Inaniwa, Taku

Link to this page

Authority KeyName Variants
1406cf12-84c7-4e74-8ab8-3713f245e6c2
  • Inaniwa, Taku (2)

Author's Bibliography

Prediction of DNA rejoining kinetics and cell survival after proton irradiation for V79 cells using Geant4-DNA

Sakata, Dousatsu; Hirayama, Ryoichi; Shin, Wook-Geun; Belli, Mauro; Tabocchini, Maria A; Stewart, Robert D; Belov, Oleg; Bernal, Mario A; Bordage, Marie-Claude; Brown, Jeremy M.C.; Đorđević, Miloš; Emfietzoglou, Dimitris; Francis, Ziad; Guatelli, Susanna; Inaniwa, Taku; Ivanchenko, Vladimir; Karamitros, Mathieu; Kyriakou, Ioanna; Lampe, Nathanael; Li, Zhuxin; Meylan, Sylvain; Michelet, Claire; Nieminen, Petteri; Perrot, Yann; Petrović, Ivan M.; Ramos-Mendez, Jose; Ristić-Fira, Aleksandra; Santin, Giovanni; Schuemann, Jan; Tran, Hoang N; Villagrasa, Carmen; Incerti, Sebastien

(2023)

TY  - JOUR
AU  - Sakata, Dousatsu
AU  - Hirayama, Ryoichi
AU  - Shin, Wook-Geun
AU  - Belli, Mauro
AU  - Tabocchini, Maria A
AU  - Stewart, Robert D
AU  - Belov, Oleg
AU  - Bernal, Mario A
AU  - Bordage, Marie-Claude
AU  - Brown, Jeremy M.C.
AU  - Đorđević, Miloš
AU  - Emfietzoglou, Dimitris
AU  - Francis, Ziad
AU  - Guatelli, Susanna
AU  - Inaniwa, Taku
AU  - Ivanchenko, Vladimir
AU  - Karamitros, Mathieu
AU  - Kyriakou, Ioanna
AU  - Lampe, Nathanael
AU  - Li, Zhuxin
AU  - Meylan, Sylvain
AU  - Michelet, Claire
AU  - Nieminen, Petteri
AU  - Perrot, Yann
AU  - Petrović, Ivan M.
AU  - Ramos-Mendez, Jose
AU  - Ristić-Fira, Aleksandra
AU  - Santin, Giovanni
AU  - Schuemann, Jan
AU  - Tran, Hoang N
AU  - Villagrasa, Carmen
AU  - Incerti, Sebastien
PY  - 2023
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/10573
AB  - Purpose: Track structure Monte Carlo (MC) codes have achieved successful outcomes in the quantitative investigation of radiation-induced initial DNA damage. The aim of the present study is to extend a Geant4-DNA radiobiological application by incorporating a feature allowing for the prediction of DNA rejoining kinetics and corresponding cell surviving fraction along time after irradiation, for a Chinese hamster V79 cell line, which is one of the most popular and widely investigated cell lines in radiobiology. Methods: We implemented the Two-Lesion Kinetics (TLK) model, originally proposed by Stewart, which allows for simulations to calculate residual DNA damage and surviving fraction along time via the number of initial DNA damage and its complexity as inputs. Results: By optimizing the model parameters of the TLK model in accordance to the experimental data on V79, we were able to predict both DNA rejoining kinetics at low linear energy transfers (LET) and cell surviving fraction. Conclusion: This is the first study to demonstrate the implementation of both the cell surviving fraction and the DNA rejoining kinetics with the estimated initial DNA damage, in a realistic cell geometrical model simulated by full track structure MC simulations at DNA level and for various LET. These simulation and model make the link between mechanistic physical/chemical damage processes and these two specific biological endpoints.
T2  - Physica Medica
T1  - Prediction of DNA rejoining kinetics and cell survival after proton irradiation for V79 cells using Geant4-DNA
VL  - 105
SP  - 102508
DO  - 10.1016/j.ejmp.2022.11.012
ER  - 
@article{
author = "Sakata, Dousatsu and Hirayama, Ryoichi and Shin, Wook-Geun and Belli, Mauro and Tabocchini, Maria A and Stewart, Robert D and Belov, Oleg and Bernal, Mario A and Bordage, Marie-Claude and Brown, Jeremy M.C. and Đorđević, Miloš and Emfietzoglou, Dimitris and Francis, Ziad and Guatelli, Susanna and Inaniwa, Taku and Ivanchenko, Vladimir and Karamitros, Mathieu and Kyriakou, Ioanna and Lampe, Nathanael and Li, Zhuxin and Meylan, Sylvain and Michelet, Claire and Nieminen, Petteri and Perrot, Yann and Petrović, Ivan M. and Ramos-Mendez, Jose and Ristić-Fira, Aleksandra and Santin, Giovanni and Schuemann, Jan and Tran, Hoang N and Villagrasa, Carmen and Incerti, Sebastien",
year = "2023",
abstract = "Purpose: Track structure Monte Carlo (MC) codes have achieved successful outcomes in the quantitative investigation of radiation-induced initial DNA damage. The aim of the present study is to extend a Geant4-DNA radiobiological application by incorporating a feature allowing for the prediction of DNA rejoining kinetics and corresponding cell surviving fraction along time after irradiation, for a Chinese hamster V79 cell line, which is one of the most popular and widely investigated cell lines in radiobiology. Methods: We implemented the Two-Lesion Kinetics (TLK) model, originally proposed by Stewart, which allows for simulations to calculate residual DNA damage and surviving fraction along time via the number of initial DNA damage and its complexity as inputs. Results: By optimizing the model parameters of the TLK model in accordance to the experimental data on V79, we were able to predict both DNA rejoining kinetics at low linear energy transfers (LET) and cell surviving fraction. Conclusion: This is the first study to demonstrate the implementation of both the cell surviving fraction and the DNA rejoining kinetics with the estimated initial DNA damage, in a realistic cell geometrical model simulated by full track structure MC simulations at DNA level and for various LET. These simulation and model make the link between mechanistic physical/chemical damage processes and these two specific biological endpoints.",
journal = "Physica Medica",
title = "Prediction of DNA rejoining kinetics and cell survival after proton irradiation for V79 cells using Geant4-DNA",
volume = "105",
pages = "102508",
doi = "10.1016/j.ejmp.2022.11.012"
}
Sakata, D., Hirayama, R., Shin, W., Belli, M., Tabocchini, M. A., Stewart, R. D., Belov, O., Bernal, M. A., Bordage, M., Brown, J. M.C., Đorđević, M., Emfietzoglou, D., Francis, Z., Guatelli, S., Inaniwa, T., Ivanchenko, V., Karamitros, M., Kyriakou, I., Lampe, N., Li, Z., Meylan, S., Michelet, C., Nieminen, P., Perrot, Y., Petrović, I. M., Ramos-Mendez, J., Ristić-Fira, A., Santin, G., Schuemann, J., Tran, H. N., Villagrasa, C.,& Incerti, S.. (2023). Prediction of DNA rejoining kinetics and cell survival after proton irradiation for V79 cells using Geant4-DNA. in Physica Medica, 105, 102508.
https://doi.org/10.1016/j.ejmp.2022.11.012
Sakata D, Hirayama R, Shin W, Belli M, Tabocchini MA, Stewart RD, Belov O, Bernal MA, Bordage M, Brown JM, Đorđević M, Emfietzoglou D, Francis Z, Guatelli S, Inaniwa T, Ivanchenko V, Karamitros M, Kyriakou I, Lampe N, Li Z, Meylan S, Michelet C, Nieminen P, Perrot Y, Petrović IM, Ramos-Mendez J, Ristić-Fira A, Santin G, Schuemann J, Tran HN, Villagrasa C, Incerti S. Prediction of DNA rejoining kinetics and cell survival after proton irradiation for V79 cells using Geant4-DNA. in Physica Medica. 2023;105:102508.
doi:10.1016/j.ejmp.2022.11.012 .
Sakata, Dousatsu, Hirayama, Ryoichi, Shin, Wook-Geun, Belli, Mauro, Tabocchini, Maria A, Stewart, Robert D, Belov, Oleg, Bernal, Mario A, Bordage, Marie-Claude, Brown, Jeremy M.C., Đorđević, Miloš, Emfietzoglou, Dimitris, Francis, Ziad, Guatelli, Susanna, Inaniwa, Taku, Ivanchenko, Vladimir, Karamitros, Mathieu, Kyriakou, Ioanna, Lampe, Nathanael, Li, Zhuxin, Meylan, Sylvain, Michelet, Claire, Nieminen, Petteri, Perrot, Yann, Petrović, Ivan M., Ramos-Mendez, Jose, Ristić-Fira, Aleksandra, Santin, Giovanni, Schuemann, Jan, Tran, Hoang N, Villagrasa, Carmen, Incerti, Sebastien, "Prediction of DNA rejoining kinetics and cell survival after proton irradiation for V79 cells using Geant4-DNA" in Physica Medica, 105 (2023):102508,
https://doi.org/10.1016/j.ejmp.2022.11.012 . .
1
8
4

Fully integrated Monte Carlo simulation for evaluating radiation induced DNA damage and subsequent repair using Geant4-DNA

Sakata, Dousatsu; Belov, Oleg; Bordage, Marie-Claude; Emfietzoglou, Dimitris; Guatelli, Susanna; Inaniwa, Taku; Ivanchenko, Vladimir; Karamitros, Mathieu; Kyriakou, Ioanna; Lampe, Nathanael; Petrović, Ivan M.; Ristić-Fira, Aleksandra; Shin, Wook-Geun; Incerti, Sebastien

(2020)

TY  - JOUR
AU  - Sakata, Dousatsu
AU  - Belov, Oleg
AU  - Bordage, Marie-Claude
AU  - Emfietzoglou, Dimitris
AU  - Guatelli, Susanna
AU  - Inaniwa, Taku
AU  - Ivanchenko, Vladimir
AU  - Karamitros, Mathieu
AU  - Kyriakou, Ioanna
AU  - Lampe, Nathanael
AU  - Petrović, Ivan M.
AU  - Ristić-Fira, Aleksandra
AU  - Shin, Wook-Geun
AU  - Incerti, Sebastien
PY  - 2020
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/9751
AB  - Ionising radiation induced DNA damage and subsequent biological responses to it depend on the radiation's track-structure and its energy loss distribution pattern. To investigate the underlying biological mechanisms involved in such complex system, there is need of predicting biological response by integrated Monte Carlo (MC) simulations across physics, chemistry and biology. Hence, in this work, we have developed an application using the open source Geant4-DNA toolkit to propose a realistic "fully integrated" MC simulation to calculate both early DNA damage and subsequent biological responses with time. We had previously developed an application allowing simulations of radiation induced early DNA damage on a naked cell nucleus model. In the new version presented in this work, we have developed three additional important features: (1) modeling of a realistic cell geometry, (2) inclusion of a biological repair model, (3) refinement of DNA damage parameters for direct damage and indirect damage scoring. The simulation results are validated with experimental data in terms of Single Strand Break (SSB) yields for plasmid and Double Strand Break (DSB) yields for plasmid/human cell. In addition, the yields of indirect DSBs are compatible with the experimental scavengeable damage fraction. The simulation application also demonstrates agreement with experimental data of gamma -H2AX yields for gamma ray irradiation. Using this application, it is now possible to predict biological response along time through track-structure MC simulations.
T2  - Scientific Reports
T1  - Fully integrated Monte Carlo simulation for evaluating radiation induced DNA damage and subsequent repair using Geant4-DNA
VL  - 10
IS  - 1
SP  - 20788
DO  - 10.1038/s41598-020-75982-x
ER  - 
@article{
author = "Sakata, Dousatsu and Belov, Oleg and Bordage, Marie-Claude and Emfietzoglou, Dimitris and Guatelli, Susanna and Inaniwa, Taku and Ivanchenko, Vladimir and Karamitros, Mathieu and Kyriakou, Ioanna and Lampe, Nathanael and Petrović, Ivan M. and Ristić-Fira, Aleksandra and Shin, Wook-Geun and Incerti, Sebastien",
year = "2020",
abstract = "Ionising radiation induced DNA damage and subsequent biological responses to it depend on the radiation's track-structure and its energy loss distribution pattern. To investigate the underlying biological mechanisms involved in such complex system, there is need of predicting biological response by integrated Monte Carlo (MC) simulations across physics, chemistry and biology. Hence, in this work, we have developed an application using the open source Geant4-DNA toolkit to propose a realistic "fully integrated" MC simulation to calculate both early DNA damage and subsequent biological responses with time. We had previously developed an application allowing simulations of radiation induced early DNA damage on a naked cell nucleus model. In the new version presented in this work, we have developed three additional important features: (1) modeling of a realistic cell geometry, (2) inclusion of a biological repair model, (3) refinement of DNA damage parameters for direct damage and indirect damage scoring. The simulation results are validated with experimental data in terms of Single Strand Break (SSB) yields for plasmid and Double Strand Break (DSB) yields for plasmid/human cell. In addition, the yields of indirect DSBs are compatible with the experimental scavengeable damage fraction. The simulation application also demonstrates agreement with experimental data of gamma -H2AX yields for gamma ray irradiation. Using this application, it is now possible to predict biological response along time through track-structure MC simulations.",
journal = "Scientific Reports",
title = "Fully integrated Monte Carlo simulation for evaluating radiation induced DNA damage and subsequent repair using Geant4-DNA",
volume = "10",
number = "1",
pages = "20788",
doi = "10.1038/s41598-020-75982-x"
}
Sakata, D., Belov, O., Bordage, M., Emfietzoglou, D., Guatelli, S., Inaniwa, T., Ivanchenko, V., Karamitros, M., Kyriakou, I., Lampe, N., Petrović, I. M., Ristić-Fira, A., Shin, W.,& Incerti, S.. (2020). Fully integrated Monte Carlo simulation for evaluating radiation induced DNA damage and subsequent repair using Geant4-DNA. in Scientific Reports, 10(1), 20788.
https://doi.org/10.1038/s41598-020-75982-x
Sakata D, Belov O, Bordage M, Emfietzoglou D, Guatelli S, Inaniwa T, Ivanchenko V, Karamitros M, Kyriakou I, Lampe N, Petrović IM, Ristić-Fira A, Shin W, Incerti S. Fully integrated Monte Carlo simulation for evaluating radiation induced DNA damage and subsequent repair using Geant4-DNA. in Scientific Reports. 2020;10(1):20788.
doi:10.1038/s41598-020-75982-x .
Sakata, Dousatsu, Belov, Oleg, Bordage, Marie-Claude, Emfietzoglou, Dimitris, Guatelli, Susanna, Inaniwa, Taku, Ivanchenko, Vladimir, Karamitros, Mathieu, Kyriakou, Ioanna, Lampe, Nathanael, Petrović, Ivan M., Ristić-Fira, Aleksandra, Shin, Wook-Geun, Incerti, Sebastien, "Fully integrated Monte Carlo simulation for evaluating radiation induced DNA damage and subsequent repair using Geant4-DNA" in Scientific Reports, 10, no. 1 (2020):20788,
https://doi.org/10.1038/s41598-020-75982-x . .
2
44
17
40