Di Girolamo, Diego

Link to this page

Authority KeyName Variants
17099b72-bc06-4bf3-a65b-7a08b0ebcef9
  • Di Girolamo, Diego (1)
Projects

Author's Bibliography

Effect of the doping of PC61BM electron transport layer with carbon nanodots on the performance of inverted planar MAPbI3 perovskite solar cells

Subair, Riyas; Di Girolamo, Diego; Bodik, Michal; Nadazdy, Vojtech; Li, Bo; Nadazdy, Peter; Marković, Zoran M.; Benkovicova, Monika; Chlpik, Juraj; Kotlar, Mario; Halahovets, Yuriy; Šiffalovič, Peter; Jergel, Matej; Tian, Jianjun; Brunetti, Francesca; Majkova, Eva

(2019)

TY  - JOUR
AU  - Subair, Riyas
AU  - Di Girolamo, Diego
AU  - Bodik, Michal
AU  - Nadazdy, Vojtech
AU  - Li, Bo
AU  - Nadazdy, Peter
AU  - Marković, Zoran M.
AU  - Benkovicova, Monika
AU  - Chlpik, Juraj
AU  - Kotlar, Mario
AU  - Halahovets, Yuriy
AU  - Šiffalovič, Peter
AU  - Jergel, Matej
AU  - Tian, Jianjun
AU  - Brunetti, Francesca
AU  - Majkova, Eva
PY  - 2019
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/8435
AB  - The doping effect of carbon nanodots (CNDs) in the PC61BM electron-transport layer on the performance of inverted planar MAPbI3 perovskite solar cells (PSCs) having two different kinds of the hole-transport layer, namely organic PEDOT:PSS and inorganic NiOx, was investigated. The CH3NH3PbI3 perovskite layer was deposited in air at 35% humidity. An average 11% and 12% enhancement of the power conversion efficiency (PCE) was achieved for 1 wt% CNDs doping in the PSCs with PEDOT:PSS and NiOx, respectively. This improvement is attributed to high electron density of CNDs resulting in a triple increase of the electrical conductivity of the PC61BM layer and passivation of the perovskite/PC61BM interface that is reflected by an increase of the open-circuit voltage. In line with this, parallel resistance and fill factor of the PSCs are also improved. Moreover, the energy-resolved electrochemical impedance spectroscopy revealed additional free-charge carriers in the PC61BM layer generated under illumination that were detected via the polaron states formation in the band gap with positive effect on the short-circuit current. All these factors contribute to the PCE improvement. Stability tests of the PSC with PEDOT:PSS under a continuous 24 hour 1.5 AM illumination showed a five times smaller final PCE decrease for the 1 wt% CNDs doping of the PC61BM layer comparing to the undoped counterpart. The passivation effect of CNDs, namely electron filling the traps formed by the photo-dimerization and photo-oxidation of PC61BM molecules, is responsible for this remarkable improvement of the short-term stability. © 2019 International Solar Energy Society
T2  - Solar Energy
T1  - Effect of the doping of PC61BM electron transport layer with carbon nanodots on the performance of inverted planar MAPbI3 perovskite solar cells
VL  - 189
SP  - 426
EP  - 434
DO  - 10.1016/j.solener.2019.07.088
ER  - 
@article{
author = "Subair, Riyas and Di Girolamo, Diego and Bodik, Michal and Nadazdy, Vojtech and Li, Bo and Nadazdy, Peter and Marković, Zoran M. and Benkovicova, Monika and Chlpik, Juraj and Kotlar, Mario and Halahovets, Yuriy and Šiffalovič, Peter and Jergel, Matej and Tian, Jianjun and Brunetti, Francesca and Majkova, Eva",
year = "2019",
abstract = "The doping effect of carbon nanodots (CNDs) in the PC61BM electron-transport layer on the performance of inverted planar MAPbI3 perovskite solar cells (PSCs) having two different kinds of the hole-transport layer, namely organic PEDOT:PSS and inorganic NiOx, was investigated. The CH3NH3PbI3 perovskite layer was deposited in air at 35% humidity. An average 11% and 12% enhancement of the power conversion efficiency (PCE) was achieved for 1 wt% CNDs doping in the PSCs with PEDOT:PSS and NiOx, respectively. This improvement is attributed to high electron density of CNDs resulting in a triple increase of the electrical conductivity of the PC61BM layer and passivation of the perovskite/PC61BM interface that is reflected by an increase of the open-circuit voltage. In line with this, parallel resistance and fill factor of the PSCs are also improved. Moreover, the energy-resolved electrochemical impedance spectroscopy revealed additional free-charge carriers in the PC61BM layer generated under illumination that were detected via the polaron states formation in the band gap with positive effect on the short-circuit current. All these factors contribute to the PCE improvement. Stability tests of the PSC with PEDOT:PSS under a continuous 24 hour 1.5 AM illumination showed a five times smaller final PCE decrease for the 1 wt% CNDs doping of the PC61BM layer comparing to the undoped counterpart. The passivation effect of CNDs, namely electron filling the traps formed by the photo-dimerization and photo-oxidation of PC61BM molecules, is responsible for this remarkable improvement of the short-term stability. © 2019 International Solar Energy Society",
journal = "Solar Energy",
title = "Effect of the doping of PC61BM electron transport layer with carbon nanodots on the performance of inverted planar MAPbI3 perovskite solar cells",
volume = "189",
pages = "426-434",
doi = "10.1016/j.solener.2019.07.088"
}
Subair, R., Di Girolamo, D., Bodik, M., Nadazdy, V., Li, B., Nadazdy, P., Marković, Z. M., Benkovicova, M., Chlpik, J., Kotlar, M., Halahovets, Y., Šiffalovič, P., Jergel, M., Tian, J., Brunetti, F.,& Majkova, E.. (2019). Effect of the doping of PC61BM electron transport layer with carbon nanodots on the performance of inverted planar MAPbI3 perovskite solar cells. in Solar Energy, 189, 426-434.
https://doi.org/10.1016/j.solener.2019.07.088
Subair R, Di Girolamo D, Bodik M, Nadazdy V, Li B, Nadazdy P, Marković ZM, Benkovicova M, Chlpik J, Kotlar M, Halahovets Y, Šiffalovič P, Jergel M, Tian J, Brunetti F, Majkova E. Effect of the doping of PC61BM electron transport layer with carbon nanodots on the performance of inverted planar MAPbI3 perovskite solar cells. in Solar Energy. 2019;189:426-434.
doi:10.1016/j.solener.2019.07.088 .
Subair, Riyas, Di Girolamo, Diego, Bodik, Michal, Nadazdy, Vojtech, Li, Bo, Nadazdy, Peter, Marković, Zoran M., Benkovicova, Monika, Chlpik, Juraj, Kotlar, Mario, Halahovets, Yuriy, Šiffalovič, Peter, Jergel, Matej, Tian, Jianjun, Brunetti, Francesca, Majkova, Eva, "Effect of the doping of PC61BM electron transport layer with carbon nanodots on the performance of inverted planar MAPbI3 perovskite solar cells" in Solar Energy, 189 (2019):426-434,
https://doi.org/10.1016/j.solener.2019.07.088 . .
1
16
13
15