Jardim, Paula M.

Link to this page

Authority KeyName Variants
809207f7-f440-49e7-a797-039384855de5
  • Jardim, Paula M. (2)
Projects

Author's Bibliography

Crystal Structure and Electrical Properties of Ruthenium-Substituted Calcium Copper Titanate

Veselinović, Ljiljana; Mitrić, Miodrag; Mančić, Lidija; Jardim, Paula M.; Škapin, Srečo Davor; Cvjetićanin, Nikola; Milović, Miloš D.; Marković, Smilja

(2022)

TY  - JOUR
AU  - Veselinović, Ljiljana
AU  - Mitrić, Miodrag
AU  - Mančić, Lidija
AU  - Jardim, Paula M.
AU  - Škapin, Srečo Davor
AU  - Cvjetićanin, Nikola
AU  - Milović, Miloš D.
AU  - Marković, Smilja
PY  - 2022
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/12382
AB  - This paper reports a detailed study of crystal structure and dielectric properties of ruthenium-substituted calcium-copper titanates (CaCu3Ti4−xRuxO12, CCTRO). A series of three samples with different stoichiometry was prepared: CaCu3Ti4−xRuxO12, x = 0, 1 and 4, abbreviated as CCTO, CCT3RO and CCRO, respectively. A detailed structural analysis of CCTRO samples was done by the Rietveld refinement of XRPD data. The results show that, regardless of whether Ti4+ or Ru4+ ions are placed in B crystallographic position in AA’3B4O12 (CaCu3Ti4−xRuxO12) unit cell, the crystal structure remains cubic with Im3¯ symmetry. Slight increases in the unit cell parameters, cell volume and interatomic distances indicate that Ru4+ ions with larger ionic radii (0.62 Å) than Ti4+ (0.605 Å) are incorporated in the CaCu3Ti4−xRuxO12 crystal lattice. The structural investigations were confirmed using TEM, HRTEM and ADF/STEM analyses, including EDXS elemental mapping. The effect of Ru atoms share in CaCu3Ti4−xRuxO12 samples on their electrical properties was determined by impedance and dielectric measurements. Results of dielectric measurements indicate that one atom of ruthenium per CaCu3Ti4−xRuxO12 unit cell transforms dielectric CCTO into conductive CCT3RO while preserving cubic crystal structure. Our findings about CCTO and CCT3RO ceramics promote them as ideal tandem to overcome the problem of stress on dielectric-electrode interfaces in capacitors.
T2  - Materials
T1  - Crystal Structure and Electrical Properties of Ruthenium-Substituted Calcium Copper Titanate
VL  - 15
IS  - 23
SP  - 8500
SP  - 8500
DO  - 10.3390/ma15238500
ER  - 
@article{
author = "Veselinović, Ljiljana and Mitrić, Miodrag and Mančić, Lidija and Jardim, Paula M. and Škapin, Srečo Davor and Cvjetićanin, Nikola and Milović, Miloš D. and Marković, Smilja",
year = "2022",
abstract = "This paper reports a detailed study of crystal structure and dielectric properties of ruthenium-substituted calcium-copper titanates (CaCu3Ti4−xRuxO12, CCTRO). A series of three samples with different stoichiometry was prepared: CaCu3Ti4−xRuxO12, x = 0, 1 and 4, abbreviated as CCTO, CCT3RO and CCRO, respectively. A detailed structural analysis of CCTRO samples was done by the Rietveld refinement of XRPD data. The results show that, regardless of whether Ti4+ or Ru4+ ions are placed in B crystallographic position in AA’3B4O12 (CaCu3Ti4−xRuxO12) unit cell, the crystal structure remains cubic with Im3¯ symmetry. Slight increases in the unit cell parameters, cell volume and interatomic distances indicate that Ru4+ ions with larger ionic radii (0.62 Å) than Ti4+ (0.605 Å) are incorporated in the CaCu3Ti4−xRuxO12 crystal lattice. The structural investigations were confirmed using TEM, HRTEM and ADF/STEM analyses, including EDXS elemental mapping. The effect of Ru atoms share in CaCu3Ti4−xRuxO12 samples on their electrical properties was determined by impedance and dielectric measurements. Results of dielectric measurements indicate that one atom of ruthenium per CaCu3Ti4−xRuxO12 unit cell transforms dielectric CCTO into conductive CCT3RO while preserving cubic crystal structure. Our findings about CCTO and CCT3RO ceramics promote them as ideal tandem to overcome the problem of stress on dielectric-electrode interfaces in capacitors.",
journal = "Materials",
title = "Crystal Structure and Electrical Properties of Ruthenium-Substituted Calcium Copper Titanate",
volume = "15",
number = "23",
pages = "8500-8500",
doi = "10.3390/ma15238500"
}
Veselinović, L., Mitrić, M., Mančić, L., Jardim, P. M., Škapin, S. D., Cvjetićanin, N., Milović, M. D.,& Marković, S.. (2022). Crystal Structure and Electrical Properties of Ruthenium-Substituted Calcium Copper Titanate. in Materials, 15(23), 8500.
https://doi.org/10.3390/ma15238500
Veselinović L, Mitrić M, Mančić L, Jardim PM, Škapin SD, Cvjetićanin N, Milović MD, Marković S. Crystal Structure and Electrical Properties of Ruthenium-Substituted Calcium Copper Titanate. in Materials. 2022;15(23):8500.
doi:10.3390/ma15238500 .
Veselinović, Ljiljana, Mitrić, Miodrag, Mančić, Lidija, Jardim, Paula M., Škapin, Srečo Davor, Cvjetićanin, Nikola, Milović, Miloš D., Marković, Smilja, "Crystal Structure and Electrical Properties of Ruthenium-Substituted Calcium Copper Titanate" in Materials, 15, no. 23 (2022):8500,
https://doi.org/10.3390/ma15238500 . .

CaCu3Ti4-xRuxO12: Crystal structure, electrical and magnetic properties

Veselinović, Ljiljana; Mitrić, Miodrag; Mančić, Lidija; Jardim, Paula M.; Škapin, Srečo Davor; Cvjetićanin, N.; Marković, S.

(Belgrade : Serbian Ceramic Society, 2021)

TY  - CONF
AU  - Veselinović, Ljiljana
AU  - Mitrić, Miodrag
AU  - Mančić, Lidija
AU  - Jardim, Paula M.
AU  - Škapin, Srečo Davor
AU  - Cvjetićanin, N.
AU  - Marković, S.
PY  - 2021
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/10779
AB  - The CaCu3 Ti 4 O12 belongs to the large ACu3B4 O12 family of materials. Crystallographic A site is most often occupied by alkaline-earth metals or lanthanides, while B site is occupied by transition metals. The type of cations that build up the structure strongly affects the properties of these. The CaCu 3 Ti 4 O12 has been extensively studied due to its high dielectric permittivity stable over a wide temperature and frequency range (up to 10 5 , for 100-600 K and 10 2 –105 Hz). Because of such characteristics, it has promising application in microelectronics. However, it has been shown that differences in the crystal structure and electrical properties of dielectric ceramics and metallic electrodes, may cause an energy barrier and occurrence of stress on the ceramic-electrode contact which reduces dielectric permittivity. Such stress can be prevented by using dielectric and electrode materials with as much as possible similar crystal structure, especially unit cell parameters. This investigation dealt with detailed structural (XRPD, HRTEM, SAED), dielectric and magnetic study of CaCu 3 Ti 4-xRuxO12 (CCTRO, x = 0, 1 and 4) materials. The results of structural refinement show that in cubic symmetry with space group 3Im , both titanium and ruthenium ions occupied crystallographic B site. Moreover, the variation in stoichiometry slightly affects the value of the unit cell parameters but changes electrical properties of studied material. Thus, substitution of even one atom of Ru in CaCu3 Ti 4-xRuxO12 unit cell is enough to change material properties from dielectric to conductor solving the problem of stress appearance on the contact layer of dielectric/electrode in capacitors.
PB  - Belgrade : Serbian Ceramic Society
C3  - Advanced Ceramics and Application : 9th Serbian Ceramic Society Conference : program and the book of abstracts; September 20-21, 2021; Belgrade
T1  - CaCu3Ti4-xRuxO12: Crystal structure, electrical and magnetic properties
SP  - 32
UR  - https://hdl.handle.net/21.15107/rcub_vinar_10779
ER  - 
@conference{
author = "Veselinović, Ljiljana and Mitrić, Miodrag and Mančić, Lidija and Jardim, Paula M. and Škapin, Srečo Davor and Cvjetićanin, N. and Marković, S.",
year = "2021",
abstract = "The CaCu3 Ti 4 O12 belongs to the large ACu3B4 O12 family of materials. Crystallographic A site is most often occupied by alkaline-earth metals or lanthanides, while B site is occupied by transition metals. The type of cations that build up the structure strongly affects the properties of these. The CaCu 3 Ti 4 O12 has been extensively studied due to its high dielectric permittivity stable over a wide temperature and frequency range (up to 10 5 , for 100-600 K and 10 2 –105 Hz). Because of such characteristics, it has promising application in microelectronics. However, it has been shown that differences in the crystal structure and electrical properties of dielectric ceramics and metallic electrodes, may cause an energy barrier and occurrence of stress on the ceramic-electrode contact which reduces dielectric permittivity. Such stress can be prevented by using dielectric and electrode materials with as much as possible similar crystal structure, especially unit cell parameters. This investigation dealt with detailed structural (XRPD, HRTEM, SAED), dielectric and magnetic study of CaCu 3 Ti 4-xRuxO12 (CCTRO, x = 0, 1 and 4) materials. The results of structural refinement show that in cubic symmetry with space group 3Im , both titanium and ruthenium ions occupied crystallographic B site. Moreover, the variation in stoichiometry slightly affects the value of the unit cell parameters but changes electrical properties of studied material. Thus, substitution of even one atom of Ru in CaCu3 Ti 4-xRuxO12 unit cell is enough to change material properties from dielectric to conductor solving the problem of stress appearance on the contact layer of dielectric/electrode in capacitors.",
publisher = "Belgrade : Serbian Ceramic Society",
journal = "Advanced Ceramics and Application : 9th Serbian Ceramic Society Conference : program and the book of abstracts; September 20-21, 2021; Belgrade",
title = "CaCu3Ti4-xRuxO12: Crystal structure, electrical and magnetic properties",
pages = "32",
url = "https://hdl.handle.net/21.15107/rcub_vinar_10779"
}
Veselinović, L., Mitrić, M., Mančić, L., Jardim, P. M., Škapin, S. D., Cvjetićanin, N.,& Marković, S.. (2021). CaCu3Ti4-xRuxO12: Crystal structure, electrical and magnetic properties. in Advanced Ceramics and Application : 9th Serbian Ceramic Society Conference : program and the book of abstracts; September 20-21, 2021; Belgrade
Belgrade : Serbian Ceramic Society., 32.
https://hdl.handle.net/21.15107/rcub_vinar_10779
Veselinović L, Mitrić M, Mančić L, Jardim PM, Škapin SD, Cvjetićanin N, Marković S. CaCu3Ti4-xRuxO12: Crystal structure, electrical and magnetic properties. in Advanced Ceramics and Application : 9th Serbian Ceramic Society Conference : program and the book of abstracts; September 20-21, 2021; Belgrade. 2021;:32.
https://hdl.handle.net/21.15107/rcub_vinar_10779 .
Veselinović, Ljiljana, Mitrić, Miodrag, Mančić, Lidija, Jardim, Paula M., Škapin, Srečo Davor, Cvjetićanin, N., Marković, S., "CaCu3Ti4-xRuxO12: Crystal structure, electrical and magnetic properties" in Advanced Ceramics and Application : 9th Serbian Ceramic Society Conference : program and the book of abstracts; September 20-21, 2021; Belgrade (2021):32,
https://hdl.handle.net/21.15107/rcub_vinar_10779 .