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Abstract: Aluminum borides have various industrial applications, used in fuels, explosives, 

abrasives, and as additives to consolidated materials based on boron carbide. The structure of AlB12 

is similar to that of boron carbide, including almost regular icosahedrons of boron atoms. The 

absence of the structure data of some higher aluminum borides and the presence of a large number of 

reflexes in their diffraction patterns makes the identification of phase compositions very difficult and 

limits the possibilities of the computer modeling of the AlB12. The crystal structure of AlB12 is usually 

considered as tetragonal α-AlB12 (space group P43212) and orthorhombic γ-AlB12 (space group 

P212121) which can be synthesized from high-temperature Al-B melts. 

In our work, we have performed ab initio optimization of the experimentally observed 

Yannoni’s AlB12 using GGA-PBE functional and obtained relaxed unit cell parameters and atomic 

positions. Furthermore, we have predicted three different AlB12 structure candidates obtained as a 

result of the ICSD data mining. The most favorable structure according to total energy ranking was 

found in the UB12 structure type, which crystallizes in the cubic space group Fm-3m. Therefore, for 

the new cubic AlB12, we have calculated mechanical properties on different pressures and made the 

comparison with available experimental data in the AlB12 system.  
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1. Introduction 

 

Investigation of aluminum borides’ properties and development of methods of their production 

has been studied since the 1950s [1]. However, up to now, not all crystalline structures of the known 

modifications of aluminum dodecaborides are decoded and the industrial and half-industrial 

technologies of their powder production remain yet to be developed (at present these materials have 

not found widespread use and can only be synthesized in small amounts in laboratories). [2, 3] 

Characteristic properties of aluminum dodecaboride (AlB12) are similar to those of boron carbide 

(B4C) due to the similarity of their structures: it is believed that they exhibit high hardness values and 

thus belong to superhard materials due to their almost regular icosahedral boron configuration
 
[4]. 

Lightweight ceramics based on polycrystalline AlB12 exhibit high fracture toughness, thermal 

stability, and hardness (they easily produce scratches on silicon carbide, and even on boron 

carbide).[5] 

Of the five phases of binary Al-B systems (AlB2, AlB10, α-AlB12, β-AlB12, γ-AlB12), which are 

known for more than 50 years
 
[6], two are shown to be stabilized by impurities (AlB10 and β-AlB12) 

[7-9] and three are considered to be pure binary aluminum borides (AlB2, α-AlB12, and γ-AlB12). The 

phases AlB10  and β-AlB12 were shown to be ternary Al-B-C systems 

Aluminium dodecaboride (AlB12) is the hardest boride of the aluminium-boron system. There are 

two very similar crystalline forms, α-AlB12, and γ-AlB12, and a combination of three-dimensional 

networks of icosahedra B12 and B20 is characteristic for both. Crystals of orthorhombic  γ-AlB12 

(P21212; a = 16.57, b = 17.51, c = 10.14 Å) are usually obtained as intergrown crystals with 

tetragonal α-AlB12 (P41212 or P43212; a = 10.16, c =14.28 Å) from high-temperature Al-B 
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solutions.[10, 11] Efforts to prepare single crystals of boron-rich γ-AlB12 showed it’s instability, 

where after pulverizing γ-AlB12 transforms completely to α-AlB12.[10, 12]  

Aluminum borides can be synthesized using different powder metallurgy routes [13]: high current 

impulse arc discharge, mixing and annealing of elemental powders, grinding in a ball mill and 

annealing of AlB2, grinding of elemental powders in an agate mortar (compacted and annealed 

afterward), plasma recondensation, radiofrequency thermal plasma method, as well as other 

techniques used to synthesize aluminum borides [14], such as: grinding of amorphous boron or boron 

oxide and metal aluminum in a ball mill, laser treatment of aluminum and boron-containing materials, 

crystallization from the melt of aluminum and boron-containing materials, spark plasmic sintering, 

thermodynamic, electroarc and other methods. 

AlB12 is a diamond-hard semiconductor and this extreme hardness makes it a favorable 

component of polycrystalline cubic boron nitride (PCBN) inserts, which are mainly used in cutting 

and grinding to replace diamond or corundum. It was also studied in terms of the possibility to be 

used as the fuel [15] and explosives, as additives to consolidated materials based on boron carbide, 

and as abrasives [3]. Furthermore, boron treatment is a widely used practice in the industry for 

removing transition metals such as Ti, V, and Zr that decrease electrical conductivity. For this 

procedure called boron treatment, Al-B alloys containing AlB2 and AlB12 are mostly used. Also, the 

AlB12, a wide band gap semiconductor, is an interesting candidate for the detection of thermal 

neutrons.[16] Because of their hardness, high melting temperature, and semiconductive properties, 

which are useful in different applications, aluminum borides show promising applications in 

metallurgy, aerospace field, automotive industry [17], military industry, [18] and electrotechnics [19]. 

Materials based on AlB12 hold great potential for a wide range of applications: because of their 

lightweight combined with high hardness and fracture toughness, they can be used as shock wave 

resistant ceramics [3]; since 
10

B isotope has large thermal neutron absorption cross-section, high-

boron materials (of which AlB12 has one of the highest among boron compounds – about 83% by 

mass) is indispensable in nuclear energy application [4]; also aluminum dodecaborides can be used as 

a fuel, explosives or abrasives [20], impact-resistant and armor materials [18], ceramic filling in metal 

matrix composites and it is shown to be a promising material for radiation detection (in solid-state 

devices for the detection of thermal neutrons) [16]. 
 

2. Computational details 

 

The idea of this work was to use theoretical ab initio methods to relax the structures of α-AlB12 

and γ-AlB12 and calculate their electronic and mechanical properties since there is no enough 

experimental data on this topic. In order to search for experimental and theoretical structures of AlB12 

the ICSD database [21, 22] was used. The crystal structures of α-AlB12 [12, 23] and γ-AlB12 [24, 25] 

were identified, wherein in both cases aluminum atoms only partially occupy their positions in the 

structure. This introduces complexity in theoretical models and makes calculations extremely 

computationally demanding.  

To overcome this problem, we took the AlB12 model of Yannoni [26], where positions of 

aluminium atoms are not partially occupied. Furthermore, we have used a data mining procedure [27] 

and found structure types with the general formula AN12. For every candidate, we have performed 

local optimization for the AlB12 composition. More details of such ab initio data mining explorations 

can be found elsewhere [28, 29]. Structure optimization was performed using GGA functional inside 

of the Crystal17 code [30]. After DFT optimization, the total energies have been obtained for all 

calculated structures, which were further analyzed.  

For both boron and carbon, an all-electron basis set based on Gaussian-type orbitals was 

employed. In the case of boron, a [3s2p1d] basis set was used [31, 32] and for aluminium, a [4s3p1d] 

basis set was used, [33, 34] respectively. The calculation of elastic constants and mechanical 

properties is fully automated in the Crystal17 code [35, 36]. Space group determination for the 

investigated modifications was performed using KPLOT software [37]. VESTA code [38] was used 

for crystal structure visualization. 
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3. Results and discussion 
  

3.1.  Ab initio data mining analysis 
 

Local optimization of existing AlB12 structures was performed only for the model of  Yannoni 

[26] since this is the unique structure where positions of aluminum atoms are not partially occupied. 

Results of local optimization including space group, unit cell parameters, and total energy are given in 

Table 1. Besides Yannoni’s model of AlB12, we have found three different structure type candidates 

using the ab initio data mining investigation of the ICSD crystal structure database.[21, 22, 27, 39, 

40] Starting from these three models we have optimized AlB12 composition with UB12[41], Al12W 

[42], and Mn12Th [43] structure types. The results for these three phases are also given in Table 1. 

Optimized unit cell parameters of the Yannoni’s model show good agreement with the 

experimental values (Table 1). The unit cell parameter a = 10.18 Å is almost the same as the 

experimental parameter a = 10.17 Å. The difference occurs for the value of the unit cell parameter c, 

where the theoretical value c = 15.67 Å, is increased in comparison with the experimental c = 14.28 

Å. If we follow the coordination of the boron atoms in Figure 1a and after analyzing distances using 

KPLOT software, one can observe that each boron atom is mostly coordinated with 11 or 12 boron 

atoms, but there is no regular icosahedral network as in α-AlB12 and γ-AlB12 compounds. Among the 

predicted structures obtained using the data mining procedure, the best in total energy ranking is the 

cubic AlB12-UB12 structure type. It appears in the Fm-3m space group (no. 225), and the unit cell 

parameters are shown in Table 1, while the predicted structure is shown in Figure 1b. The structure 

shows the network of regular icosahedra whose presence usually is also characteristic for α-AlB12 and 

γ-AlB12 compounds. This structure arrangement is probably the reason why this structure type is 

ranked as the best in total energy.  

Interestingly, there is another predicted AlB12 structure with cubic symmetry appearing in 

space group Im-3m. It has been calculated in the Al12W structure type and the optimized unit cell 

parameters are given in Table 1. It has a different arrangement of boron atoms if compared with the 

UB12 structure type. Each of the boron atoms is in the center of 8-fold coordinated polyhedra (Figure 

1c). Nevertheless, the Al12W structure type in AlB12 is high in energy, supporting the fact that this sort 

of packing of boron atoms is not favorable for AlB12 composition. Finally, the structure type that is 

highest in the calculated total energy is obtained in the Mn12Th modification of AlB12. Figure 1d 

shows the characteristic planar arrangement of the boron atoms in this structure type. Similar to the 

previous case, lacking icosahedral boron arrangement causes a bad ranking in total energy for the 

AlB12 system. 

Furthermore, we have calculated curves showing the dependence of Energy vs. Volume and 

they are shown in Figure 2. The structure type that has the best energy ranking is the UB12. Yannoni’s 

model is presented only with a single point since calculating energy-volume dependence was 

computationally expensive. Since there is no experimental evidence for the existence of AlB12 with 

the UB12 structure type, but keeping in mind that Yannoni’s model is experimentally observed, it 

would be reasonable to expect the existence of UB12 structure type in the AlB12 system, especially 

since it has better total energy ranking than Yannoni’model. 
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Table 1. Space group, unit cell parameters (Å), atomic positions, and total energy values in Hartrees 

(Eh) for four optimized AlB12 modifications obtained using GGA functional. 

Space group and 

modification 

Cell parameters (Å) and fractional coordinates The energy on 

PBE level 

(Hartrees, Eh) 
PBE 

 

AlB12-UB12 type 

Fm-3m (225) 

 

a = 7.39 

Al (0 0 0) 

B (0.3304 0.3304 1/2) 

-540.0656 

AlB12-Yannoni 

P41212 (92) 

a = 10.18, c = 15.67 

Al (0.0696 0.1814 0.1976)  B(0.9609 0.0620 0.1170) 

Al (0.9290 0.7478 0.0183)  B (0.8544 0.0930 0.1981) 

B (0.3043 0.1836 0.1761)   B (0.7823 0.8362 0.1138) 

B (0.4875 0.8582 0.2874)   B (0.4894 0.8872 0.0291) 

B (0.3606 0.8842 0.1030)   B (0.6818 0.1945 0.0420) 

B (0.0770 0.9592 0.9887)   B (0.9042 0.9241 0.1667) 

B (0.4134 0.0544 0.1419)   B (0.5234 0.9462 0.1893) 

B (0.3129 0.0376 0.2358)   B (0.6961 0.0032 0.1832) 

B (0.0189 0.8544 0.2394)   B (0.6241 0.9100 0.0997) 

B (0.2237 0.8868 0.1778)   B (0.8070 0.1235 0.9841) 

B (0.1964 0.9401 0.0652)   B (0.7230 0.1683 0.1461) 

B (0.2160 0.0976 0.0071)   B (0.5821 0.0869 0.1084) 

B (0.1991 0.2425 0.0906) 

B (0.0794 0.9632 0.1559) 

Exp. a = 10.17(1); c = 14.28(1) [26] 

-539.9941 

AlB12-Al12W type 

Im-3m (229) 

a = 5.74 

Al (0 0 0) 

B (0.2196 0.2196 1/2) 

-539.8059 

AlB12-Mn12Th type 

I4/mmm (139) 

a = 8.80, c = 3.17 

Al (0 0 0) 

B (1/4 1/4 3/4) 

B (0.7436 0 0 ) 

B (1/2 0.2615 0) 

-539.7554 
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Figure 1. Crystal structures of the:  a) AlB12-Yannoni model; which is experimentally observed; and 

b) UB12 type; c) Al12W type and d) Mn12Th type in AlB12 system, which is theoretically predicted in 

this study.  

 

 

a) b) 

c) 
d) 
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Figure 2. Energy-volume curves calculated using PBE functional for four different structure 

arrangements in the AlB12 system. 

 

 
3.2. Mechanical properties of a cubic AlB12 at extreme pressure conditions  

 

Since our investigation proved cubic AlB12 with the UB12 structure type as a potential 

candidate for experimental synthesis, our next step was to calculate its mechanical properties, 

especially hardness up to 50 GPa. In the sequence of our investigation, we have calculated elastic 

constants Cij for AlB12 with the UB12 structure type, and second-order elastic constants are given in 

Table 2. For the polycrystalline materials, the mechanical properties are usually described by various 

elastic moduli, such as bulk modulus B, shear modulus K, and Young’s modulus E, which are the 

measure of the compressibility, rigidity,  and stiffness. In further work, obtained elastic constants from 

Table 2 were used to calculate elastic moduli: B, K, E, and v for investigated AlB12 with the UB12 

structure type for the pressure range 0-50 GPa.  

 

Table 2. Calculated bulk modulus B (GPa), shear modulus K (GPa), Young’s modulus E (GPa), 

Poisson’s ratio v, hardness VH (GPa), and elastic constants AlB12 (UB12-type). 

 

AlB12 (UB12-type) C11 C12 C44 B K E v VH 

0 254 177.1 167.2 202.7 93.6 243.3 0.3 9.50 

5 273.6 193.9 177.3 220.5 98.4 257.1 0.3 9.47 

10 292.7 210.3 185.2 237.8 102.5 268.8 0.3 9.37 

15 313.7 228.9 195.3 257.2 107.1 282 0.3 9.30 

20 331.3 246.4 204.8 274.7 110.4 292 0.3 9.12 

25 349.3 263.4 213.8 292.1 113.9 302.5 0.3 9.01 

30 366 280.5 222 309 116.6 310.7 0.3 8.83 

35 383.1 296.9 229.9 325.6 119.6 319.8 0.3 8.72 

40 399.2 313.6 237.4 342.2 121.9 326.8 0.3 8.53 

45 415.3 330.2 244.2 358.6 124 333.5 0.3 8.35 

50 430.4 346.1 251 374.2 125.8 339.5 0.3 8.17 
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Hardness VH is related to the elastic and plastic properties of materials, and can be calculated from 

bulk modulus (B) and shear modulus (K) according to equation (1) from Ref. [44]: 

 

                                                       VH = 0.92(K/B)
1.137

K
0.708  

                                                           (1) 

 

Values for the hardness of AlB12 (UB12-type) in the pressure range 0-50 GPa are given in Table 2.  

According to [2] materials sintered from α-AlB12 powders have hardness ≈ 24 GPa. With the 

increased pressure hardness values are decreasing from 9.50 GPa at 0 GPa pressure down to 8.17 GPa 

at 50 GPa pressure. Our calculations show that the hardness of AlB12 is drastically decreased if the 

UB12 structure type is adopted, which can have an enormous effect on future technological 

applications. We can conclude that the crystal structure and the boron coordination have the greatest 

influence on mechanical properties. Furthermore, Poisson's ration v provides information about the 

ductility/brittleness of the materials. If the value of v is smaller than 0.26, the material will have brittle 

behavior. Otherwise, as in the case with UB12 structure type, the AlB12 appears to be ductile (v=0.30). 

Interestingly, the value of the Poisson's ration v doesn’t depend on pressure, and ductility is preserved 

for the whole investigated pressure range. 

 

 
4. Conclusion 

 

We have investigated the AlB12 system and performed structure prediction using ab initio data 

mining investigation. We have found three new structure candidates as the result of the data mining of 

the ICSD database (UB12, Al12W, and Mn12Th). Besides them, we have optimized experimentally 

observed Yannoni’s model of the AlB12 compound. Among these four candidates, the best ranking in 

total energy has been observed for the UB12 structure type with the cubic Fm-3m space group.  

We have investigated structural properties for four structure candidates and additionally mechanical 

properties for the AlB12 with UB12 structure type, and the effect of extreme conditions of high 

pressure up to 50 GPa. According to Poisson’s ratio AlB12 with UB12 exhibits ductile character, while 

the hardness decreases with the pressure increase. In this context, we conclude that the crystal 

structure and the boron coordination have the greatest influence on mechanical properties, as well on 

future scientific and technological applications of AlB12. 
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