Приказ основних података о документу

dc.creatorKrsmanović, Radenka
dc.creatorJovanović, Dragana J.
dc.creatorAntić, Željka
dc.creatorBartova, Barbora
dc.creatorMilivojević, Dušan
dc.creatorDramićanin, Miroslav
dc.creatorBrik, Mikhail G.
dc.date.accessioned2018-03-01T23:55:56Z
dc.date.available2018-03-01T23:55:56Z
dc.date.issued2014
dc.identifier.issn0022-2313
dc.identifier.issn1872-7883
dc.identifier.urihttps://vinar.vin.bg.ac.rs/handle/123456789/5847
dc.description.abstractZinc sulfide, both as a bulk material and in nanocrystalline form, is a valuable luminescent material with important applications. Doped ZnS nanoparticles of around 5 nm are the material of choice for optoelectronic applications running in the UV region owing to their significant quantum size effect. This paper concerns detailed structural, spectroscopic and crystal field studies of ZnS nanoparticles, both pure and doped with Mn2+ ions, successfully synthesized at room temperature using a simple reverse micelle technique in the Triton X-100/cyclohexane medium. The resulting ZnS sphalerite phase smallsize nanoparticles (3-5 nm) have a much larger energy band gap ( similar to 4.7 eV) than that reported for the bulk ZnS (3.6 eV), thus confirming a pronounced quantum confinement effect. The electron paramagnetic resonance data provided evidence for the existence of two distinct environments for Mn2+ ions: the interior (core) and near the surface of the nanoparticles. The presence of an Mn2+-characteristic orange emission centered at 600 nm confirmed that our samples were properly doped with Mn2+ ions, as the T-4(1)- GT (6)A(1) radiation transition could arise only on the basis of Mn2+ ions incorporated into the ZnS nanoparticles. To the best of our knowledge, our finding include the longest decay time component for the orange emission ever observed, timed at about 3.3 ms. The experimental excitation spectra were analyzed and the transitions assigned using the exchange charge model of theory of crystal field, which allowed to calculate the energy level scheme of the Mn2+ ions. The results presented in this paper provide us with detailed information about the ZnS sphalerite nanocrystals studied and can be readily applied to other similar systems. (C) 2013 Elsevier B.V. All rights reserved.en
dc.relationinfo:eu-repo/grantAgreement/MESTD/Integrated and Interdisciplinary Research (IIR or III)/45020/RS//
dc.relationinfo:eu-repo/grantAgreement/MESTD/Basic Research (BR or ON)/172056/RS//
dc.rightsrestrictedAccessen
dc.sourceJournal of Luminescenceen
dc.subjectZnSen
dc.subjectSemiconductorsen
dc.subjectNanostructured materialsen
dc.subjectOptical propertiesen
dc.subjectLuminescenceen
dc.subjectCrystal field analysisen
dc.titleStructural, optical and crystal field analyses of undoped and Mn2+-doped ZnS nanoparticles synthesized via reverse micelle routeen
dc.typearticleen
dc.rights.licenseARR
dcterms.abstractБрик, М. Г.; Крсмановић Раденка; Јовановић Драгана; Aнтиц, З.; Бартова, Б.; Миливојевић Душан; Драмићанин Мирослав;
dc.citation.volume146
dc.citation.spage133
dc.citation.epage140
dc.identifier.wos000330089600024
dc.identifier.doi10.1016/j.jlumin.2013.09.032
dc.citation.rankM21
dc.type.versionpublishedVersion
dc.identifier.scopus2-s2.0-84886260342


Документи

Thumbnail

Овај документ се појављује у следећим колекцијама

Приказ основних података о документу