound healing

Zmejkoski, Danica; Spasojević, Dragica; Orlovska, Irina V.; Kozyrovska, Natalia O.; Soković, Marina; Glamočlija, Jasmina; Dmitrović, Svetlana; Matović, Branko; Tasić, Nikola B.; Maksimović, Vuk M.; Sosnin, Mikhail; Radotić, Ksenija

(2018)

TY  - JOUR
AU  - Zmejkoski, Danica
AU  - Spasojević, Dragica
AU  - Orlovska, Irina V.
AU  - Kozyrovska, Natalia O.
AU  - Soković, Marina
AU  - Glamočlija, Jasmina
AU  - Dmitrović, Svetlana
AU  - Matović, Branko
AU  - Tasić, Nikola B.
AU  - Maksimović, Vuk M.
AU  - Sosnin, Mikhail
AU  - Radotić, Ksenija
PY  - 2018
UR  - http://vinar.vin.bg.ac.rs/handle/123456789/7769
AB  - Lignins and lignin-derived compounds are known to have antibacterial properties. The wound healing agents in the form of dressings produce faster skin repair and decrease pain in patients. In order to create an efficient antimicrobial agent in the form of dressing in the treatment of chronic wounds, a composite hydrogel of bacterial cellulose (BC) and dehydrogenative polymer of coniferyl alcohol (DHP), BC-DHP, was designed. Novel composite showed inhibitory or bactericidal effects against selected pathogenic bacteria, including clinically isolated ones. The highest release rate of DHP was in the first hour, while after 24 h there was still slow release of small amounts of DHP from BC-DHP during 72 h monitoring. High-performance liquid chromatography coupled with mass-spectrometry showed that BC-DHP releases DHP oligomers, which are proposed to be antimicrobially active DHP fractions. Scanning electron microscopy and atomic force microscopy micrographs proved a dose-dependent interaction of DHP with BC, which resulted in a decrease of the pore number and size in the cellulose membrane. The Fourier-transform infrared absorption spectra of the BC-DHP showed that DHP was partly bound to the BC matrix. The swelling and crystallinity degree were dose-dependent. All obtained results confirmed BC-DHP composite as a promising hydrogel for wounds healing.
T2  - International Journal of Biological Macromolecules
T1  - Bacterial cellulose-lignin composite hydrogel as a promising agent in chronic wound healing
VL  - 118
SP  - 494
EP  - 503
DO  - 10.1016/j.ijbiomac.2018.06.067
ER  - 
@article{
author = "Zmejkoski, Danica and Spasojević, Dragica and Orlovska, Irina V. and Kozyrovska, Natalia O. and Soković, Marina and Glamočlija, Jasmina and Dmitrović, Svetlana and Matović, Branko and Tasić, Nikola B. and Maksimović, Vuk M. and Sosnin, Mikhail and Radotić, Ksenija",
year = "2018",
url = "http://vinar.vin.bg.ac.rs/handle/123456789/7769",
abstract = "Lignins and lignin-derived compounds are known to have antibacterial properties. The wound healing agents in the form of dressings produce faster skin repair and decrease pain in patients. In order to create an efficient antimicrobial agent in the form of dressing in the treatment of chronic wounds, a composite hydrogel of bacterial cellulose (BC) and dehydrogenative polymer of coniferyl alcohol (DHP), BC-DHP, was designed. Novel composite showed inhibitory or bactericidal effects against selected pathogenic bacteria, including clinically isolated ones. The highest release rate of DHP was in the first hour, while after 24 h there was still slow release of small amounts of DHP from BC-DHP during 72 h monitoring. High-performance liquid chromatography coupled with mass-spectrometry showed that BC-DHP releases DHP oligomers, which are proposed to be antimicrobially active DHP fractions. Scanning electron microscopy and atomic force microscopy micrographs proved a dose-dependent interaction of DHP with BC, which resulted in a decrease of the pore number and size in the cellulose membrane. The Fourier-transform infrared absorption spectra of the BC-DHP showed that DHP was partly bound to the BC matrix. The swelling and crystallinity degree were dose-dependent. All obtained results confirmed BC-DHP composite as a promising hydrogel for wounds healing.",
journal = "International Journal of Biological Macromolecules",
title = "Bacterial cellulose-lignin composite hydrogel as a promising agent in chronic wound healing",
volume = "118",
pages = "494-503",
doi = "10.1016/j.ijbiomac.2018.06.067"
}
Zmejkoski, D., Spasojević, D., Orlovska, I. V., Kozyrovska, N. O., Soković, M., Glamočlija, J., Dmitrović, S., Matović, B., Tasić, N. B., Maksimović, V. M., Sosnin, M.,& Radotić, K. (2018). Bacterial cellulose-lignin composite hydrogel as a promising agent in chronic wound healing.
International Journal of Biological Macromolecules, 118, 494-503.
https://doi.org/10.1016/j.ijbiomac.2018.06.067
Zmejkoski D, Spasojević D, Orlovska IV, Kozyrovska NO, Soković M, Glamočlija J, Dmitrović S, Matović B, Tasić NB, Maksimović VM, Sosnin M, Radotić K. Bacterial cellulose-lignin composite hydrogel as a promising agent in chronic wound healing. International Journal of Biological Macromolecules. 2018;118:494-503
Zmejkoski Danica, Spasojević Dragica, Orlovska Irina V., Kozyrovska Natalia O., Soković Marina, Glamočlija Jasmina, Dmitrović Svetlana, Matović Branko, Tasić Nikola B., Maksimović Vuk M., Sosnin Mikhail, Radotić Ksenija, "Bacterial cellulose-lignin composite hydrogel as a promising agent in chronic wound healing" International Journal of Biological Macromolecules, 118 (2018):494-503,
https://doi.org/10.1016/j.ijbiomac.2018.06.067 .
3
42
33
38

Improving stability of cerium oxide nanoparticles by microbial polysaccharides coating

Milenković, Ivana; Radotić, Ksenija; Matović, Branko; Prekajski, Marija D.; Živković, Ljiljana; Jakovljević, Dragica; Gojgić-Cvijović, Gordana; Beškoski, Vladimir P.

(2018)

TY  - JOUR
AU  - Milenković, Ivana
AU  - Radotić, Ksenija
AU  - Matović, Branko
AU  - Prekajski, Marija D.
AU  - Živković, Ljiljana
AU  - Jakovljević, Dragica
AU  - Gojgić-Cvijović, Gordana
AU  - Beškoski, Vladimir P.
PY  - 2018
UR  - http://www.doiserbia.nb.rs/Article.aspx?ID=0352-51391800031M
UR  - http://vinar.vin.bg.ac.rs/handle/123456789/7764
AB  - Cerium oxide (CeO2) nanoparticles (CONPs) are interesting biomaterials with various applications in biomedicine, cosmetics and the pharmaceutical industry, but with limited practical application because of their low stability in aqueous media. The aim of this study was to obtain CONPs with increased stability by coating the particles. Microbial exopolysaccharides (levan, pullulan) and glucose were used to prepare CONPs under different synthesis conditions. Coating was attempted by adding the carbohydrates during (direct coating) or after (subsequent coating) the synthesis of CONPs. The obtained nanoparticles were characterized by X-Ray diffraction analysis, Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The suspension stability of the uncoated and coated CONPs in aqueous media was evaluated by measuring the hydrodynamic size, zeta potential and turbidity. The FT-IR spectra revealed the differences between coated CONPs and showed the success of subsequent coating with carbohydrates. Coating with carbohydrates improved the stability the CONP suspension by decreasing the size of aggregated particles. The suspensions of levan- and glucose-coated CONPs had the best stability. In this study, CONPs were prepared using non-toxic materials, which were completely environmentally friendly. The obtained results open new horizons for CONP synthesis, improving their biological applications.
T2  - Journal of the Serbian Chemical Society
T1  - Improving stability of cerium oxide nanoparticles by microbial polysaccharides coating
VL  - 83
IS  - 6
SP  - 745
EP  - 757
DO  - 10.2298/JSC171205031M
ER  - 
@article{
author = "Milenković, Ivana and Radotić, Ksenija and Matović, Branko and Prekajski, Marija D. and Živković, Ljiljana and Jakovljević, Dragica and Gojgić-Cvijović, Gordana and Beškoski, Vladimir P.",
year = "2018",
url = "http://www.doiserbia.nb.rs/Article.aspx?ID=0352-51391800031M, http://vinar.vin.bg.ac.rs/handle/123456789/7764",
abstract = "Cerium oxide (CeO2) nanoparticles (CONPs) are interesting biomaterials with various applications in biomedicine, cosmetics and the pharmaceutical industry, but with limited practical application because of their low stability in aqueous media. The aim of this study was to obtain CONPs with increased stability by coating the particles. Microbial exopolysaccharides (levan, pullulan) and glucose were used to prepare CONPs under different synthesis conditions. Coating was attempted by adding the carbohydrates during (direct coating) or after (subsequent coating) the synthesis of CONPs. The obtained nanoparticles were characterized by X-Ray diffraction analysis, Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The suspension stability of the uncoated and coated CONPs in aqueous media was evaluated by measuring the hydrodynamic size, zeta potential and turbidity. The FT-IR spectra revealed the differences between coated CONPs and showed the success of subsequent coating with carbohydrates. Coating with carbohydrates improved the stability the CONP suspension by decreasing the size of aggregated particles. The suspensions of levan- and glucose-coated CONPs had the best stability. In this study, CONPs were prepared using non-toxic materials, which were completely environmentally friendly. The obtained results open new horizons for CONP synthesis, improving their biological applications.",
journal = "Journal of the Serbian Chemical Society",
title = "Improving stability of cerium oxide nanoparticles by microbial polysaccharides coating",
volume = "83",
number = "6",
pages = "745-757",
doi = "10.2298/JSC171205031M"
}
Milenković, I., Radotić, K., Matović, B., Prekajski, M. D., Živković, L., Jakovljević, D., Gojgić-Cvijović, G.,& Beškoski, V. P. (2018). Improving stability of cerium oxide nanoparticles by microbial polysaccharides coating.
Journal of the Serbian Chemical Society, 83(6), 745-757.
https://doi.org/10.2298/JSC171205031M
Milenković I, Radotić K, Matović B, Prekajski MD, Živković L, Jakovljević D, Gojgić-Cvijović G, Beškoski VP. Improving stability of cerium oxide nanoparticles by microbial polysaccharides coating. Journal of the Serbian Chemical Society. 2018;83(6):745-757
Milenković Ivana, Radotić Ksenija, Matović Branko, Prekajski Marija D., Živković Ljiljana, Jakovljević Dragica, Gojgić-Cvijović Gordana, Beškoski Vladimir P., "Improving stability of cerium oxide nanoparticles by microbial polysaccharides coating" Journal of the Serbian Chemical Society, 83, no. 6 (2018):745-757,
https://doi.org/10.2298/JSC171205031M .
9
6
6

Comparison of macromolecular interactions in the cell walls of hardwood, softwood and maize by fluorescence and FTIR spectroscopy, differential polarization laser scanning microscopy and X-ray diffraction

Djikanovic, D.; Devečerski, Aleksandar; Steinbach, G.; Simonovic, J.; Matović, Branko; Garab, G.; Kalauzi, Aleksandar; Radotić, Ksenija

(2016)

TY  - JOUR
AU  - Djikanovic, D.
AU  - Devečerski, Aleksandar
AU  - Steinbach, G.
AU  - Simonovic, J.
AU  - Matović, Branko
AU  - Garab, G.
AU  - Kalauzi, Aleksandar
AU  - Radotić, Ksenija
PY  - 2016
UR  - http://vinar.vin.bg.ac.rs/handle/123456789/1007
AB  - Interactions between macromolecules in the cell walls of different plant origin were compared, namely spruce wood (Picea omorika (PaniA double dagger) PurkiAe) as an example of softwood, maple wood (Acer platanoides L.) as a hardwood and maize stems (Zea mays L.) as a herbaceous plant from the grass family and widely used agricultural plant. Interactions of macromolecules in isolated cell walls from the three species were compared by using Fourier transform infrared spectroscopy, X-ray diffraction and fluorescence spectroscopy. Linear dichroism of the cell walls was observed by using differential polarization laser scanning microscope (DP-LSM), which provides information of macromolecular order. This method has not previously been used for comparison of the cell walls of various plant origins. It was shown that the maize cell walls have higher amount of hydrogen bonds that lead to more regular packing of cellulose molecules, simpler structure of lignin, and a higher crystallinity of the cell wall in relation to the walls of woody plants. DP-LSM and fluorescence spectroscopy results indicate that maize has simpler and more ordered structure than both woody species. The results of this work provide new data for comparison of the cell wall properties that may be important for selection of appropriate plant for possible applications as a source of biomass. This may be a contribution to the development of efficient deconstruction and separation technologies that enable release of sugar and aromatic compounds from the cell wall macromolecular structure.
T2  - Wood Science and Technology
T1  - Comparison of macromolecular interactions in the cell walls of hardwood, softwood and maize by fluorescence and FTIR spectroscopy, differential polarization laser scanning microscopy and X-ray diffraction
VL  - 50
IS  - 3
SP  - 547
EP  - 566
DO  - 10.1007/s00226-015-0792-y
ER  - 
@article{
author = "Djikanovic, D. and Devečerski, Aleksandar and Steinbach, G. and Simonovic, J. and Matović, Branko and Garab, G. and Kalauzi, Aleksandar and Radotić, Ksenija",
year = "2016",
url = "http://vinar.vin.bg.ac.rs/handle/123456789/1007",
abstract = "Interactions between macromolecules in the cell walls of different plant origin were compared, namely spruce wood (Picea omorika (PaniA double dagger) PurkiAe) as an example of softwood, maple wood (Acer platanoides L.) as a hardwood and maize stems (Zea mays L.) as a herbaceous plant from the grass family and widely used agricultural plant. Interactions of macromolecules in isolated cell walls from the three species were compared by using Fourier transform infrared spectroscopy, X-ray diffraction and fluorescence spectroscopy. Linear dichroism of the cell walls was observed by using differential polarization laser scanning microscope (DP-LSM), which provides information of macromolecular order. This method has not previously been used for comparison of the cell walls of various plant origins. It was shown that the maize cell walls have higher amount of hydrogen bonds that lead to more regular packing of cellulose molecules, simpler structure of lignin, and a higher crystallinity of the cell wall in relation to the walls of woody plants. DP-LSM and fluorescence spectroscopy results indicate that maize has simpler and more ordered structure than both woody species. The results of this work provide new data for comparison of the cell wall properties that may be important for selection of appropriate plant for possible applications as a source of biomass. This may be a contribution to the development of efficient deconstruction and separation technologies that enable release of sugar and aromatic compounds from the cell wall macromolecular structure.",
journal = "Wood Science and Technology",
title = "Comparison of macromolecular interactions in the cell walls of hardwood, softwood and maize by fluorescence and FTIR spectroscopy, differential polarization laser scanning microscopy and X-ray diffraction",
volume = "50",
number = "3",
pages = "547-566",
doi = "10.1007/s00226-015-0792-y"
}
Djikanovic, D., Devečerski, A., Steinbach, G., Simonovic, J., Matović, B., Garab, G., Kalauzi, A.,& Radotić, K. (2016). Comparison of macromolecular interactions in the cell walls of hardwood, softwood and maize by fluorescence and FTIR spectroscopy, differential polarization laser scanning microscopy and X-ray diffraction.
Wood Science and Technology, 50(3), 547-566.
https://doi.org/10.1007/s00226-015-0792-y
Djikanovic D, Devečerski A, Steinbach G, Simonovic J, Matović B, Garab G, Kalauzi A, Radotić K. Comparison of macromolecular interactions in the cell walls of hardwood, softwood and maize by fluorescence and FTIR spectroscopy, differential polarization laser scanning microscopy and X-ray diffraction. Wood Science and Technology. 2016;50(3):547-566
Djikanovic D., Devečerski Aleksandar, Steinbach G., Simonovic J., Matović Branko, Garab G., Kalauzi Aleksandar, Radotić Ksenija, "Comparison of macromolecular interactions in the cell walls of hardwood, softwood and maize by fluorescence and FTIR spectroscopy, differential polarization laser scanning microscopy and X-ray diffraction" Wood Science and Technology, 50, no. 3 (2016):547-566,
https://doi.org/10.1007/s00226-015-0792-y .
9
7
10

Lignin model compound in alginate hydrogel: a strong antimicrobial agent with high potential in wound treatment

Spasojević, Dragica; Zmejkoski, Danica; Glamočlija, Jasmina; Nikolic, Milos; Soković, Marina; Milosevic, Verica; Jaric, Ivana; Stojanovic, Marijana; Marinkovic, Emilija; Barisani-Asenbauer, Talin; Prodanovic, Radivoje; Jovanovic, Milos; Radotić, Ksenija

(2016)

TY  - JOUR
AU  - Spasojević, Dragica
AU  - Zmejkoski, Danica
AU  - Glamočlija, Jasmina
AU  - Nikolic, Milos
AU  - Soković, Marina
AU  - Milosevic, Verica
AU  - Jaric, Ivana
AU  - Stojanovic, Marijana
AU  - Marinkovic, Emilija
AU  - Barisani-Asenbauer, Talin
AU  - Prodanovic, Radivoje
AU  - Jovanovic, Milos
AU  - Radotić, Ksenija
PY  - 2016
UR  - http://vinar.vin.bg.ac.rs/handle/123456789/1336
AB  - Nowadays bacterial resistance to known antibiotics is a serious health problem. In order to achieve more efficient treatment, lately there is an effort to find new substances, such as certain biomaterials, that are non-toxic to humans with antibiotic potential. Lignins and lignin-derived compounds have been proposed to be good candidates for use in medicine and health maintenance. In this study, the antibacterial activity of the lignin model polymer dehydrogenate polymer (DHP) in alginate hydrogel (Alg) was studied. The obtained results show that DHP-Alg has strong antimicrobial activity against several bacterial strains and biofilms and does not have a toxic effect on human epithelial cells. These results strongly suggest its application as a wound healing agent or as an adjunct substance for wound treatments. (C) 2016 Elsevier B.V. and International Society of Chemotherapy. All rights reserved.
T2  - International Journal of Antimicrobial Agents
T1  - Lignin model compound in alginate hydrogel: a strong antimicrobial agent with high potential in wound treatment
VL  - 48
IS  - 6
SP  - 732
EP  - 735
DO  - 10.1016/j.ijantimicag.2016.08.014
ER  - 
@article{
author = "Spasojević, Dragica and Zmejkoski, Danica and Glamočlija, Jasmina and Nikolic, Milos and Soković, Marina and Milosevic, Verica and Jaric, Ivana and Stojanovic, Marijana and Marinkovic, Emilija and Barisani-Asenbauer, Talin and Prodanovic, Radivoje and Jovanovic, Milos and Radotić, Ksenija",
year = "2016",
url = "http://vinar.vin.bg.ac.rs/handle/123456789/1336",
abstract = "Nowadays bacterial resistance to known antibiotics is a serious health problem. In order to achieve more efficient treatment, lately there is an effort to find new substances, such as certain biomaterials, that are non-toxic to humans with antibiotic potential. Lignins and lignin-derived compounds have been proposed to be good candidates for use in medicine and health maintenance. In this study, the antibacterial activity of the lignin model polymer dehydrogenate polymer (DHP) in alginate hydrogel (Alg) was studied. The obtained results show that DHP-Alg has strong antimicrobial activity against several bacterial strains and biofilms and does not have a toxic effect on human epithelial cells. These results strongly suggest its application as a wound healing agent or as an adjunct substance for wound treatments. (C) 2016 Elsevier B.V. and International Society of Chemotherapy. All rights reserved.",
journal = "International Journal of Antimicrobial Agents",
title = "Lignin model compound in alginate hydrogel: a strong antimicrobial agent with high potential in wound treatment",
volume = "48",
number = "6",
pages = "732-735",
doi = "10.1016/j.ijantimicag.2016.08.014"
}
Spasojević, D., Zmejkoski, D., Glamočlija, J., Nikolic, M., Soković, M., Milosevic, V., Jaric, I., Stojanovic, M., Marinkovic, E., Barisani-Asenbauer, T., Prodanovic, R., Jovanovic, M.,& Radotić, K. (2016). Lignin model compound in alginate hydrogel: a strong antimicrobial agent with high potential in wound treatment.
International Journal of Antimicrobial Agents, 48(6), 732-735.
https://doi.org/10.1016/j.ijantimicag.2016.08.014
Spasojević D, Zmejkoski D, Glamočlija J, Nikolic M, Soković M, Milosevic V, Jaric I, Stojanovic M, Marinkovic E, Barisani-Asenbauer T, Prodanovic R, Jovanovic M, Radotić K. Lignin model compound in alginate hydrogel: a strong antimicrobial agent with high potential in wound treatment. International Journal of Antimicrobial Agents. 2016;48(6):732-735
Spasojević Dragica, Zmejkoski Danica, Glamočlija Jasmina, Nikolic Milos, Soković Marina, Milosevic Verica, Jaric Ivana, Stojanovic Marijana, Marinkovic Emilija, Barisani-Asenbauer Talin, Prodanovic Radivoje, Jovanovic Milos, Radotić Ksenija, "Lignin model compound in alginate hydrogel: a strong antimicrobial agent with high potential in wound treatment" International Journal of Antimicrobial Agents, 48, no. 6 (2016):732-735,
https://doi.org/10.1016/j.ijantimicag.2016.08.014 .
16
17
18

Anti-cancer effects of cerium oxide nanoparticles and its intracellular redox activity

Pešić, Milica; Podolski-Renić, Ana; Stojkovic, Sonja; Matović, Branko; Zmejkoski, Danica; Kojic, Vesna; Bogdanovic, Gordana; Pavicevic, Aleksandra; Mojovic, Milos; Savic, Aleksandar; Milenković, Ivana; Kalauzi, Aleksandar; Radotić, Ksenija

(2015)

TY  - JOUR
AU  - Pešić, Milica
AU  - Podolski-Renić, Ana
AU  - Stojkovic, Sonja
AU  - Matović, Branko
AU  - Zmejkoski, Danica
AU  - Kojic, Vesna
AU  - Bogdanovic, Gordana
AU  - Pavicevic, Aleksandra
AU  - Mojovic, Milos
AU  - Savic, Aleksandar
AU  - Milenković, Ivana
AU  - Kalauzi, Aleksandar
AU  - Radotić, Ksenija
PY  - 2015
UR  - http://vinar.vin.bg.ac.rs/handle/123456789/519
AB  - Data on medical applications of cerium oxide nanoparticles CeO2 (CONP) are promising, yet information regarding their action in cells is incomplete and there are conflicting reports about in vitro toxicity. Herein, we have studied cytotoxic effect of CONP in several cancer and normal cell lines and their potential to change intracellular redox status. The IC50 was achieved only in two of eight tested cell lines, melanoma 518A2 and colorectal adenocarcinoma HT-29. Self-propagating room temperature method was applied to produce CONP with an average crystalline size of 4 nm. The results confirmed presence of Ce3+ and O2- vacancies. The induction of cell death by CONP and the production of reactive oxygen species (ROS) were analyzed by flow-cytometry. Free radicals related antioxidant capacity of the cells was studied by the reduction of stable free radical TEMPONE using electron spin resonance spectroscopy. CONP showed low or moderate cytotoxicity in cancer cell lines: adenocarcinoma DLD1 and multi-drug resistant DLD1-TxR, non-small cell lung carcinoma NCI-H460 and multi-drug resistant NCI-H460/R, while normal cell lines (keratinocytes HaCaT, lung fetal fibroblasts MRC-5) were insensitive. The most sensitive were 518A2 melanoma and HT-29 colorectal adenocarcinoma cell lines, with the IC50 values being between 100 and 200 mu M. Decreased rate of TEMPONE reduction and increased production of certain ROS species (peroxynitrite and hydrogen peroxide anion) indicates that free radical metabolism, thus redox status was changed, and antioxidant capacity damaged in the CONP treated 518A2 and HT-29 cells. In conclusion, changes in intracellular redox status induced by CONP are partly attributed to the prooxidant activity of the nanoparticles. Further, ROS induced cell damages might eventually lead to the cell death. However, low inhibitory potential of CONP in the other human cell lines tested indicates that CONP may be safe for human usage in industry and medicine. (C) 2015 Elsevier Ireland Ltd. All rights reserved.
T2  - Chemico-biological Interactions
T1  - Anti-cancer effects of cerium oxide nanoparticles and its intracellular redox activity
VL  - 232
SP  - 85
EP  - 93
DO  - 10.1016/j.cbi.2015.03.013
ER  - 
@article{
author = "Pešić, Milica and Podolski-Renić, Ana and Stojkovic, Sonja and Matović, Branko and Zmejkoski, Danica and Kojic, Vesna and Bogdanovic, Gordana and Pavicevic, Aleksandra and Mojovic, Milos and Savic, Aleksandar and Milenković, Ivana and Kalauzi, Aleksandar and Radotić, Ksenija",
year = "2015",
url = "http://vinar.vin.bg.ac.rs/handle/123456789/519",
abstract = "Data on medical applications of cerium oxide nanoparticles CeO2 (CONP) are promising, yet information regarding their action in cells is incomplete and there are conflicting reports about in vitro toxicity. Herein, we have studied cytotoxic effect of CONP in several cancer and normal cell lines and their potential to change intracellular redox status. The IC50 was achieved only in two of eight tested cell lines, melanoma 518A2 and colorectal adenocarcinoma HT-29. Self-propagating room temperature method was applied to produce CONP with an average crystalline size of 4 nm. The results confirmed presence of Ce3+ and O2- vacancies. The induction of cell death by CONP and the production of reactive oxygen species (ROS) were analyzed by flow-cytometry. Free radicals related antioxidant capacity of the cells was studied by the reduction of stable free radical TEMPONE using electron spin resonance spectroscopy. CONP showed low or moderate cytotoxicity in cancer cell lines: adenocarcinoma DLD1 and multi-drug resistant DLD1-TxR, non-small cell lung carcinoma NCI-H460 and multi-drug resistant NCI-H460/R, while normal cell lines (keratinocytes HaCaT, lung fetal fibroblasts MRC-5) were insensitive. The most sensitive were 518A2 melanoma and HT-29 colorectal adenocarcinoma cell lines, with the IC50 values being between 100 and 200 mu M. Decreased rate of TEMPONE reduction and increased production of certain ROS species (peroxynitrite and hydrogen peroxide anion) indicates that free radical metabolism, thus redox status was changed, and antioxidant capacity damaged in the CONP treated 518A2 and HT-29 cells. In conclusion, changes in intracellular redox status induced by CONP are partly attributed to the prooxidant activity of the nanoparticles. Further, ROS induced cell damages might eventually lead to the cell death. However, low inhibitory potential of CONP in the other human cell lines tested indicates that CONP may be safe for human usage in industry and medicine. (C) 2015 Elsevier Ireland Ltd. All rights reserved.",
journal = "Chemico-biological Interactions",
title = "Anti-cancer effects of cerium oxide nanoparticles and its intracellular redox activity",
volume = "232",
pages = "85-93",
doi = "10.1016/j.cbi.2015.03.013"
}
Pešić, M., Podolski-Renić, A., Stojkovic, S., Matović, B., Zmejkoski, D., Kojic, V., Bogdanovic, G., Pavicevic, A., Mojovic, M., Savic, A., Milenković, I., Kalauzi, A.,& Radotić, K. (2015). Anti-cancer effects of cerium oxide nanoparticles and its intracellular redox activity.
Chemico-biological Interactions, 232, 85-93.
https://doi.org/10.1016/j.cbi.2015.03.013
Pešić M, Podolski-Renić A, Stojkovic S, Matović B, Zmejkoski D, Kojic V, Bogdanovic G, Pavicevic A, Mojovic M, Savic A, Milenković I, Kalauzi A, Radotić K. Anti-cancer effects of cerium oxide nanoparticles and its intracellular redox activity. Chemico-biological Interactions. 2015;232:85-93
Pešić Milica, Podolski-Renić Ana, Stojkovic Sonja, Matović Branko, Zmejkoski Danica, Kojic Vesna, Bogdanovic Gordana, Pavicevic Aleksandra, Mojovic Milos, Savic Aleksandar, Milenković Ivana, Kalauzi Aleksandar, Radotić Ksenija, "Anti-cancer effects of cerium oxide nanoparticles and its intracellular redox activity" Chemico-biological Interactions, 232 (2015):85-93,
https://doi.org/10.1016/j.cbi.2015.03.013 .
77
61
77