Nastasić, Ana

Link to this page

Authority KeyName Variants
244061d1-c4eb-4a76-8151-1c782960afa0
  • Nastasić, Ana (1)
Projects

Author's Bibliography

FeM/rGO (M = Ni and Cu) as bifunctional oxygen electrode

Milikić, Jadranka; Nastasić, Ana; Rakočević, Lazar; Radinović, Kristina; Stojadinović, Stevan; Stanković, Dalibor; Šljukić, Biljana

(2024)

TY  - JOUR
AU  - Milikić, Jadranka
AU  - Nastasić, Ana
AU  - Rakočević, Lazar
AU  - Radinović, Kristina
AU  - Stojadinović, Stevan
AU  - Stanković, Dalibor
AU  - Šljukić, Biljana
PY  - 2024
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/13174
AB  - Three different iron-based electrocatalysts deposited on reduced graphene oxide (Fe/rGO, FeNi/rGO, and FeCu/ rGO) were synthesized and examined for oxygen reduction and evolution reactions (ORR and OER, respectively) in alkaline media. X-ray powder diffraction analysis, Fourier transform infrared spectroscopy, scanning electron microscopy with energy-dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, and transmission electron microscopy were used for a thorough investigation of physico-chemical properties of FeM/rGO electrocatalysts. XPS analysis indicated the presence of transition metals in higher oxidation states. Onset potentials during OER were found to be 1.51, 1.64, and 1.71 V for FeNi/rGO, FeCu/rGO, and Fe/rGO, respectively. Moreover, FeNi/rGO showed the highest OER current density (~40 mA cm benchmark OER electrocatalyst, IrO 2 2 at 2 V), two times higher than the -1 , and the lowest Tafel slope (88 mV dec ), lower than IrO . The somewhat better catalytic activity of Fe/rGO for ORR in alkaline media compared to FeNi/rGO and FeCu/rGO was noticed. Tafel slopes of 105, 112, and 113 mV dec 2-1 during ORR were found for Fe/rGO, FeCu/rGO, and FeNi/rGO, respectively. Almost constant ORR current densities during chronoamperometric measurements were noticed for Fe/rGO and FeCu/rGO indicating stable performance.
T2  - Fuel
T1  - FeM/rGO (M = Ni and Cu) as bifunctional oxygen electrode
VL  - 368
SP  - 131654
DO  - 10.1016/j.fuel.2024.131654
ER  - 
@article{
author = "Milikić, Jadranka and Nastasić, Ana and Rakočević, Lazar and Radinović, Kristina and Stojadinović, Stevan and Stanković, Dalibor and Šljukić, Biljana",
year = "2024",
abstract = "Three different iron-based electrocatalysts deposited on reduced graphene oxide (Fe/rGO, FeNi/rGO, and FeCu/ rGO) were synthesized and examined for oxygen reduction and evolution reactions (ORR and OER, respectively) in alkaline media. X-ray powder diffraction analysis, Fourier transform infrared spectroscopy, scanning electron microscopy with energy-dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, and transmission electron microscopy were used for a thorough investigation of physico-chemical properties of FeM/rGO electrocatalysts. XPS analysis indicated the presence of transition metals in higher oxidation states. Onset potentials during OER were found to be 1.51, 1.64, and 1.71 V for FeNi/rGO, FeCu/rGO, and Fe/rGO, respectively. Moreover, FeNi/rGO showed the highest OER current density (~40 mA cm benchmark OER electrocatalyst, IrO 2 2 at 2 V), two times higher than the -1 , and the lowest Tafel slope (88 mV dec ), lower than IrO . The somewhat better catalytic activity of Fe/rGO for ORR in alkaline media compared to FeNi/rGO and FeCu/rGO was noticed. Tafel slopes of 105, 112, and 113 mV dec 2-1 during ORR were found for Fe/rGO, FeCu/rGO, and FeNi/rGO, respectively. Almost constant ORR current densities during chronoamperometric measurements were noticed for Fe/rGO and FeCu/rGO indicating stable performance.",
journal = "Fuel",
title = "FeM/rGO (M = Ni and Cu) as bifunctional oxygen electrode",
volume = "368",
pages = "131654",
doi = "10.1016/j.fuel.2024.131654"
}
Milikić, J., Nastasić, A., Rakočević, L., Radinović, K., Stojadinović, S., Stanković, D.,& Šljukić, B.. (2024). FeM/rGO (M = Ni and Cu) as bifunctional oxygen electrode. in Fuel, 368, 131654.
https://doi.org/10.1016/j.fuel.2024.131654
Milikić J, Nastasić A, Rakočević L, Radinović K, Stojadinović S, Stanković D, Šljukić B. FeM/rGO (M = Ni and Cu) as bifunctional oxygen electrode. in Fuel. 2024;368:131654.
doi:10.1016/j.fuel.2024.131654 .
Milikić, Jadranka, Nastasić, Ana, Rakočević, Lazar, Radinović, Kristina, Stojadinović, Stevan, Stanković, Dalibor, Šljukić, Biljana, "FeM/rGO (M = Ni and Cu) as bifunctional oxygen electrode" in Fuel, 368 (2024):131654,
https://doi.org/10.1016/j.fuel.2024.131654 . .