Petković, M.

Link to this page

Authority KeyName Variants
c0f833fc-1b61-4e69-b5ba-1d6f85aa7bd9
  • Petković, M. (4)
Projects
No records found.

Author's Bibliography

Carbon quantum dots/silver based metal organic framework composites in light enhanced wound healing

Popović, I.; Valenta Šobot, Ana; Filipović Tričković, Jelena; Korićanac, Lela; Žakula, Jelena; Ralić, V.; Abu el Rub, Anamarija; Algarra, M.; Petković, M.; Stepić, Milutin; Nešić, M.

(Belgrade : Vinča Institute of Nuclear Sciences, 2023)

TY  - CONF
AU  - Popović, I.
AU  - Valenta Šobot, Ana
AU  - Filipović Tričković, Jelena
AU  - Korićanac, Lela
AU  - Žakula, Jelena
AU  - Ralić, V.
AU  - Abu el Rub, Anamarija
AU  - Algarra, M.
AU  - Petković, M.
AU  - Stepić, Milutin
AU  - Nešić, M.
PY  - 2023
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/11808
AB  - In recent years researchers have developed new strategies to enhance the effectiveness of wound healing by combining nanoparticles and infra red (IR) light. For example, some studies have shown that nanoparticles can be used to enhance the absorption of near-infrared laser (NIR) light by tissues, leading to increased healing rates [1]. The influence of NIR light on proliferation, collagen production, and wound healing was tested on: keratocytes (HaCaT) and fibroblasts (MRC-5) cells that are used as model systems of human skin equivalents that comprise an epidermal and a dermal compartment of skin. Also, these cells were treated with carbon quantum dots/silver-based metal-organic framework composites (Ag-MoFs-NCDs and Ag-MoFs-SCDs), which previously showed high antibacterial activity [2], without and with laser light. Firstly, we have found the most convenient and effective CW laser intensity (16 mW/cm2) and illumination time (3 minutes), which is not too high and short enough to influence human cells' proliferation and metabolism positively. Additional chemical treatment with Ag-MoFs-NCDs and Ag-MoFs-SCDs results in a further increase in human cell viability. Our measurements showed that the proliferation index in laser-illuminated cells and cells treated with Ag-MoFs-SCDs was at the level of the untreated control. Furthermore, Ag-MoFs-SCDs treatment and laser illumination induced a mild, insignificant increase in cellular proliferation. On the other hand, Ag-MoFs-NCDs treatment led to a more pronounced, albeit not significant increase, in cellular proliferation, while Ag-MoFs-NCDs treatment combined with laser illumination significantly increased proliferation. Also, we have detected a mild change in collagen level estimated by hydroxyproline assay, which may indicate a positive outcome of combined laser illumination and treatment, taking into account that after 48 hours, a change in cell's response to the treatment could be noticed. Finally, based on migration assay, we observe a complete wound closure after 48 hours in fibroblast cells treated with Ag-MoFs-NCDs and near-infrared laser light, Fig. 1.
PB  - Belgrade : Vinča Institute of Nuclear Sciences
C3  - PHOTONICA2023 : 9th International School and Conference on Photonics : book of abstracts; August 28 - September 1, 2023; Belgrade
T1  - Carbon quantum dots/silver based metal organic framework composites in light enhanced wound healing
SP  - 78
EP  - 78
UR  - https://hdl.handle.net/21.15107/rcub_vinar_11808
ER  - 
@conference{
author = "Popović, I. and Valenta Šobot, Ana and Filipović Tričković, Jelena and Korićanac, Lela and Žakula, Jelena and Ralić, V. and Abu el Rub, Anamarija and Algarra, M. and Petković, M. and Stepić, Milutin and Nešić, M.",
year = "2023",
abstract = "In recent years researchers have developed new strategies to enhance the effectiveness of wound healing by combining nanoparticles and infra red (IR) light. For example, some studies have shown that nanoparticles can be used to enhance the absorption of near-infrared laser (NIR) light by tissues, leading to increased healing rates [1]. The influence of NIR light on proliferation, collagen production, and wound healing was tested on: keratocytes (HaCaT) and fibroblasts (MRC-5) cells that are used as model systems of human skin equivalents that comprise an epidermal and a dermal compartment of skin. Also, these cells were treated with carbon quantum dots/silver-based metal-organic framework composites (Ag-MoFs-NCDs and Ag-MoFs-SCDs), which previously showed high antibacterial activity [2], without and with laser light. Firstly, we have found the most convenient and effective CW laser intensity (16 mW/cm2) and illumination time (3 minutes), which is not too high and short enough to influence human cells' proliferation and metabolism positively. Additional chemical treatment with Ag-MoFs-NCDs and Ag-MoFs-SCDs results in a further increase in human cell viability. Our measurements showed that the proliferation index in laser-illuminated cells and cells treated with Ag-MoFs-SCDs was at the level of the untreated control. Furthermore, Ag-MoFs-SCDs treatment and laser illumination induced a mild, insignificant increase in cellular proliferation. On the other hand, Ag-MoFs-NCDs treatment led to a more pronounced, albeit not significant increase, in cellular proliferation, while Ag-MoFs-NCDs treatment combined with laser illumination significantly increased proliferation. Also, we have detected a mild change in collagen level estimated by hydroxyproline assay, which may indicate a positive outcome of combined laser illumination and treatment, taking into account that after 48 hours, a change in cell's response to the treatment could be noticed. Finally, based on migration assay, we observe a complete wound closure after 48 hours in fibroblast cells treated with Ag-MoFs-NCDs and near-infrared laser light, Fig. 1.",
publisher = "Belgrade : Vinča Institute of Nuclear Sciences",
journal = "PHOTONICA2023 : 9th International School and Conference on Photonics : book of abstracts; August 28 - September 1, 2023; Belgrade",
title = "Carbon quantum dots/silver based metal organic framework composites in light enhanced wound healing",
pages = "78-78",
url = "https://hdl.handle.net/21.15107/rcub_vinar_11808"
}
Popović, I., Valenta Šobot, A., Filipović Tričković, J., Korićanac, L., Žakula, J., Ralić, V., Abu el Rub, A., Algarra, M., Petković, M., Stepić, M.,& Nešić, M.. (2023). Carbon quantum dots/silver based metal organic framework composites in light enhanced wound healing. in PHOTONICA2023 : 9th International School and Conference on Photonics : book of abstracts; August 28 - September 1, 2023; Belgrade
Belgrade : Vinča Institute of Nuclear Sciences., 78-78.
https://hdl.handle.net/21.15107/rcub_vinar_11808
Popović I, Valenta Šobot A, Filipović Tričković J, Korićanac L, Žakula J, Ralić V, Abu el Rub A, Algarra M, Petković M, Stepić M, Nešić M. Carbon quantum dots/silver based metal organic framework composites in light enhanced wound healing. in PHOTONICA2023 : 9th International School and Conference on Photonics : book of abstracts; August 28 - September 1, 2023; Belgrade. 2023;:78-78.
https://hdl.handle.net/21.15107/rcub_vinar_11808 .
Popović, I., Valenta Šobot, Ana, Filipović Tričković, Jelena, Korićanac, Lela, Žakula, Jelena, Ralić, V., Abu el Rub, Anamarija, Algarra, M., Petković, M., Stepić, Milutin, Nešić, M., "Carbon quantum dots/silver based metal organic framework composites in light enhanced wound healing" in PHOTONICA2023 : 9th International School and Conference on Photonics : book of abstracts; August 28 - September 1, 2023; Belgrade (2023):78-78,
https://hdl.handle.net/21.15107/rcub_vinar_11808 .

Photosensitizer potential of doped and undoped nanostructured TiO2

Matijević, M.; Korićanac, Lela; Nakarada, Đ.; Žakula, Jelena; Stepić, M.; Radoičić, Marija; Mojović, M.; Petković, M.; Nešić, M. D.

(Belgrade : Vinča Institute of Nuclear Sciences, 2023)

TY  - CONF
AU  - Matijević, M.
AU  - Korićanac, Lela
AU  - Nakarada, Đ.
AU  - Žakula, Jelena
AU  - Stepić, M.
AU  - Radoičić, Marija
AU  - Mojović, M.
AU  - Petković, M.
AU  - Nešić, M. D.
PY  - 2023
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/11799
AB  - Treating cancer remains a major challenge, despite the development of many therapies and advances in general knowledge about the disease. The treatments commonly used are invasive and non-selective, leading to severe side effects and unsatisfactory long-term outcomes. Nevertheless, external stimuli activating therapeutic agents in the affected area can be more beneficial than these aggressive therapies. Photodynamic therapy (PDT) is a minimally invasive, selective treatment that uses photosensitizer (PS) to damage cancer cells. The PS is activated by light, triggering a series of processes that produce reactive oxygen species (ROS), ultimately leading to cancer cell death. Numerous types of nanomaterial possess the capability to act as PS, one of which is TiO2 [1]. Although nanostructured TiO2 is biocompatible in the absence of light, its valence band electrons can be stimulated only by ultraviolet (UV) light irradiation. Since the penetration of UV light into tissue is limited, for application in PDT, nanostructured TiO2 can be doped with heteroatoms like N or C to allow visible light responsiveness [2,3]. This work evaluated the PS properties of unmodified nanostructured TiO2 (spherical nanoparticles TiO2 NPs and prolate nanospheroids, TiO2 PNSs) and doped TiO2 (N- and C-TiO2 NPs). After the synthesis, the size of TiO2 was confirmed to be in the nanoscale range (5-104 nm) by transmission electron microscopy [3,4]. The doped TiO2 was found to absorb visible light, as demonstrated by UV-Vis spectroscopy and bandgap calculations. Additionally, hydroxyl radicals were detected in water suspensions of TiO2 PNSs by electron paramagnetic resonance (EPR) spectroscopy, both with and without UV light illumination [4]. However, this radical was observed only with blue light stimulation of the water suspensions of N- and C-TiO2 NPs [3]. Cell experiments further revealed the internalization process of nanostructured TiO2 within cells, their cytotoxicity profiles, and the different death modalities triggered by their uptake. After confocal microscopy indicated the successful internalization of the investigated TiO2, viability tests on different cell lines confirmed their good biocompatibility without light [3,4]. The PDT's efficacy using nanostructured TiO2 and appropriate light stimuli was evaluated on various cancer cell lines. The most significant viability reduction (60 %) was observed in the HeLa cell line with the combined treatment of C-TiO2 NPs-blue light. In addition to EPR results, blue light-induced C-TiO2 NPs-catalyzed generation of ROS was confirmed intracellularly, implying that oxidative stress was the leading cause of HeLa cell death. Fluorescent labeling allowed distinguishing morphological changes inside the cells after the C-TiO2 NPs, blue light, and the combined C-TiO2 NPs-blue light treatment. Blue light exposure led to the appearance of large necrotic cells with deformed nuclei, cytoplasm swelling, and membrane blebbing. In contrast, the combined therapy with C-TiO2 NPs-blue light resulted in controlled cell death, such as autophagy. Since programmed cell death is the desired cancer cell death mechanism, the combined treatment presented here can provide a better outcome of local anticancer therapy.
PB  - Belgrade : Vinča Institute of Nuclear Sciences
C3  - PHOTONICA2023 : 9th International School and Conference on Photonics : book of abstracts; August 28 - September 1, 2023; Belgrade
T1  - Photosensitizer potential of doped and undoped nanostructured TiO2
SP  - 36
EP  - 36
UR  - https://hdl.handle.net/21.15107/rcub_vinar_11799
ER  - 
@conference{
author = "Matijević, M. and Korićanac, Lela and Nakarada, Đ. and Žakula, Jelena and Stepić, M. and Radoičić, Marija and Mojović, M. and Petković, M. and Nešić, M. D.",
year = "2023",
abstract = "Treating cancer remains a major challenge, despite the development of many therapies and advances in general knowledge about the disease. The treatments commonly used are invasive and non-selective, leading to severe side effects and unsatisfactory long-term outcomes. Nevertheless, external stimuli activating therapeutic agents in the affected area can be more beneficial than these aggressive therapies. Photodynamic therapy (PDT) is a minimally invasive, selective treatment that uses photosensitizer (PS) to damage cancer cells. The PS is activated by light, triggering a series of processes that produce reactive oxygen species (ROS), ultimately leading to cancer cell death. Numerous types of nanomaterial possess the capability to act as PS, one of which is TiO2 [1]. Although nanostructured TiO2 is biocompatible in the absence of light, its valence band electrons can be stimulated only by ultraviolet (UV) light irradiation. Since the penetration of UV light into tissue is limited, for application in PDT, nanostructured TiO2 can be doped with heteroatoms like N or C to allow visible light responsiveness [2,3]. This work evaluated the PS properties of unmodified nanostructured TiO2 (spherical nanoparticles TiO2 NPs and prolate nanospheroids, TiO2 PNSs) and doped TiO2 (N- and C-TiO2 NPs). After the synthesis, the size of TiO2 was confirmed to be in the nanoscale range (5-104 nm) by transmission electron microscopy [3,4]. The doped TiO2 was found to absorb visible light, as demonstrated by UV-Vis spectroscopy and bandgap calculations. Additionally, hydroxyl radicals were detected in water suspensions of TiO2 PNSs by electron paramagnetic resonance (EPR) spectroscopy, both with and without UV light illumination [4]. However, this radical was observed only with blue light stimulation of the water suspensions of N- and C-TiO2 NPs [3]. Cell experiments further revealed the internalization process of nanostructured TiO2 within cells, their cytotoxicity profiles, and the different death modalities triggered by their uptake. After confocal microscopy indicated the successful internalization of the investigated TiO2, viability tests on different cell lines confirmed their good biocompatibility without light [3,4]. The PDT's efficacy using nanostructured TiO2 and appropriate light stimuli was evaluated on various cancer cell lines. The most significant viability reduction (60 %) was observed in the HeLa cell line with the combined treatment of C-TiO2 NPs-blue light. In addition to EPR results, blue light-induced C-TiO2 NPs-catalyzed generation of ROS was confirmed intracellularly, implying that oxidative stress was the leading cause of HeLa cell death. Fluorescent labeling allowed distinguishing morphological changes inside the cells after the C-TiO2 NPs, blue light, and the combined C-TiO2 NPs-blue light treatment. Blue light exposure led to the appearance of large necrotic cells with deformed nuclei, cytoplasm swelling, and membrane blebbing. In contrast, the combined therapy with C-TiO2 NPs-blue light resulted in controlled cell death, such as autophagy. Since programmed cell death is the desired cancer cell death mechanism, the combined treatment presented here can provide a better outcome of local anticancer therapy.",
publisher = "Belgrade : Vinča Institute of Nuclear Sciences",
journal = "PHOTONICA2023 : 9th International School and Conference on Photonics : book of abstracts; August 28 - September 1, 2023; Belgrade",
title = "Photosensitizer potential of doped and undoped nanostructured TiO2",
pages = "36-36",
url = "https://hdl.handle.net/21.15107/rcub_vinar_11799"
}
Matijević, M., Korićanac, L., Nakarada, Đ., Žakula, J., Stepić, M., Radoičić, M., Mojović, M., Petković, M.,& Nešić, M. D.. (2023). Photosensitizer potential of doped and undoped nanostructured TiO2. in PHOTONICA2023 : 9th International School and Conference on Photonics : book of abstracts; August 28 - September 1, 2023; Belgrade
Belgrade : Vinča Institute of Nuclear Sciences., 36-36.
https://hdl.handle.net/21.15107/rcub_vinar_11799
Matijević M, Korićanac L, Nakarada Đ, Žakula J, Stepić M, Radoičić M, Mojović M, Petković M, Nešić MD. Photosensitizer potential of doped and undoped nanostructured TiO2. in PHOTONICA2023 : 9th International School and Conference on Photonics : book of abstracts; August 28 - September 1, 2023; Belgrade. 2023;:36-36.
https://hdl.handle.net/21.15107/rcub_vinar_11799 .
Matijević, M., Korićanac, Lela, Nakarada, Đ., Žakula, Jelena, Stepić, M., Radoičić, Marija, Mojović, M., Petković, M., Nešić, M. D., "Photosensitizer potential of doped and undoped nanostructured TiO2" in PHOTONICA2023 : 9th International School and Conference on Photonics : book of abstracts; August 28 - September 1, 2023; Belgrade (2023):36-36,
https://hdl.handle.net/21.15107/rcub_vinar_11799 .

Carbon dots nanoparticles as an effective gate for PDT

Algarra, M.; Nešić, M. D.; Soto, J.; Urrutia, A.; Imas, J. J.; Dučić, T.; Petković, M.

(Belgrade : Vinča Institute of Nuclear Sciences, 2023)

TY  - CONF
AU  - Algarra, M.
AU  - Nešić, M. D.
AU  - Soto, J.
AU  - Urrutia, A.
AU  - Imas, J. J.
AU  - Dučić, T.
AU  - Petković, M.
PY  - 2023
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/11818
AB  - The promising strategy for targeted cancer treatment is to employ light as an external activator of a drug accumulated in tumor tissue. This approach is so-called photodynamic therapy (PDT) and can be used for diagnostic purposes. A photosensitizer, molecular oxygen, and laser light are the three significant components of Type II PDT, and the mechanism is the catalysis of the production of reactive oxygen species that lead to the oxidative damage of cellular molecules inducing cancer cell death [1]. Fluorescent carbon dots (CDs), spherical nanoparticles with size < 10 nm that can function as bioimaging agents and photosensitizers, have demonstrated significant potential in cancer theranostics [2]. Here, we have created Nitrogen co-doped carbon dots (N-CDs) surface decorated with organometallics compound, based on the Ru complex (Ru@N-CDs) [3,4] that were active in inducing biomolecular changes in ovarian cancer cell line upon illumination. Upon illumination, the most significant structural changes occurred in ovarian cancer cells and were detected in the protein region; we postulate interference with signaling pathways involved in regulating cancer cell growth and tumor progression. However, the limitation of light is the depth of penetration through the tissues, which prevents significant therapeutic effects on deep tumors. A strategy to overcome this is to use optical fibers that have coatings fabricated from the N-CDs, thus developing a so-called lab-on fiber system. The light propagating through the fiber [4] can activate the overall coating on the optical fiber surface with the presence of Ru@N-CDs. We hypothesize that the activation by the light results in the locally increased ROS production combined with enhanced release of the Ru complex from the surface, similar to the Ru@TiO2 NCS [5]. Our preliminary results demonstrate a high potential of the lab-on-fiber system in therapy against ovarian cancer that can resist traditional chemotherapeutic approaches.
PB  - Belgrade : Vinča Institute of Nuclear Sciences
C3  - PHOTONICA2023 : 9th International School and Conference on Photonics : book of abstracts; August 28 - September 1, 2023; Belgrade
T1  - Carbon dots nanoparticles as an effective gate for PDT
SP  - 121
EP  - 121
UR  - https://hdl.handle.net/21.15107/rcub_vinar_11818
ER  - 
@conference{
author = "Algarra, M. and Nešić, M. D. and Soto, J. and Urrutia, A. and Imas, J. J. and Dučić, T. and Petković, M.",
year = "2023",
abstract = "The promising strategy for targeted cancer treatment is to employ light as an external activator of a drug accumulated in tumor tissue. This approach is so-called photodynamic therapy (PDT) and can be used for diagnostic purposes. A photosensitizer, molecular oxygen, and laser light are the three significant components of Type II PDT, and the mechanism is the catalysis of the production of reactive oxygen species that lead to the oxidative damage of cellular molecules inducing cancer cell death [1]. Fluorescent carbon dots (CDs), spherical nanoparticles with size < 10 nm that can function as bioimaging agents and photosensitizers, have demonstrated significant potential in cancer theranostics [2]. Here, we have created Nitrogen co-doped carbon dots (N-CDs) surface decorated with organometallics compound, based on the Ru complex (Ru@N-CDs) [3,4] that were active in inducing biomolecular changes in ovarian cancer cell line upon illumination. Upon illumination, the most significant structural changes occurred in ovarian cancer cells and were detected in the protein region; we postulate interference with signaling pathways involved in regulating cancer cell growth and tumor progression. However, the limitation of light is the depth of penetration through the tissues, which prevents significant therapeutic effects on deep tumors. A strategy to overcome this is to use optical fibers that have coatings fabricated from the N-CDs, thus developing a so-called lab-on fiber system. The light propagating through the fiber [4] can activate the overall coating on the optical fiber surface with the presence of Ru@N-CDs. We hypothesize that the activation by the light results in the locally increased ROS production combined with enhanced release of the Ru complex from the surface, similar to the Ru@TiO2 NCS [5]. Our preliminary results demonstrate a high potential of the lab-on-fiber system in therapy against ovarian cancer that can resist traditional chemotherapeutic approaches.",
publisher = "Belgrade : Vinča Institute of Nuclear Sciences",
journal = "PHOTONICA2023 : 9th International School and Conference on Photonics : book of abstracts; August 28 - September 1, 2023; Belgrade",
title = "Carbon dots nanoparticles as an effective gate for PDT",
pages = "121-121",
url = "https://hdl.handle.net/21.15107/rcub_vinar_11818"
}
Algarra, M., Nešić, M. D., Soto, J., Urrutia, A., Imas, J. J., Dučić, T.,& Petković, M.. (2023). Carbon dots nanoparticles as an effective gate for PDT. in PHOTONICA2023 : 9th International School and Conference on Photonics : book of abstracts; August 28 - September 1, 2023; Belgrade
Belgrade : Vinča Institute of Nuclear Sciences., 121-121.
https://hdl.handle.net/21.15107/rcub_vinar_11818
Algarra M, Nešić MD, Soto J, Urrutia A, Imas JJ, Dučić T, Petković M. Carbon dots nanoparticles as an effective gate for PDT. in PHOTONICA2023 : 9th International School and Conference on Photonics : book of abstracts; August 28 - September 1, 2023; Belgrade. 2023;:121-121.
https://hdl.handle.net/21.15107/rcub_vinar_11818 .
Algarra, M., Nešić, M. D., Soto, J., Urrutia, A., Imas, J. J., Dučić, T., Petković, M., "Carbon dots nanoparticles as an effective gate for PDT" in PHOTONICA2023 : 9th International School and Conference on Photonics : book of abstracts; August 28 - September 1, 2023; Belgrade (2023):121-121,
https://hdl.handle.net/21.15107/rcub_vinar_11818 .

The metal-doped TiO2 nanoparticles as photosensitizers in photodynamic therapy of melanoma

Miler, I. D.; Nešić, M. D.; Žakula, Jelena; Korićanac, Lela; Radoičić, Marija B.; Korićanac, A.; Petković, M.; Stepić, Milutin

(Belgrade : Institute of Physics Belgrade, 2021)

TY  - CONF
AU  - Miler, I. D.
AU  - Nešić, M. D.
AU  - Žakula, Jelena
AU  - Korićanac, Lela
AU  - Radoičić, Marija B.
AU  - Korićanac, A.
AU  - Petković, M.
AU  - Stepić, Milutin
PY  - 2021
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/10909
AB  - Melanoma is one of the most severe life-threatening diseases with a highly aggressive biologic behavior. Despite all improvements in diagnosis and therapy, most deaths from melanoma are due to metastases that are resistant to conventional treatment modalities [1]. Photodynamic therapy (PDT) is a relatively new treatment modality that has been successfully applied to many diseases and disorders, including skin cancers. PDT uses a combination of a light-sensitive substance (known as a photosensitizer, PS) and light of an appropriate wavelength. After the activation by light, PS reacts with molecular oxygen producing reactive oxygen species (ROS) and radicals, which cause intracellular biochemical changes leading to cell death [2]. Titanium dioxide nanoparticles (TiO2 NPs) are commonly used PSs in PDT [3], but they absorb strongly in the UV light range. Doping TiO2 NPs with ions leads to an increase in the absorption edge wavelength and a decrease in the bandgap energy, enabling the application of a less damaging visible light for the NP activation. However, to our best knowledge, metal-doped TiO2 has not been extensively tested as PSs. This study aimed to investigate the effects of colloidal TiO2 NPs and prolate nanospheroids (PNSs) doped with Cu and Ni on melanoma cell lines (A375) in the dark and under blue light irradiation. In general, doped TiO2 NPs show higher photocatalytic activity than undoped analog. Among them, the best photocatalytic activity showed TiO2 NPs doped with Cu [4]. However, colloidal TiO2 NPs have a diameter of 5 nm, whereas PNSs are around 20 nm long. Therefore, the cytotoxicity of cells was dependent on the dopant and the size of NPs. Still, in all cases, it is augmented by the light illumination, implying the potential use of doped TiO2 NPs with Cu and Ni as a light-sensitive drug in PDT of melanoma. In summary, our results can contribute to the development of more efficient skin cancer treatment modalities.
PB  - Belgrade : Institute of Physics Belgrade
C3  - PHOTONICA2021 : 8th International School and Conference on Photonics and HEMMAGINERO workshop : Abstracts of Tutorial, Keynote, Invited Lectures, Progress Reports and Contributed Papers; August 23-27, 2021; Belgrade
T1  - The metal-doped TiO2 nanoparticles as photosensitizers in photodynamic therapy of melanoma
SP  - 103
UR  - https://hdl.handle.net/21.15107/rcub_vinar_10909
ER  - 
@conference{
author = "Miler, I. D. and Nešić, M. D. and Žakula, Jelena and Korićanac, Lela and Radoičić, Marija B. and Korićanac, A. and Petković, M. and Stepić, Milutin",
year = "2021",
abstract = "Melanoma is one of the most severe life-threatening diseases with a highly aggressive biologic behavior. Despite all improvements in diagnosis and therapy, most deaths from melanoma are due to metastases that are resistant to conventional treatment modalities [1]. Photodynamic therapy (PDT) is a relatively new treatment modality that has been successfully applied to many diseases and disorders, including skin cancers. PDT uses a combination of a light-sensitive substance (known as a photosensitizer, PS) and light of an appropriate wavelength. After the activation by light, PS reacts with molecular oxygen producing reactive oxygen species (ROS) and radicals, which cause intracellular biochemical changes leading to cell death [2]. Titanium dioxide nanoparticles (TiO2 NPs) are commonly used PSs in PDT [3], but they absorb strongly in the UV light range. Doping TiO2 NPs with ions leads to an increase in the absorption edge wavelength and a decrease in the bandgap energy, enabling the application of a less damaging visible light for the NP activation. However, to our best knowledge, metal-doped TiO2 has not been extensively tested as PSs. This study aimed to investigate the effects of colloidal TiO2 NPs and prolate nanospheroids (PNSs) doped with Cu and Ni on melanoma cell lines (A375) in the dark and under blue light irradiation. In general, doped TiO2 NPs show higher photocatalytic activity than undoped analog. Among them, the best photocatalytic activity showed TiO2 NPs doped with Cu [4]. However, colloidal TiO2 NPs have a diameter of 5 nm, whereas PNSs are around 20 nm long. Therefore, the cytotoxicity of cells was dependent on the dopant and the size of NPs. Still, in all cases, it is augmented by the light illumination, implying the potential use of doped TiO2 NPs with Cu and Ni as a light-sensitive drug in PDT of melanoma. In summary, our results can contribute to the development of more efficient skin cancer treatment modalities.",
publisher = "Belgrade : Institute of Physics Belgrade",
journal = "PHOTONICA2021 : 8th International School and Conference on Photonics and HEMMAGINERO workshop : Abstracts of Tutorial, Keynote, Invited Lectures, Progress Reports and Contributed Papers; August 23-27, 2021; Belgrade",
title = "The metal-doped TiO2 nanoparticles as photosensitizers in photodynamic therapy of melanoma",
pages = "103",
url = "https://hdl.handle.net/21.15107/rcub_vinar_10909"
}
Miler, I. D., Nešić, M. D., Žakula, J., Korićanac, L., Radoičić, M. B., Korićanac, A., Petković, M.,& Stepić, M.. (2021). The metal-doped TiO2 nanoparticles as photosensitizers in photodynamic therapy of melanoma. in PHOTONICA2021 : 8th International School and Conference on Photonics and HEMMAGINERO workshop : Abstracts of Tutorial, Keynote, Invited Lectures, Progress Reports and Contributed Papers; August 23-27, 2021; Belgrade
Belgrade : Institute of Physics Belgrade., 103.
https://hdl.handle.net/21.15107/rcub_vinar_10909
Miler ID, Nešić MD, Žakula J, Korićanac L, Radoičić MB, Korićanac A, Petković M, Stepić M. The metal-doped TiO2 nanoparticles as photosensitizers in photodynamic therapy of melanoma. in PHOTONICA2021 : 8th International School and Conference on Photonics and HEMMAGINERO workshop : Abstracts of Tutorial, Keynote, Invited Lectures, Progress Reports and Contributed Papers; August 23-27, 2021; Belgrade. 2021;:103.
https://hdl.handle.net/21.15107/rcub_vinar_10909 .
Miler, I. D., Nešić, M. D., Žakula, Jelena, Korićanac, Lela, Radoičić, Marija B., Korićanac, A., Petković, M., Stepić, Milutin, "The metal-doped TiO2 nanoparticles as photosensitizers in photodynamic therapy of melanoma" in PHOTONICA2021 : 8th International School and Conference on Photonics and HEMMAGINERO workshop : Abstracts of Tutorial, Keynote, Invited Lectures, Progress Reports and Contributed Papers; August 23-27, 2021; Belgrade (2021):103,
https://hdl.handle.net/21.15107/rcub_vinar_10909 .