Jovanović, Tijana

Link to this page

Authority KeyName Variants
bbae0313-79f6-40a9-9c73-5fe8df1a89a5
  • Jovanović, Tijana (3)
Projects

Author's Bibliography

The comparative study of biocomposites based on hydrochar and chitosan-modified urea-formaldehyde resins

Ristić, Mirjana; Samaržija-Jovanović, Suzana; Jovanović, Vojislav; Kostić, Marija; Jovanović, Tijana; Marković, Gordana; Kojić, Marija; Vujčić, Ivica; Marinović-Cincović, Milena

(2023)

TY  - JOUR
AU  - Ristić, Mirjana
AU  - Samaržija-Jovanović, Suzana
AU  - Jovanović, Vojislav
AU  - Kostić, Marija
AU  - Jovanović, Tijana
AU  - Marković, Gordana
AU  - Kojić, Marija
AU  - Vujčić, Ivica
AU  - Marinović-Cincović, Milena
PY  - 2023
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/11081
AB  - To provide new insight into the field of urea-formaldehyde (UF) adhesives science, in this work, for the first time, UF resin was modified with hydrochar of spent mushroom substrate (HCUF) and chitosan (CHUF) to investigate the effect of these bio-fillers on the hydrolytic and thermal stability of in situ prepared UF resins. The characterization of the modified UF biocomposites was performed using X-ray diffraction analysis (XRD), Fourier transforms infrared spectroscopy (FTIR), non-isothermal thermogravimetric analysis (TG), differential thermal gravimetry (DTG), and differential thermal analysis (DTA). Scanning electron micrographs (SEM) of the CHUF and HCUF biocomposites show a spherical structure that differs from each other because the surface of the CHUF biocomposite has pronounced pores that form a network structure. With its hydroxyl and amino groups, chitosan bonding to UF resin through hydrogen bonds, which is confirmed by FTIR analysis. The content of free FA in CHUF biocomposite is 0.06%, while that of HCUF is higher and amounts to 0.48%. The content of released FA in both modified UF biocomposites was similar (2.5% and 2.8% for CHUF and HCUF, respectively). The hydrolytic stability of CHUF is slightly higher compared to the HCUF biocomposite. Thermal analysis shows that the CHUF is thermally more stable because it starts to decompose at a slightly higher temperature than the HCUF biocomposite.
T2  - Journal of Vinyl and Additive Technology
T1  - The comparative study of biocomposites based on hydrochar and chitosan-modified urea-formaldehyde resins
IS  - Early View
DO  - 10.1002/vnl.22014
ER  - 
@article{
author = "Ristić, Mirjana and Samaržija-Jovanović, Suzana and Jovanović, Vojislav and Kostić, Marija and Jovanović, Tijana and Marković, Gordana and Kojić, Marija and Vujčić, Ivica and Marinović-Cincović, Milena",
year = "2023",
abstract = "To provide new insight into the field of urea-formaldehyde (UF) adhesives science, in this work, for the first time, UF resin was modified with hydrochar of spent mushroom substrate (HCUF) and chitosan (CHUF) to investigate the effect of these bio-fillers on the hydrolytic and thermal stability of in situ prepared UF resins. The characterization of the modified UF biocomposites was performed using X-ray diffraction analysis (XRD), Fourier transforms infrared spectroscopy (FTIR), non-isothermal thermogravimetric analysis (TG), differential thermal gravimetry (DTG), and differential thermal analysis (DTA). Scanning electron micrographs (SEM) of the CHUF and HCUF biocomposites show a spherical structure that differs from each other because the surface of the CHUF biocomposite has pronounced pores that form a network structure. With its hydroxyl and amino groups, chitosan bonding to UF resin through hydrogen bonds, which is confirmed by FTIR analysis. The content of free FA in CHUF biocomposite is 0.06%, while that of HCUF is higher and amounts to 0.48%. The content of released FA in both modified UF biocomposites was similar (2.5% and 2.8% for CHUF and HCUF, respectively). The hydrolytic stability of CHUF is slightly higher compared to the HCUF biocomposite. Thermal analysis shows that the CHUF is thermally more stable because it starts to decompose at a slightly higher temperature than the HCUF biocomposite.",
journal = "Journal of Vinyl and Additive Technology",
title = "The comparative study of biocomposites based on hydrochar and chitosan-modified urea-formaldehyde resins",
number = "Early View",
doi = "10.1002/vnl.22014"
}
Ristić, M., Samaržija-Jovanović, S., Jovanović, V., Kostić, M., Jovanović, T., Marković, G., Kojić, M., Vujčić, I.,& Marinović-Cincović, M.. (2023). The comparative study of biocomposites based on hydrochar and chitosan-modified urea-formaldehyde resins. in Journal of Vinyl and Additive Technology(Early View).
https://doi.org/10.1002/vnl.22014
Ristić M, Samaržija-Jovanović S, Jovanović V, Kostić M, Jovanović T, Marković G, Kojić M, Vujčić I, Marinović-Cincović M. The comparative study of biocomposites based on hydrochar and chitosan-modified urea-formaldehyde resins. in Journal of Vinyl and Additive Technology. 2023;(Early View).
doi:10.1002/vnl.22014 .
Ristić, Mirjana, Samaržija-Jovanović, Suzana, Jovanović, Vojislav, Kostić, Marija, Jovanović, Tijana, Marković, Gordana, Kojić, Marija, Vujčić, Ivica, Marinović-Cincović, Milena, "The comparative study of biocomposites based on hydrochar and chitosan-modified urea-formaldehyde resins" in Journal of Vinyl and Additive Technology, no. Early View (2023),
https://doi.org/10.1002/vnl.22014 . .

Synthesis, characterization, hydrolytic, and thermal stability of urea–formaldehyde composites based on modified montmorillonite K10

Samaržija-Jovanović, Suzana; Jovanović, Vojislav; Jovanović, Tijana; Petković, Branka; Marković, Gordana; Porobić, Slavica; Marinović-Cincović, Milena

(2022)

TY  - JOUR
AU  - Samaržija-Jovanović, Suzana
AU  - Jovanović, Vojislav
AU  - Jovanović, Tijana
AU  - Petković, Branka
AU  - Marković, Gordana
AU  - Porobić, Slavica
AU  - Marinović-Cincović, Milena
PY  - 2022
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/10164
AB  - In this study, the thermal and hydrolytic properties of composite systems based on the urea–formaldehyde resin (UF) and eco-friendly montmorillonite (K10) as formaldehyde (FA) scavenger were examined. UF resin with molar ratio FA:U = 0.8 was synthesized in situ with inactivated, and activated K10. K10 was activated by sulfuric acid (H2SO4) with and without magnetic stirring. The samples are marked with $${\mathrm{K}10}_{\left({\mathrm{H}}_{2}{\mathrm{SO}}_{4}\right)}$$,$${\mathrm{K}10}_{{\left({\mathrm{H}}_{2}{\mathrm{SO}}_{4 }\right)}_{\mathrm{ST}}}$$, $${\mathrm{UF}/\mathrm{K}10}_{\left({\mathrm{H}}_{2}{\mathrm{SO}}_{4 }\right)}$$, and $${\mathrm{UF}/\mathrm{K}10}_{{\left({\mathrm{H}}_{2}{\mathrm{SO}}_{4 }\right)}_{\mathrm{ST}}}$$, respectively. X-ray diffraction analysis and non-isothermal thermogravimetric analysis, supported by data from Fourier transform infrared spectroscopy and scanning electron microscopy were used to characterize the samples. Based on the measurement of specific surface area (SSA), the degree of activation was determined. Measurement of the SSA shows that higher values were obtained for modified K10 compared to inactive K10. The amount of free and liberated FA was 0.06% and 4.6% for $${\mathrm{UF}/\mathrm{K}10}_{\left({\mathrm{H}}_{2}{\mathrm{SO}}_{4 }\right)}$$and 0.12% and 4% for $${\mathrm{UF}/\mathrm{K}10}_{{\left({\mathrm{H}}_{2}{\mathrm{SO}}_{4 }\right)}_{\mathrm{ST}}}$$. This research showed that the $${\mathrm{UF}/\mathrm{K}10}_{\left({\mathrm{H}}_{2}{\mathrm{SO}}_{4 }\right)}$$composite has a lesser amount of free FA (0.06%) in comparison to the $${\mathrm{UF}/\mathrm{K}10}_{{\left({\mathrm{H}}_{2}{\mathrm{SO}}_{4 }\right)}_{\mathrm{ST}}}$$composite (0.12%). The $${\mathrm{UF}/\mathrm{K}10}_{{\left({\mathrm{H}}_{2}{\mathrm{SO}}_{4 }\right)}_{\mathrm{ST}}}$$composite has a higher resistance to acidic hydrolysis. The modified $${\mathrm{UF}/\mathrm{K}10}_{\left({\mathrm{H}}_{2}{\mathrm{SO}}_{4}\right)}$$composite is more thermally stable than $${\mathrm{UF}/\mathrm{K}10}_{{\left({\mathrm{H}}_{2}{\mathrm{SO}}_{4 }\right)}_{\mathrm{ST}}}$$composite.
T2  - Journal of Thermal Analysis and Calorimetry
T1  - Synthesis, characterization, hydrolytic, and thermal stability of urea–formaldehyde composites based on modified montmorillonite K10
DO  - 10.1007/s10973-022-11238-2
ER  - 
@article{
author = "Samaržija-Jovanović, Suzana and Jovanović, Vojislav and Jovanović, Tijana and Petković, Branka and Marković, Gordana and Porobić, Slavica and Marinović-Cincović, Milena",
year = "2022",
abstract = "In this study, the thermal and hydrolytic properties of composite systems based on the urea–formaldehyde resin (UF) and eco-friendly montmorillonite (K10) as formaldehyde (FA) scavenger were examined. UF resin with molar ratio FA:U = 0.8 was synthesized in situ with inactivated, and activated K10. K10 was activated by sulfuric acid (H2SO4) with and without magnetic stirring. The samples are marked with $${\mathrm{K}10}_{\left({\mathrm{H}}_{2}{\mathrm{SO}}_{4}\right)}$$,$${\mathrm{K}10}_{{\left({\mathrm{H}}_{2}{\mathrm{SO}}_{4 }\right)}_{\mathrm{ST}}}$$, $${\mathrm{UF}/\mathrm{K}10}_{\left({\mathrm{H}}_{2}{\mathrm{SO}}_{4 }\right)}$$, and $${\mathrm{UF}/\mathrm{K}10}_{{\left({\mathrm{H}}_{2}{\mathrm{SO}}_{4 }\right)}_{\mathrm{ST}}}$$, respectively. X-ray diffraction analysis and non-isothermal thermogravimetric analysis, supported by data from Fourier transform infrared spectroscopy and scanning electron microscopy were used to characterize the samples. Based on the measurement of specific surface area (SSA), the degree of activation was determined. Measurement of the SSA shows that higher values were obtained for modified K10 compared to inactive K10. The amount of free and liberated FA was 0.06% and 4.6% for $${\mathrm{UF}/\mathrm{K}10}_{\left({\mathrm{H}}_{2}{\mathrm{SO}}_{4 }\right)}$$and 0.12% and 4% for $${\mathrm{UF}/\mathrm{K}10}_{{\left({\mathrm{H}}_{2}{\mathrm{SO}}_{4 }\right)}_{\mathrm{ST}}}$$. This research showed that the $${\mathrm{UF}/\mathrm{K}10}_{\left({\mathrm{H}}_{2}{\mathrm{SO}}_{4 }\right)}$$composite has a lesser amount of free FA (0.06%) in comparison to the $${\mathrm{UF}/\mathrm{K}10}_{{\left({\mathrm{H}}_{2}{\mathrm{SO}}_{4 }\right)}_{\mathrm{ST}}}$$composite (0.12%). The $${\mathrm{UF}/\mathrm{K}10}_{{\left({\mathrm{H}}_{2}{\mathrm{SO}}_{4 }\right)}_{\mathrm{ST}}}$$composite has a higher resistance to acidic hydrolysis. The modified $${\mathrm{UF}/\mathrm{K}10}_{\left({\mathrm{H}}_{2}{\mathrm{SO}}_{4}\right)}$$composite is more thermally stable than $${\mathrm{UF}/\mathrm{K}10}_{{\left({\mathrm{H}}_{2}{\mathrm{SO}}_{4 }\right)}_{\mathrm{ST}}}$$composite.",
journal = "Journal of Thermal Analysis and Calorimetry",
title = "Synthesis, characterization, hydrolytic, and thermal stability of urea–formaldehyde composites based on modified montmorillonite K10",
doi = "10.1007/s10973-022-11238-2"
}
Samaržija-Jovanović, S., Jovanović, V., Jovanović, T., Petković, B., Marković, G., Porobić, S.,& Marinović-Cincović, M.. (2022). Synthesis, characterization, hydrolytic, and thermal stability of urea–formaldehyde composites based on modified montmorillonite K10. in Journal of Thermal Analysis and Calorimetry.
https://doi.org/10.1007/s10973-022-11238-2
Samaržija-Jovanović S, Jovanović V, Jovanović T, Petković B, Marković G, Porobić S, Marinović-Cincović M. Synthesis, characterization, hydrolytic, and thermal stability of urea–formaldehyde composites based on modified montmorillonite K10. in Journal of Thermal Analysis and Calorimetry. 2022;.
doi:10.1007/s10973-022-11238-2 .
Samaržija-Jovanović, Suzana, Jovanović, Vojislav, Jovanović, Tijana, Petković, Branka, Marković, Gordana, Porobić, Slavica, Marinović-Cincović, Milena, "Synthesis, characterization, hydrolytic, and thermal stability of urea–formaldehyde composites based on modified montmorillonite K10" in Journal of Thermal Analysis and Calorimetry (2022),
https://doi.org/10.1007/s10973-022-11238-2 . .
1
1

Hydrolytic, thermal and radiation stability of modified urea-formaldehyde composites: Influence of montmorillonite particle size

Samaržija-Jovanović, Suzana; Jovanović, Vojislav; Jovanović, Tijana; Kostić, Marija; Petković, Branka; Marković, Gordana; Marinović-Cincović, Milena

(2022)

TY  - JOUR
AU  - Samaržija-Jovanović, Suzana
AU  - Jovanović, Vojislav
AU  - Jovanović, Tijana
AU  - Kostić, Marija
AU  - Petković, Branka
AU  - Marković, Gordana
AU  - Marinović-Cincović, Milena
PY  - 2022
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/10193
AB  - Urea-formaldehyde (UF) composites with a formaldehyde/urea (FA/U) ratio = 0.8 and different particle sizes of montmorillonite (MMT), namely UF/KSF and UF/K10 were synthesized. The hydrolytic stability of modified UF composites was determined by measuring the content of the liberated formaldehyde of modified UF composites after acid hydrolysis. The synthesized modified UF composites were irradiated (50 kGy) and the effect of γ–irradiation was evaluated on the basis of these thermal behaviors. The thermal behavior was studied by non-isothermal thermo-gravimetric analysis (TG), differential thermo-gravimetry (DTG), and differential thermal analysis (DTA) supported by data from Fourier transform infrared spectroscopy (FTIR). The minimum percentages of free (0.4%) and liberated (1.2%) formaldehyde were obtained in the UF/KSF composite. The modified UF/KSF composite shows better radiation resistance than the modified UF/K10 composite. The shift of temperature values for the selected mass losses (T5%) to higher temperatures indicates an increase in the thermal stability of the UF/K10 composite after γ–irradiation. γ–irradiation causes a decrease in the absorption intensity of bands in the FTIR spectrum of a modified UF/KSF composite and an increase in the absorption intensity of bands in the FTIR spectrum of a modified UF/K10 composite. © 2022 Elsevier Ltd
T2  - International Journal of Adhesion and Adhesives
T1  - Hydrolytic, thermal and radiation stability of modified urea-formaldehyde composites: Influence of montmorillonite particle size
VL  - 115
SP  - 103131
DO  - 10.1016/j.ijadhadh.2022.103131
ER  - 
@article{
author = "Samaržija-Jovanović, Suzana and Jovanović, Vojislav and Jovanović, Tijana and Kostić, Marija and Petković, Branka and Marković, Gordana and Marinović-Cincović, Milena",
year = "2022",
abstract = "Urea-formaldehyde (UF) composites with a formaldehyde/urea (FA/U) ratio = 0.8 and different particle sizes of montmorillonite (MMT), namely UF/KSF and UF/K10 were synthesized. The hydrolytic stability of modified UF composites was determined by measuring the content of the liberated formaldehyde of modified UF composites after acid hydrolysis. The synthesized modified UF composites were irradiated (50 kGy) and the effect of γ–irradiation was evaluated on the basis of these thermal behaviors. The thermal behavior was studied by non-isothermal thermo-gravimetric analysis (TG), differential thermo-gravimetry (DTG), and differential thermal analysis (DTA) supported by data from Fourier transform infrared spectroscopy (FTIR). The minimum percentages of free (0.4%) and liberated (1.2%) formaldehyde were obtained in the UF/KSF composite. The modified UF/KSF composite shows better radiation resistance than the modified UF/K10 composite. The shift of temperature values for the selected mass losses (T5%) to higher temperatures indicates an increase in the thermal stability of the UF/K10 composite after γ–irradiation. γ–irradiation causes a decrease in the absorption intensity of bands in the FTIR spectrum of a modified UF/KSF composite and an increase in the absorption intensity of bands in the FTIR spectrum of a modified UF/K10 composite. © 2022 Elsevier Ltd",
journal = "International Journal of Adhesion and Adhesives",
title = "Hydrolytic, thermal and radiation stability of modified urea-formaldehyde composites: Influence of montmorillonite particle size",
volume = "115",
pages = "103131",
doi = "10.1016/j.ijadhadh.2022.103131"
}
Samaržija-Jovanović, S., Jovanović, V., Jovanović, T., Kostić, M., Petković, B., Marković, G.,& Marinović-Cincović, M.. (2022). Hydrolytic, thermal and radiation stability of modified urea-formaldehyde composites: Influence of montmorillonite particle size. in International Journal of Adhesion and Adhesives, 115, 103131.
https://doi.org/10.1016/j.ijadhadh.2022.103131
Samaržija-Jovanović S, Jovanović V, Jovanović T, Kostić M, Petković B, Marković G, Marinović-Cincović M. Hydrolytic, thermal and radiation stability of modified urea-formaldehyde composites: Influence of montmorillonite particle size. in International Journal of Adhesion and Adhesives. 2022;115:103131.
doi:10.1016/j.ijadhadh.2022.103131 .
Samaržija-Jovanović, Suzana, Jovanović, Vojislav, Jovanović, Tijana, Kostić, Marija, Petković, Branka, Marković, Gordana, Marinović-Cincović, Milena, "Hydrolytic, thermal and radiation stability of modified urea-formaldehyde composites: Influence of montmorillonite particle size" in International Journal of Adhesion and Adhesives, 115 (2022):103131,
https://doi.org/10.1016/j.ijadhadh.2022.103131 . .
3
3