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Vaccination is one of the greatest achievements in biomedical research pre-

venting death and morbidity in many infectious diseases through the induc-

tion of pathogen-specific humoral and cellular immune responses.

Currently, no effective vaccines are available for pathogens with a highly

variable antigenic load, such as the human immunodeficiency virus or to

induce cellular T-cell immunity in the fight against cancer. The recent

SARS-CoV-2 outbreak has reinforced the relevance of designing smart

therapeutic vaccine modalities to ensure public health. Indeed, academic

and private companies have ongoing joint efforts to develop novel vaccine

prototypes for this virus. Many pathogens are covered by a dense glycan-

coat, which form an attractive target for vaccine development. Moreover,

many tumor types are characterized by altered glycosylation profiles that

are known as “tumor-associated carbohydrate antigens”. Unfortunately,

glycans do not provoke a vigorous immune response and generally serve as

T-cell-independent antigens, not eliciting protective immunoglobulin G

responses nor inducing immunological memory. A close and continuous

crosstalk between glycochemists and glycoimmunologists is essential for the

successful development of efficient immune modulators. It is clear that this

is a key point for the discovery of novel approaches, which could signifi-

cantly improve our understanding of the immune system. In this review,

we discuss the latest advancements in development of vaccines against gly-

can epitopes to gain selective immune responses and to provide an over-

view on the role of different immunogenic constructs in improving

glycovaccine efficacy.

Introduction

Cellular glycosylation is a highly regulated multistep

process that is present in all life forms, although it

greatly differs across the different taxa [1,2]. In mam-

malian cells, glycans can be attached to proteins and

lipids on the cell surface, but also in the cytoplasm or

even the nucleus. Whereas viruses generally hijack the

glycosylation machinery of host cells, many bacterial

species, fungi, and parasites carry their own set of gly-

cosylation enzymes that enable to decorate their sur-

face with glycans. Indeed, bacteria are covered by a

dense glycan-coat exposed to their outer surface or as

a polysaccharide capsule and some species even con-

tain proper glycosylated glycoproteins. These patho-

genic glycans have proven to be attractive targets for

vaccine development.

In the last 20 years, advancements on the development

of efficient methodologies and highly sensitive analytical

tools for studying the glycome have increased our knowl-

edge on profiling the variability of glycan structures and

on determining their key role(s). In addition, a synergistic

interplay between immunologists and chemists has

enabled the development of novel approaches, which

have significantly improved our understanding of the

immune system. There is a growing body of literature

focused on the development of a wide range of glycan-

based chemical tools able to modulate the immune

response, and there is increased understanding of key

mechanisms that orchestrate the biological role of gly-

cans in immunity [3–8]. In this regard, a large pool of

structurally well-defined glycan derivatives including nat-

ural glyco-epitopes, glyco-analogues, and glycomimetics

has become available due to advancements in chemical

and chemoenzymatic protocols for their synthesis [9–12].
Moreover, these structures have been assembled into syn-

thetic and semisynthetic glycoconjugates containing

selected mono- and multivalent carriers that also play a

key role in the type of immune response induced through

the activation of specific immune compartments [13–19].
Manipulation of the immune system always carries an

intrinsic risk, and therefore, a close and continuous cross-

talk between glycochemists and glycoimmunologists is

essential for the successful development of efficient

immune modulators.
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The intent of this review is to highlight some recent

and most relevant advances in the field of synthetic

glycobiology that enable the modulation of immune

responses (Fig. 1).

Starting from an immunological point of view, we

have selected those reports that stand out among the

major contributions to the field over the last 10 years,

with particular attention to those studies that provide

powerful examples of the utility of synthetic glyco-

epitope-based vaccine prototypes. We specifically dis-

cuss chemical tools that enable the modulation of

immune responses in cancer and in some relevant bac-

terial and viral infections. In general, sample cases

have been selected to provide an overview of the dif-

ferent immunological effects according to the use of

different carriers, the diversity of pathological epitopes

targeted, and the mode of their presentation to the

immune system. The main and most recent efforts to

circumvent the poor immunogenicity of glycan epi-

topes through the use of specific immunogenic carriers

are also included.

Immunologists perspective: the need
for molecular approaches

Effective, specific, and safe regulation of the immune

response using various approaches (i.e., vaccines, phar-

macological agents, or biological drugs) represents the

holy grail of contemporary immunotherapy [20]. From

an immunologist’s point of view, a great number of

potential ways to manipulate immune reactivity in a

positive or negative manner exist, making the immuno-

logical network a medicinal chemist’s playground.

However, the sensitivity of such grand design requires

an in-depth knowledge of the immune system not only

to recognize potential drug targets, but also to predict

the influence of manipulating single or multiple targets

on the overall immunological balance and immune

homeostasis.

Perhaps the most challenging task of our immune

system is not to efficiently eliminate invading patho-

gens or to remain tolerant to self-antigens, but to

maintain a steady and lifelong balance between the

two. Since both immune reactivity and tolerance are

fought on the same “battlefield,” any therapeutic mod-

ulation of an immune response has the potential to

disrupt this balance in the opposite direction. This

may result in either an excessive inflammatory reaction

or exaggerated immune suppression and lead to, for

example, autoimmune or chronic inflammatory dis-

eases or increased susceptibility to infection.

Targeting the innate immune responses

In evolutionary terms, innate immunity precedes adap-

tive immunity and while lacking antigen-specific recog-

nition, it can respond quickly and eradicate pathogens

even before systemic infection [21]. It works by recog-

nizing pathogen- and danger-associated molecular pat-

terns via a group of sensors called pattern recognition

Fig. 1. Glycoconjugate vaccines for the

modulation of innate and adaptive immune

responses toward different pathogens and

cancer. Conjugation of glycan epitopes

(represented here by general N-glycan as an

example of an oligosaccharide structures) to

suitable carriers ranging from proteins,

peptides, oligonucleotides, dendrimers,

liposomes, and glycolipids, to ZPS and,

more recently, NPs, represents the main

strategy currently being exploited for

development of vaccines against pathogens

and tumors. They have been developed to

ensure the proper activation of specific

parts of the immune system, such as

effector B/T cells, NK cells, macrophages,

and in general APCs.
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receptors (PRRs). These are classified into various

receptor families, most important being Toll-like recep-

tors (TLRs), nucleotide-binding oligomerization

domain-like receptors, retinoic acid-inducible gene I-

like receptors, and C-type lectin receptors (CLRs)

[22,23]. The activation of these receptors by various

conserved molecular determinants present on microbes

and viruses culminates in an effective immune

response, tailored in such a way to most efficiently

remove the invading pathogen. The central role of

PRRs in innate immune activation makes them the

perfect target for immunomodulatory drugs, and sev-

eral natural PRR ligands can be successfully imitated

by small- to medium-sized synthetic molecules with

agonistic activity (i.e., able to bind and activate a

receptor) or antagonistic activity (i.e., blockers of the

agonist action) [24–27]. In terms of vaccine develop-

ment, effective PRR agonists can serve a very impor-

tant role as adjuvants [28,29]. The induction of

optimal antigen-specific and memory immune

responses is the primary goal of vaccination. Although

these responses are carried out by cells of the adaptive

immune system (T cells and B cells), their initiation

and level of quality are determined already at the

innate level. Both macrophages and B cells can serve

the antigen-presenting function. However, it is the den-

dritic cell (DC) that is the superior professional

antigen-presenting cell (APC). This is due to the DC’s

unique and outstanding capacity to sample and present

antigen, as well as their efficient detection of patho-

gens via expression of the above mentioned PRRs [30].

Chemical entities designed as PRR agonists can there-

fore serve as important immunomodulatory tools.

However, particular emphasis should be given on the

type of immune response they could elicit in the long

term. Indeed, the immune system may also attack self-

tissues. Thus, a deeper understanding of the cellular

players, receptors, and mechanisms associated with the

complex events related to the immune response is

required to avoid undesired aggressive immunity to

self-antigens.

Overcoming the poor immunogenicity of glycan

epitopes

The last two decades have witnessed a significant

amount of discoveries on the immunogenic role, and,

in general, the biological role of glycan epitopes in

pathological settings [31–34]. These findings have

prompted glycoscientists to investigate the glycan

mimicry approach to develop new efficient therapeutics

for pathological conditions, such as cancer and infec-

tions. Specifically, different approaches have been

investigated including the development of

carbohydrate-based vaccines, glycan-based targeting of

APCs, immune checkpoint inhibitors, and direct modi-

fiers of cellular glycosylation [8,31,35–39].
Due to their T-cell independency, glycans are unable

to induce the production of long-lived protective anti-

bodies and do not establish immunological memory,

especially in young children and the elderly population

[40]. Glycans can be recognized by B cells and are

intracellularly processed; however, they mainly trigger

the secretion of low-avidity antibodies [immunoglobu-

lin M (IgM)] [41]. Indeed, human blood contains many

of these natural low-affinity IgM antibodies that rec-

ognize carbohydrate epitopes (e.g., A, B, and H anti-

gens in blood groups) [42]. The unique exception of

this behavior is related to zwitterionic polysaccharides

(ZPS) expressed at the surface of some Gram-positive

and Gram-negative bacteria [43]. Therefore, the main

strategy exploited for vaccine development consists of

the conjugation of glycan epitopes to proper carriers

(Fig. 1) ranging from proteins, to peptides, oligonu-

cleotides, lipids, ZPS, and, more recently, nanoparti-

cles (NPs) [44–48], in order to ensure the proper

activation of specific arms of the immune system.

Specifically, proteins have been used as immuno-

genic carriers to trigger adaptive responses [antibody

(Ab) production] against the carbohydrates conjugated

to them, and in parallel, carbohydrates have been con-

jugated to proteins to modulate the immune responses

against the protein itself [45,49].

In addition, lipids and lipidated derivatives, lipid A,

lipoarabinomannan (LAM), monophosphorylated

derivatives of lipopolysaccharides (LPS), the palmitoy-

lated Pam3CSK4, ZPS, and cytosine-phosphate-

guanosine (CpG) oligodeoxynucleotides (ODNs) have

shown significant immunostimulatory activity as TLR

agonists [4]. As an example, the most conserved lipid A

portion of the LPS stimulates host innate immune cell

responses through recognition by TLR4 or binding to

the cytoplasmic inflammasome via caspases [50,51].

Since activation of TLR4 signaling controls and potenti-

ates both innate and adaptive immune responses, pre-

clinical and clinical studies have demonstrated that

TLR4 agonists [52] can be used as immune-adjuvants

for vaccine formulations aimed at fighting infection and

cancer [53]. Therefore, manipulation of LPS-induced

immune signaling pathways by means of synthetic or

natural TLR agonists is intensively studied as a source

of immune-adjuvants for vaccine formulations.

CpG ODNs are short, single-stranded DNA oligo-

mers with unmethylated cytosine-phosphate-guanine

(CpG) oligodeoxynucleotide motifs, whose sequences

are derived from bacterial DNA and are not frequent

4254 The FEBS Journal 289 (2022) 4251–4303 ª 2021 The Authors. The FEBS Journal published by John Wiley & Sons Ltd on behalf of

Federation of European Biochemical Societies.

Glycoconjugate vaccines in infections and cancer M. Anderluh et al.

 17424658, 2022, 14, D
ow

nloaded from
 https://febs.onlinelibrary.w

iley.com
/doi/10.1111/febs.15909 by U

niversity O
f B

elgrade, W
iley O

nline L
ibrary on [13/02/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



in mammalian DNA [54,55]. The adjuvant effect of

coadministered CpG-ODN is well established also in

the field of carbohydrate vaccines. Indeed, CpG-ODNs

are able to elicit an efficient defensive immune

response in mammals through the TLR9 receptor

pathway raising a strong innate immune response,

which is a prerequisite to elicit robust cellular and

humoral adaptive responses against coadministered

antigens [56]. Accordingly, CpG immunostimulatory

sequences have been shown to act as potent adjuvants

of type 1 immune responses, demonstrating their

promising role both as adjuvants in vaccine formula-

tions and as carrier molecules for the development of

synthetic and self-adjuvating conjugate vaccines [57].

Within this framework, nanotechnology has been

widely exploited with the aim to improve immune

responses in either cancer or infectious diseases.

Metal-based NPs, virus-like particles (VLPs), and lipo-

somes are the most investigated nanotools employed in

vaccine development. Nanotechnology approaches

have been proposed to improve the efficacy of

carbohydrate-based vaccines by means of the enhanced

DC targeting and/or the enhanced delivery of

immunomodulators to program DCs. In addition, NPs

improve antigen stability and allow co-delivery of

adjuvants/immunogenic carriers and other molecules

of interest on the same nanoplatform [58,59].

Glycoconjugate vaccines for the
activation of immune response in
infection and cancer

Vaccines are one of the greatest revolutions in medical

sciences in the 20th century, saving millions of lives.

We expect that in the next few years, vaccination will

be applied to tackle unmet medical needs, such as in

infectious diseases still waiting for an effective treat-

ment and for the prevention of microbial infections

caused by antibiotic-resistant microorganisms. More-

over, novel vaccines that boost immune responses in

cancer could significantly aid existing immunothera-

peutic approaches to elicit tumor eradication and to

prevent tumor recurrence and metastasis. The rele-

vance of this therapeutic approach has become partic-

ularly urgent due to the current public health

emergency related to the COVID-19 pandemic. Indeed,

the development of a specific and effective anti-SARS-

CoV-2 vaccine has become a highly demanding and

urgent effort to manage the spread of COVID-19 and

to reduce mortality.

Glycoconjugate vaccines are among the safest and

most efficacious vaccines developed so far to prevent

antibiotic-resistant microbial infections. They represent

one of the keys for success of vaccination in children,

as demonstrated by the dramatic reduction in infec-

tions from Streptococcus pneumoniae, Haemophilus in-

fluenzae type b, and Neisseria meningitidis.

Improving the immunogenicity of pathogen

glycan structures through glycoconjugate

vaccines

Several technologies have been developed to generate

glycoconjugate vaccines, leading to constructs with dif-

ferent molecular architecture and properties. The cur-

rently licensed glycoconjugate vaccines are based on

the chemical manipulation of isolated saccharide anti-

gens or their fragments obtained by controlled hydro-

lytic depolymerization of the native polysaccharide,

followed by random conjugation to carrier proteins

such as diphtheria toxoid [DT; at its nontoxic mutant

cross-reacting material 197 (CRM197)] and tetanus

toxoid (TT). Although these vaccines are able to

induce protective immunity in the host; however, they

are characterized by heterogeneous cross-linked struc-

tures raising significant hurdles on batch consistencies

during the manufacturing process and making the

identification of structure–immunogenicity relation-

ships a challenging task. Modern approaches in the

rational design of glycoconjugate vaccines take into

account a number of variables, such as the saccharide

chain length, the carbohydrate-protein ratio, the nat-

ure of the linker, and the conjugation methods or plat-

form [44,45,60]. Accordingly, the most recent strategies

consider the use of pure and chemically well-defined

carbohydrate antigens generated by means of cutting-

edge synthetic methodologies or enzymatic approaches

that are covalently linked to immunogenic carrier pro-

teins or peptides using site-selective conjugation che-

mistries. In this section, we will discuss some recent

advances in the field of antibacterial glycoconjugate

vaccines according with the immunogenic carrier

included in the conjugates. In addition, we report on

the state of the art related to vaccine development for

human immunodeficiency virus (HIV). HIV has been

selected as an example of viral pathogens, because in

the last decade the possibility to exploit glycans for

HIV vaccine development has been investigated with a

particular attention.

Bacterial infections

Bacterial carbohydrate antigens

Bacteria are covered by a multilayered and complex

structure referred to as the cell envelope (Fig. 2),
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highly impermeable and essential for viability. This cell

envelope has attracted considerable interest as a poten-

tial target of novel potential vaccine formulations. In

Gram-negative bacteria, the presence of the additional

barrier afforded by the outer membrane (OM) pro-

vides an extra layer of protection.

The OM [61] encases the peptidoglycan (PGN)

layer, and together, they form a highly hydrophobic

and sophisticated asymmetric lipid bilayer barrier that

enhances resistance and protection from antibiotics

and host immune mechanisms. LPS are the main com-

ponent of the OM, and they play a crucial role in bac-

terial growth and survival (Fig. 2). They are complex

glycoconjugates with a common structural motif con-

sisting of a hydrophilic heteropolysaccharide cova-

lently linked to the lipophilic moiety, known as lipid

A. The heteropolysaccharide consists of a core

oligosaccharide and an O-specific polysaccharide, also

named O-chain or O-antigen. The lipid A anchors

these macromolecules to the membrane. An additional

carbohydrate-based coat embedding and protecting the

bacteria is the capsular polysaccharide (CPS), which is

also used by bacteria in immune evasion mechanisms

[62,63]. Both LPS and CPS greatly contribute to the

structural integrity, protection, and bacterial survival

and play a key role in mediating host–bacterium inter-

actions, like colonization, adhesion, tolerance for com-

mensal bacteria, and symbiosis. Furthermore, they

often represent highly conserved factors, mediating

immune recognition and virulence. Thus, they are

attractive candidate antigens, which can be exploited

either in vaccine development or in diagnostics.

Indeed, several studies have identified lipopolysaccha-

ride and CPSs as potential vaccines candidates [64–67],
and several of them are already in use in the clinics

(Tables 1 and 2) [40].

In this regard, the use of protein–polysaccharide
conjugates has so far been the most investigated

approach to prepare antibacterial vaccines, and this

will be addressed in Protein-based glycoconjugates sec-

tion, describing the main strategies reported to date in

the field of protein-carbohydrate conjugates (i.e., use

of mimics/analogues, bioengineering methods, site-

specific/random protein conjugation). Next, some sam-

ple cases related to the use of different immunogenic

carriers (i.e., oligonucleotides and lipids as TLR

ligands, section Oligodeoxynucleotide- and lipid-based

glycoconjugates: targeting of TLRs) and of multivalent

nanoconstructs (section Nanoglycoconjugates) will be

briefly discussed. Linker/Spacer used in some of

the glycoconjugate vaccines described in the follow-

ing sections (Protein-based glycoconjugates,

Oligodeoxynucleotide- and lipid-based glycoconjugates:

targeting of TLRs and Nanoglycoconjugates) has been

reported in Table 2 together with the related conjuga-

tion strategies employed for their preparation.

Protein-based glycoconjugates

The concept of conjugate vaccines (e.g., glycans cova-

lently linked to immunogenic proteins) was studied by

Avery [68] in 1931 and has been introduced in the 90s

in the field of antibacterial vaccines [69]. The main rea-

son of their outstanding success is that the immune

system of young children (below 2 years of age), as

well as the immune system of the elderly (above

60 years) and of immunocompromised people, is

unable to develop long-lived antibodies against plain

bacterial polysaccharides [70]. Indeed, polysaccharides

are T-cell-independent antigens and they are not able

to trigger the secretion of antibodies capable of confer-

ring long-term protection of the host (immunological

memory). This is apparently due to the inability of

polysaccharides to be properly presented to T cells.

The seminal finding that pneumococcal antigens recog-

nized by the immune system is polysaccharides [71],

inspired, almost 100 years ago [68], the hapten-carrier

conjugation strategy (where the hapten is any small

molecule able to trigger immune responses only when

covalently linked to an immunogenic carrier). This

approach overcame the poor immunogenicity of CPS

by their covalent conjugation to immunogenic protein

carriers. In this way, B cells can recognize the polysac-

charides via their B-cell receptor and thanks to the

carrier the processed fragments from the protein–
polysaccharide conjugate can be loaded on major his-

tocompatibility complex (MHC)-II prompting the help

of T cells (Fig. 3) [49,72,73].

Once this tri-component synapse (digested or pro-

cessed antigen [72], MHC-II, and T-cell receptor) is

established, the T-helper cell can provide B cells with

the stimulatory and cytokine-mediated signals to pro-

duce and secrete high-affinity antibodies [immunoglob-

ulin G (IgG)]. Thanks to this mechanism, B cells can

also differentiate into memory B cells, a fundamental

pool of cells that guarantees immunological memory.

Fig. 2. Gram-positive and Gram-negative cell envelope and structure of the main cell wall components. Figure reprinted from Ref. [333].

Copyright 2018, Springer Nature.
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Table 1. List of glycoconjugate vaccines licensed for use in the USA. OMP, outer membrane protein complex of the B11 strain of

Neisseria meningitidis serogroup B.a,b

Vaccine (trade

name/manufacturer)

Licensed

in Pathogen

Type, serotype coverage/repeating unit

structure

Carrier

protein

Saccharide

size/linkage

Pedvax-Hib/Merck

Sharp & Dohme Corp

(Kenilworth, NJ, USA)

1990 Haemophilus influenzae Type b/PRP, ?3)-b-D-Ribf-(1?1)-D-Ribitol-(5?
OPO3?

OMP Medium/

random

ActHib/Sanofi Pasteur

SA (Marcy L’Etoile,

France)

1993 Haemophilus influenzae Type b/PRP, ?3)-b-D-Ribf-(1?1)-D-Ribitol-(5?
OPO3?

TT Large/

random

Menactra/Sanofi

Pasteur Inc.

(Swiftwater, PA, USA)

2005 Neisseria meningitidis A/?6)-a-D-ManpNAc(3/4OAc)-(1?OPO3?
C/?9)-a-D-Neup5Ac(7/8OAc)-(2?
Y/?6)-a-D-Glcp-(1?4)-a-D-Neup5Ac(9OAc)-(2?
W-135/?6)-a-D-Galp-(1?4)-a-D-Neup5Ac(9OAc)-

(2?

DT Medium/

random

Hiberix/GSK (Rixensart,

Belgium)

2009 Haemophilus influenzae Type B/PRP, ?3)-b-D-Ribf-(1?1)-D-Ribitol-(5?
OPO3?

TT Large/

random

Menveo/GSK (Sovicille,

Italy)

2010 Neisseria meningitidis A/?6)-a-D-ManpNAc(3/4OAc)-(1?OPO3?
C/?9)-a-D-Neup5Ac(7/8OAc)-(2?
Y/?6)-a-D-Glcp-(1?4)-a-D-Neup5Ac(9OAc)-(2?
W-135/?6)-a-D-Galp-(1?4)-a-D-Neup5Ac(9OAc)-

(2?

CRM197 Medium/

random

Prevnar 13/Pfizer

(Philadelphia, PA,

USA)

2010 Streptococcus pneumoniae 1/?3)-a-D-AATGalp-(1?4)-a-D-GalpA(2/3OAc)-

(1?3)-a-D-GalpA-(1?
3/?3)-b-D-GlcpA-(1?4)-b-D-Glcp-(1?
4/?3)-b-D-ManpNAc-(1?3)-a-L-FucpNAc-(1?3)-

a-D-GalpNAc-(1?4)-a-D-Galp2,3(S)Pyr-(1?
5/?4)-b-D-Glcp-(1?4)-[a-L-PnepNAc-(1?2)-b-D-

GlcpA-(1?3)]-a-L-FucpNAc-(1?3)-b-D-Sugp-(1?
6A/?2)-a-D-Galp-(1?3)-a-D-Glcp-(1?3)-a-L-Rhap-

(1?3)-D-Rib-ol-(5? OPO 3?
6B/?2)-a-D-Galp-(1?3)-a-D-Glcp-(1?3)-a-L-Rhap-

(1?4)-D-Rib-ol-(5? OPO 3?
7F/?6)-[b-D-Galp-(1?2)]-a-D-Galp-(1?3)-b-L-

Rhap2Ac-(1?4)-b-D-Glcp-(1?3)-[a-D-GlcpNAc-

(1?2)- a-L-Rhap(1?4)]-b-D-GalpNAc-(1?
9V/?4)-a-D-GlcpA(2/3OAc)-(1?3)-a-D-Galp-(1?
3)-b-D-ManpNAc(4/6OAc)-(1?4)-b-D-Glcp-(1?4)-

a-D-Glcp-(1?
14/?4)-b-D-Glcp-(1?6)-[b-D-Galp-(1?4)]-b-D-

GlcpNAc-(1?3)-b-D-Galp-(1?
18C/?4)-b-D-Glcp-(1?4)-[a-D-Glcp(6OAc)-(1?2)]-

[Gro-(1?OPO 3?3)]-b-D-Galp-(1?4)-a-D-Glcp-

(1?3)-b-L-Rhap-(1?
19A/?4)-b-D-ManpNAc-(1?4)-a-D-Glcp-(1?3)-a-

L-Rhap-(1? OPO 3?
19F/?4)-b-D-ManpNAc-(1?4)-a-D-Glcp-(1?2)-a-

L-Rhap-(1? OPO 3?
23F/?4)-b-D-Glcp-(1?4)-[a-L-Rhap-(1?2)]-[Gro-

(2? OPO 3?3)]-b-D-Galp-(1?4)-b-L-Rhap-(1?

CRM197 Large/

random

MenQuadfi/Sanofi

Pasteur Inc.

(Swiftwater, PA, USA)

2020 Neisseria meningitidis A/?6)-a-D-ManpNAc(3/4OAc)-(1?OPO3?
C/?9)-a-D-Neup5Ac(7/8OAc)-(2?
Y/?6)-a-D-Glcp-(1?4)-a-D-Neup5Ac(9OAc)-(2?
W-135/?6)-a-D-Galp-(1?4)-a-D-Neup5Ac(9OAc)-

(2?

TT Large-

medium/

random

ahttps://www.fda.gov/vaccines-blood-biologics/vaccines/vaccines-licensed-use-united-states; bFor Hib (Haemophilus influenzae type b), the

table does not include multivalent formulations active also toward other diseases.
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Table 2. Saccharide antigens, carrier, linker/spacer of some of the glycoconjugate vaccine described in this manuscript.

Saccharide antigen Carrier Linker/spacer

Conjugation

method Ref

PRP (Pedvav-Hib/Merck) Neisseria meningitidis outer

Membrane Protein (OMP) O
H
N

N
H

S

O

O Thioalkylation

chemistry

[329]

PRP (ActHib/Sanofi Pasteur

Inc.)

TT H
N
N
H

H
N
N
H

O

O

Carbodiimide-

mediated

condensation

[330]

PRP (Hiberix/GSK) TT

N
H

H
N

O

Carbodiimide-

mediated

condensation

[331]

PRP (QuimiHib) TT

O

O
NH

O N

O

O
S

O

N
H

Thiol-maleimide

addition

[87]

MenA/C/W/Y

polysaccharides (Menactra/

Sanofi Pasteur Inc.)

DT No linker/spacer Reductive

amination

(Zero-length

cross-linkers)

a

MenA/C/W/Y

oligosaccharides (Menveo/

GSK)

CRM197 H
N

N
HO

O Amide coupling b

MenA/C/W/Y

polysaccharides

(MenQuadfi/Sanofi Pasteur

Inc.)

TT H
N
N
H

H
N
N
H

O

O

Carbodiimide-

mediated

condensation

c

Pn1/3/4/5/6A/6B/7F/9V/14/

18C/19A/19F/23F

polysaccharides (Prevnar

13/Pfizer)

CRM197 No linker/spacer Reductive

amination

(Zero-length

cross-linkers)

[332]

sPRP oligosaccharides

(dimer to decamer)

CRM197

N

O

OS
O

HN

H
NO

O

Thiol-maleimide

and amine-

activated

carboxylic acid

chemistry

[91]

LPS from Burkholderia

thailandensis E264

(TetHc) Hc fragment of

tetanus toxin (TeNT; from

Clostridium tetani),

haemolysin coregulated

protein (Hcp1,

Burkholderia mallei and

Burkholderia pseudomallei)

and flagellin (FliC, from

Burkholderia pseudomallei)

AuNPs as scaffold

Au
S N

H
PROTEIN

O

14 S

NO

O
Amide coupling

and thiol-

maleimide

chemistry

[92]

Trimer of the non-O-

acetylated repeating unit of

Shigella flexneri 2a (SF2a)

TT

N

O

OS

O

N
H

O
HN

Amide coupling

and thiol-

maleimide

chemistry

[95,

114]

CRM197 Amide coupling
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Table 2. (Continued).

Saccharide antigen Carrier Linker/spacer

Conjugation

method Ref

Carba-N acetylmannosamine-

1-O-phosphate (monomer

up to octamer)

O
H
N

O

H
N

O
4k

k = 1
k = 4

[112,

113]

GBS PSII CRM197, GBS80

N
O O

N NH
NO

O

HO

2

NNF
H
NN

H
O

O
Tyrosine

ligation and

copper-free

azide�alkyne

[3 + 2]

cycloaddition

[119]

a-2,9-linked di-, tri-, tetra-,

and pentasialic acids

MPLA

O
N
H

N
H

O
2

O O Amide coupling [134]

Tetrasaccharide of

mycobacterial LAM

MPLA H
N

O

N
N
N O

Amide coupling

and copper-

catalyzed

azide-alkyne

cycloaddition

(CuAAC)

[135]

Pentadecasaccharide

corresponding to three O-

antigen repeating unit of

the Shigella flexneri 2a

lipopolysaccharide

Liposomes
N

O

OS

O

NH

H
N

O

O

N
H

O

O

NH

HN

O

Thiol-maleimide

chemistry

[137]

Tetrasaccharide repeating

unit of the

Streptococcus pneumoniae

type 14 CPS (Pn14PS)

AuNPs

O N
H

N
H

O
S

S
Au

4 4

Thiourea

linkage

[142]

Trisaccharide repeating unit

of the

Streptococcus pneumoniae

type19F (Pn19FPS); both

serotypes 14 and 19F CPS

fragments

AuNPs

O N
H

N
H

O
S

S
Au

4 4

Thiourea

linkage

[143]

Tetrasaccharide repeating

unit of the

Streptococcus pneumoniae

type 3 (Pn3PS) and

tetrasaccharide repeating

unit of the

Streptococcus pneumoniae

type 14 (Pn14PS)

Qb VLP H
N

O

N
N
N

O Copper-

catalyzed

azide-alkyne

cycloaddition

(CuAAC)

[144]

Tetrasaccharide repeating

unit of the CPS of

Streptococcus pneumoniae

serotype 14

Liposomes

N
H

S
O O

O

O

C17H35
C17H35

O

O

Amide coupling

and thiol-

maleimide

chemistry

[136]

awww.fda.gov/downloads/BiologicsBloodVaccines/Vaccines/ApprovedProducts/UCM131170.pdf; bhttp://ca.gsk.com/media/1213533/menveo.

pdf; cwww.ema.europa.eu/en/documents/assessment-report/menquadfi-epar-public-assessment-report_en.pdf.
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Recent studies proposed an alternative mechanism

governing the immune response to a glycoconjugate

vaccine. According to this hypothesis, not only peptide

but also glycopeptide fragments resulting from the gly-

coconjugate processing are exposed to the T-cell recep-

tor in the context of MHC-II, raising specific T-cell

clones referred to as Tcarb [72,74]. Regardless of the

specific mechanism, one of the main properties of gly-

coconjugate vaccines is their ability to induce immuno-

logical memory against polysaccharides, which cannot

be reached using pure polysaccharide vaccines (irre-

spective of the age of administration) [40]. Glycoconju-

gate vaccines represent one of the major breakthrough

of modern medicine and opened a new era in the field

of vaccinology preventing infectious diseases affecting

infants and young children, both in industrialized and

developing countries. This research area has been thor-

oughly discussed over the last few years in many excel-

lent and more focused reviews. Consequently, in

the following paragraph, besides a brief description of

the general features of the immune response to

carbohydrates and protein glycoconjugates, only a

selection of the most relevant and innovative strategies

emerged in the field during the last decade are high-

lighted and critically discussed. For a systematic and

updated analysis of the state of the art of this key

research area, the readers are referred to more compre-

hensive accounts in recent literature [8,39,40,44,45,

47,60,75–78].
Currently, licensed glycoconjugate vaccines, such as

those targeting S. pneumoniae, N. meningitidis, H. in-

fluenzae type b, and Salmonella typhi, were obtained

through isolation of the polysaccharide from the

pathogen and subsequent random conjugation to car-

rier proteins exploiting the amino acid residues that

are exposed on the surface of the protein (Tables 1

and 2) [79,80]. Up to date, five carrier proteins have

been used for all licensed conjugate vaccines (TT; DT;

CRM197; nontypeable H. influenzae protein D;

OMPC, the outer membrane protein complex of

meningococcus B). In addition, other proteins, such as

the recombinant Pseudomonas aeruginosa exotoxin A

Fig. 3. Schematic representation of the proposed mechanism of T-cell activation by glycoconjugate vaccines. In general, unconjugated

polysaccharides only evoke short-term Ab responses, mainly of the IgM type, which does not result in long-lasting B-cell memory

responses. Coupling of polysaccharides to protein carriers, switches the immune reaction from T-cell-independent to a T-cell-dependent

response, now culminating in a high-affinity Ab response and long-term B-cell memory. Steps related to antigen processing and

presentation of glycoconjugate vaccines which result in helper CD4+ T-cell induction of B-cell production of IgG mAbs against the

polysaccharide have been depicted. Figure reproduced from Ref. [72].
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(rEPA), have been employed at preclinical and clinical

levels [81]. One successful story using the glycoconju-

gate approach is the case of S. pneumoniae, a Gram-

positive bacterium with more than 90 known serotypes

(i.e., more than 90 structurally different CPS known to

coat each bacterial serotype). Streptococcus pneumo-

niae CPS is key molecules for bacterial survival and

infection, and they are attractive epitopes for vaccina-

tion [82]. The introduction of pneumococcal conjugate

vaccines, which consist of a mixture of glycoconjugates

based on the CPS of 10 and 13 different serotypes (in-

dependently conjugated to immunogenic protein carri-

ers), has reduced the incidence of pneumococcal

disease caused by the serotypes contained in the vac-

cines. Notwithstanding the success of these vaccines,

several major challenges remain mostly due to the need

for higher Ab titers to remove the bacterial carriage

from the upper respiratory tract of the host more effi-

ciently [83]. To solve these challenges, nanotechnology

has been used to design and prepare new vaccination

approaches against S. pneumoniae as discussed below.

Glycoconjugate vaccines prepared by following clas-

sical random conjugation routes result in heteroge-

neous mixtures of high molecular weight, cross-linked,

and rather undefined constructs. Consequently, their

physicochemical characterization and the maintenance

of the batchwise consistency are challenging tasks,

which represent crucial issues for licensing authorities.

In addition, the immunogenicity of the final conjugates

is strongly influenced by several interconnected charac-

teristics, such as the acetylation pattern of the sugar,

saccharide length, saccharide/protein ratio, conjugation

chemistry, and type of linker eventually used for cou-

pling. All these variables have to be taken into account

in vaccine design and were sometimes shown to signifi-

cantly affect the immunological outcome of the glyco-

conjugate construct [8,45,60,84–86]. Glycoconjugates

based on chemically well-defined structures, selected

by rational design, can confer more reproducible bio-

logical outcomes and better safety profile. Therefore,

this approach has emerged at the forefront of vaccine

development. The first commercialized synthetic vac-

cine, Quimi-Hib* (1, Fig. 4, Table 2), a H. influenzae

type b vaccine, developed in Cuba, is an outstanding

example of the reliability of this approach. It consisted

of a synthetic CPS antigen (polyribosylribitol phos-

phate, PRP) conjugated to thiolated TT through a 3-

(maleimido)propanamide linker (Fig. 4, Table 2) [87–
90]. This pioneering work demonstrated the feasibility

of large-scale synthesis of carbohydrate antigens, the

pharmaceutical development of a synthetic conjugate-

vaccine. In this regard, in order to assess the minimal

PRP protecting repeating unit, an extensive synthetic

work has been recently done by Seeberger and

coworkers [91]. Immunological data in Zika rabbit

model allowed the identification of the tetrameric

immunogenic epitope 2 (Fig. 4, Table 2). In this

framework, semisynthetic glycoconjugate vaccines have

entered different phases of clinical trials in the last few

years. Furthermore, glycoconjugate vaccines composed

of LPS (or detoxified LPS) covalently linked to carrier

proteins and/or gold NPs (AuNPs) are currently being

evaluated in mice and nonhuman primates with

promising results regarding their immunogenicity and

protective efficacy [92,93].

Thus, the combination of technologies to obtain

more defined carbohydrate antigens with higher pur-

ity and novel approaches for protein modification

(protein engineering) for regio- and chemoselective

ligation are key points [45]. Despite the fact that to

date, the expression of biosynthetic pathways and gly-

coengineering to produce bacterial glycans provides

cheaper and versatile method to develop carbohy-

drates vaccines [94], recent advances in carbohydrate

synthesis allowed access to many complex oligosac-

charides on a large scale and with precise control of

the structure [44]. Synthetic strategies aimed at the

development of conjugate vaccines containing pro-

tein/peptide carriers are mainly based on the incorpo-

ration of either a synthetic bacterial carbohydrate

antigen [95–105], their synthetic structural mimics, or

chimeric oligosaccharides [11]. Relevant examples of

the latter approach were reported during the last dec-

ade. Neisseria meningitidis is a Gram-negative encap-

sulated bacterium and a major cause worldwide of

bacterial meningitis occurring beyond the neonatal

period. Among the thirteen serotypes of N. meningi-

tidis, group A (MenA) is the main serotype responsi-

ble for epidemic meningococcal disease in developing

countries [106,107]. MenA CPS, made up of (1 ? 6)-

linked 2-acetamido-2-deoxy-a-D-mannopyranosyl

phosphate repeating units variably O-acetylated at 3-

and 4-OH, exhibits poor hydrolytic stability due to

the lability of the anomeric phosphodiester linkage.

Although currently licensed antimeningococcal glyco-

conjugate vaccines contributed to a decrease in dis-

ease incidence [108], the availability of shelf-stable

fully liquid formulations based on protein conjugates

of MenA CPS mimics is very attractive for the devel-

opment of an improved and more efficient anti-MenA

vaccine [109]. To this end, short chain carbocyclic

analogues of MenA CPS (where the pyranose ring

oxygen of N-acetyl-D-mannosamine is replaced with

a methylene group) [110] have been synthesized [111],

chemically conjugated to CRM197 carrier protein (3a–
c; Fig. 4, Table 2) and immunologically evaluated in
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mice. The conjugated carbocyclic-trimer 3c elicited

specific anti-MenA polysaccharide antibodies with

in vitro bactericidal activity [112]. Very recently, the

synthesis of longer chain carbocyclic analogues was

accomplished. In particular, the hexamer and the

octamer were protein-conjugated (3d–e; Fig. 4,

Table 2) and immunologically evaluated, showing

that conjugate 3e is capable of binding anti-MenA

CPS antibodies and it is able to induce an immune

response against the non-O-acetylated MenA CPS.

Most importantly, random chemical 3/4-O-

acetylation of the carbocyclic octamer followed by

conjugation to CRM197 provided a new glycoconju-

gate able to strongly inhibit the binding of a MenA-

specific bactericidal monoclonal Ab (mAb) and poly-

clonal serum to the CPS. In addition, the latter con-

jugate raised high titers of anti-MenA CPS antibodies

with bactericidal activity comparable to the currently

licensed MenA vaccine [113]. This study represents

the first proof of concept that glycomimetics can be

used to simulate natural saccharide antigens for the

development of effective conjugate vaccines with

improved stability.

A semisynthetic vaccine candidate against

Shigella flexneri 2a, the pathogen responsible for ende-

mic shigellosis among children in developing countries,

was developed by Mulard et al. In particular, glyco-

conjugate 4 (Fig. 4, Table 2) consisting of a trimer of

the pentasaccharide epitope of S. flexneri 2a conju-

gated to TT protein was able to induce a long-lasting

protective immune response [95]. Notably, conjugate 4

has completed the first in human phase 1 study very

recently [114].

In addition, the use of synthetic and/or semisyn-

thetic carbohydrate antigens allows the site-specific

introduction in the polysaccharide of structurally dif-

ferent linkers containing chemical groups (e.g.,

hydrazines, maleimides, azides, alkynes) suitable for

site-selective conjugation to the side chain of amino

acid residues on the protein carrier [45,115]. This

Fig. 4. Structures of glycoconjugate vaccine containing carrier proteins: 1 commercially available Haemophilus influenzae type b vaccine

(QuimiHib); [87] 2 synthetic glycoconjugate containing the CPS antigen (PRP) of H. influenzae type b; [91] 3 synthetic glycoconjugates

containing carbocyclic analogues of MenA CPS; 4 synthetic glycoconjugates containing the repeating unit of the O-antigen of

Shigella flexneri [95]. The carbohydrate epitopes are reported in black and the linker/spacer in green.
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represents one of the most used approaches for site-

selective coupling of carbohydrate epitopes with the

carrier protein. For example, lysine, aspartic acid, and

glutamic acid are the most targeted amino acid resi-

dues for either random or site-selective conjugation in

some licensed glycoconjugate vaccines. The targeting

of highly nucleophilic cysteines either naturally occur-

ring or genetically installed at the protein surface is

another employed approach. Indeed, thiols can react

rapidly with a wide range of sugar derivatives

appended with electrophilic functional groups [116].

Tyrosine residues are less abundant (and usually less

exposed) than lysine, and hence, they are optimal tar-

gets for site-selective glycoconjugation [117]. Glycan

linkage to preactivated tyrosines enables addressing

the conjugation to a few predetermined sites, generat-

ing more defined conjugates presenting multiples pro-

tein copies along the carbohydrate chain. An example

of the use of tyrosine ligation is the site-selective con-

jugation of the CPSs from Group B Streptococcus

(GBS) types II and V, a pathogen responsible for

neonatal infections, by strain promoted azide-alkyne

cycloaddition to the more exposed tyrosine residues of

the pathogen-related proteins GBS80 and GBS67

[118]. The immunogenicity of the tyrosine-directed

GBS type II polysaccharide-GBS80 and GBS type V

polysaccharide-GBS67 conjugates was comparable to

the corresponding CRM197 conjugates randomly func-

tionalized with the carbohydrate epitopes [119,120]. In

addition, the GBSII-GBS80 conjugate elicited distinct

murine Ab clones able to recognize either the GBSII

polysaccharide and the GBS80 protein epitopes

(Table 2). These findings opened the way to a new

kind of glycoconjugates, where homologous proteins

are used with a dual role as carrier and antigen [60].

Other approaches which have been developing in the

last decade are based on selective modification of natu-

ral amino acids (mainly lysine, aspartic, and glutamic

acid residues) and on the introduction of unnatural

(i.e., not naturally found or encoded) amino acids. For

example, enzymes can react with specific residues incor-

porated in a short amino acid tag, which was previously

introduced either in the protein or in the sugar epitope

[121]. Conjugation of large polysaccharides to one

specific amino acid residue has been achieved by micro-

bial transglutaminase-catalyzed lysine modification

[122]. In addition, cysteines occurring as disulfide

bridges can be regioselectively targeted by reductive

cleavage followed by stapling of the resulting cysteine

residues with an electrophilic agent [122]. The most

exploited strategy to obtain proteins with specific tags is

via protein engineering with unnatural amino acids,

which can be incorporated through a modified

translational machinery, mainly in Escherichia coli uti-

lized as the expression system. This methodology com-

bined with the wide variety of unnatural amino acids

currently available can significantly expand the tools for

protein conjugation, and it is being used for instance by

the Sutrovax company. Their “XtractCF” system was

developed to produce proteins displaying unnatural

amino acids, which can be further conjugated to saccha-

ride antigens by means of click chemistry. This method

is currently being applied for the development of an

antipneumococcal conjugate vaccine [123].

Recently, the protein glycan coupling technology

was successfully employed in the design of novel glyco-

conjugate vaccines [124]. In this approach, both the

saccharide antigen and the carrier protein are

expressed in E. coli and coupled in vivo [47]. Indeed,

the N-linked glycosylation system from Campylobac-

ter jejuni can be functionally expressed in E. coli to

synthesize the heterologous polysaccharides on its gly-

cosyl carrier lipid [125]. Glycoconjugate production in

E. coli requires a genome cluster encoding the bacterial

polysaccharide, a plasmid encoding the carrier protein,

and the oligosaccharyltransferase PglB from C. jejuni,

whereby the PglB transfers the resulting lipid-linked

oligosaccharide to the target carrier protein containing

the specific consensus acceptor sequence.

Glycoengineering was initially used by the Glycov-

axyn company (now LimmaTech Biologicals, Sch-

lieren, Switzerland) to produce several structurally

different glycoproteins. They biosynthesized different

bacterial saccharides, ranging from O-antigens of

Gram-negative bacteria (Salmonella enterica, Shigella

spp, and E. coli LPS) to CPS (Staphylococcus aureus

serotype 5 and 8 and S. pneumoniae). The correspond-

ing protein conjugates were prepared mostly using

detoxified exoprotein A from P. aeruginosa (rEPA) as

a carrier. In some cases, the homologous S. aureus a
toxin Hla was conjugated to the CPS of the same bac-

terium [126]. Notably, the availability of additional

oligosaccharyltransferases (such as PglL and PglS)

expands the pool of tools available for protein glyco-

engineering [127,128]. Many glycoconjugate vaccines

produced by protein glycan coupling technology have

entered clinical trials over the past few years. Phase 1

clinical trials have successfully been completed for

monovalent vaccines against Shigella dysenteriae type

1 and S. flexneri 2a infections, and a tetravalent anti-

extraintestinal E. coli (ExPEC) vaccine is progressing

to Phase 2 studies [114,129,130]. Overall, this platform

provides fast access to glycoconjugates targeting many

important pathogens against which no licensed vacci-

nes are available, and also to improve the production

of several vaccines already on the market.
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Oligodeoxynucleotide- and lipid-based

glycoconjugates: targeting of TLRs

Despite that the conjugation to immunogenic proteins

has been the most widely investigated approach in the

design of antibacterial glycoconjugate vaccines, some

success stories, including the use of other immunogenic

carriers, have been reported. Of note, CpG-ODN was

used as an external adjuvant to increase the antibacte-

rial immunity against S. pneumoniae polysaccharide

types 19F and 6B induced by polysaccharide-protein

conjugates [131]. Furthermore, in glycoconjugate vacci-

nes based on bacterium-related carrier proteins the

adjuvant activity of CpG was beneficial to enhance the

anticarrier protein immune response. Indeed, the co-

administration of CpG with an anti-H. influenzae type

b (Hib) polysaccharide conjugate vaccine in mice was

able to increase the amount of neutralizing antibodies

against both the polysaccharide and the Hib-related

protein component of the vaccine that are generally

induced at low levels [132]. On the other hand, to the

best of our knowledge, despite the potential of syn-

thetic vaccines using TLR agonists like CpG motifs as

build-in adjuvant [133], there are no examples on the

design and synthesis of a multicomponent antibacterial

vaccine based on carbohydrates conjugated to CpG.

Conjugates containing the monophosphorylated

derivative of N. meningitidis lipid A (MPLA) were also

investigated as vaccine prototypes for bacterial infec-

tions [134]. As an alternative to the traditional protein

conjugate vaccines, the bacterial antigen a-(2 ? 9)-

polysialic acid, the CPS of serotype C of N. meningi-

tidis, has been taken as a model to study the immuno-

genicity of MPLA conjugates. Glycoconjugates 5a–d
(Fig. 5, Table 2) were prepared using synthetic a-
(2 ? 9)-linked di-, tri-, tetra-, and pentasialic acids,

which were conjugated to MPLA [134]. These MPLA

glycoconjugates were administered to mice as liposo-

mal formulations and elicited robust immune

responses comparable to those induced by the tradi-

tional protein glycoconjugates (including adjuvant). In

particular, the trimer 5b and the tetramer 5c elicited

the highest immune responses that mediated effective

killing of group C N. meningitidis cells. This study sup-

ports the hypothesis of the self-adjuvating properties

of MPLA conjugates. In addition, a recent study on a

synthetic glycoconjugate with potential antituberculosis

vaccine activity shed new light on the immunostimu-

lant and adjuvant activity associated with MPLA car-

rier [135]. The glycoconjugate 6 (Fig. 5, Table 2)

consisting of the tetrasaccharide of mycobacterial

LAM conjugated to the primary position of the glu-

cosamine residue of MPLA induced a robust IgG Ab

response in mice [135]. Notably, the structure of the

linker and the conjugation site of the carbohydrate

antigen epitope on MLPA appeared to play a key role

in the immunogenicity.

Nanoglycoconjugates

Notwithstanding the efficacy of protein–polysaccharide
conjugate vaccines, several major challenges still

remain to be addressed. As previously mentioned,

there is a need for higher Ab titers to more efficiently

remove the bacterial carriage in the upper respiratory

tract of the host [83]. Nanotechnology has been

employed in the design of new vaccination approaches,

and glyco-liposomes have been proposed as viable

alternative to the covalent conjugation of a peptide or

protein to the bacterial saccharide antigens [136]. The

pioneering work of Mulard et al. [137] is an outstand-

ing example of the power of this approach. In particu-

lar, fully synthetic liposomes were functionalized at

their surface with two sets of S. flexneri 2a synthetic

pentasaccharides (as B-cell epitopes, mimicking the O-

antigen of S. flexneri), and the universal T-helper epi-

tope derived from influenza virus HA 307–319. These
synthetic liposomes were shown to effectively elicit Ab

responses against the native lipopolysaccharide in vivo

[137–139]. In case of S. pneumoniae, the tetrasaccha-

ride repeating unit of the CPS of S. pneumoniae sero-

type 14 was conjugated to diacylthioglycerol. The

conjugate was subsequently employed to prepare

peptide-free glyco-liposomes. A synthetic a-GalCer

analogue named PBS57, which can be presented by

APCs via the MHC-I-like CD1 molecules to invariant

natural killer T (iNKT) cells, was also included. Vacci-

nation studies established that this nanosystem was

able to induce high IgG titers, giving a response

against S. pneumoniae serotype 14 superior to that of

commercially available Prevnar13 (Table 1), the clini-

cally employed conjugate vaccine, which contains the

CPS conjugates of 13 S. pneumoniae serotypes. More-

over, the formulation into liposomes compared with a

simple mixture of the target tetrasaccharide and the

iNKT cell adjuvant was relevant for obtaining the

immunological response.

More recently, a specific liposomal design has been

developed to address full S. pneumoniae serotype pro-

tection with a single vaccine formulation [140]. This

innovation is based on the colocalization of noncova-

lently linked complementary antigens into a liposome

formulation. More specifically, twenty different CPSs

from S. pneumoniae were encapsulated into liposomes

and the vesicle surfaces were coated with immunogenic

proteins, such as CRM197, an a-glycerophosphate
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oxidase (GlpO), and a bacteriocin ABC transporter

transmembrane protein (PncO). The encapsulated lipo-

somes displaying CRM197 showed high efficacy in

inducing Ab titers and protection comparable to Pre-

vnar 13 and Pneumovax 23 (Table 1), the currently

clinically employed pneumococcal vaccines. The vac-

cine nano-platforms with functionalized GlpO and

PncO demonstrated an immunogenicity comparable to

the commercial PCV13 available vaccines, while simul-

taneously safeguarding against virulence transition of

niche-replacement serotypes. A second generation of

polysaccharide-encapsulated liposomes was recently

introduced, which provides protection against 24

strains. These liposomes were generated through an

alternative streptavidin-biotin linkage and by removing

the GlpO protein antigen and increasing the amount

of PncO antigens [141].

Carbohydrate-coated AuNPs have also been studied

in vivo as a carrier for synthetic S. pneumoniae carbo-

hydrate antigens. Specifically, a synthetic repeating

unit of the antigenic CPS from S. pneumoniae serotype

14 was loaded onto 2 nm AuNPs in the presence of

the OVA323–339 peptide as the MHC-II restricted pep-

tide [142]. The simultaneous presence of the S. pneu-

moniae serotype 14 synthetic fragment and the OVA

peptide on the AuNPs was crucial to trigger specific

Fig. 5. Structures of: 5 synthetic glycoconjugates containing the repeating unit of CPS of serotype C of Neisseria meningitidis; [142] 6

synthetic glycoconjugate containing the tetrasaccharide of mycobacterial LAM; [134,135] 7 synthetic glyco-nanoconstruct containing

carbohydrate epitopes of CPS from serotype 14 and serotype 19F of Streptococcus pneumoniae [143]. The carbohydrate epitopes are

reported in black, the immunogenic carriers in blue, the linker/spacer in green.
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IgG against S. pneumoniae serotype 14 in vivo. In

addition, the degree of loading of the synthetic carbo-

hydrate fragments onto the AuNPs significantly

affected the Ab titer outcome, demonstrating a loading

threshold (approximately 20% of the overall ligand

density) below which the ability to trigger high IgG

titers in mice was drastically compromised. Recently,

two (minimal) carbohydrate epitopes from two differ-

ent S. pneumoniae capsules (serotype 14 and serotype

19F) were both loaded on the same AuNPs. A

T-helper peptide was also included leading to the

heterogeneous construct 7 (Fig. 5, Table 2) [143]. Sur-

prisingly, specific IgG titers against serotype 14 were

enhanced by the copresence of the serotype 19F frag-

ment on the same AuNPs. Conversely, no immunolog-

ical response against serotype 14 and serotype 19F was

obtained when AuNPs were separately loaded with the

single epitopes and coadministered. The independent

conjugation of synthetic S. pneumoniae serotype 3 and

14 CPS fragments on bacteriophage Qb VLPs via a

copper-catalyzed click reaction has also been described

(Table 2). These functionalized VLPs were able to trig-

ger specific IgG serotypes in mice, protecting against

S. pneumoniae [144].

Final remarks and future perspectives

At present, vaccines represent one of the top product

categories among the biologic medicines in clinical use

or under development, and within them, glycoconju-

gate vaccines are key and serve a prominent role. As a

consequence, there is a strong demand of new glyco-

conjugate vaccines, with enhanced safety and efficacy,

and capable of eliciting a more robust immune

response to tackle unmet medical needs or to amelio-

rate currently licensed vaccine constructs. To this end,

methods simplifying and accelerating the preparation

and manufacture of glycoconjugates have emerged

over the past decade. Among them, the control of site

specificity in protein conjugation holds great promise.

Glycoconjugate vaccine prototypes obtained by site-

selective conjugation demonstrated outstanding

immunological activity even with few, short but well-

defined oligosaccharide antigens, allowing to establish

more precise structure–immunogenicity relationships

which will help to understand the antigen presentation

mechanisms.

Supported by cutting-edge synthetic methodologies,

in particular by automated solid-phase oligosaccharide

synthesis, new and promising strategies and techniques

have emerged during the last years to reach such an

ambitious goal: produce new, safe, well-defined and

highly protective glycoconjugate vaccines, easier to

characterize in their physicochemical properties in

order to facilitate their manufacture process, and their

introduction on the market with affordable costs. In

this regard, a variety of chemical and enzymatic liga-

tion techniques provide multiple options for research-

ers to design specific glycoconjugate vaccines. In

addition, complementary strategies such as chemoenzy-

matic protocols (which include glycoprotein remodel-

ing, like the protein glycoengineering techniques

mentioned above) and nanotechnology-based

approaches are among the most promising prospects

for the development of glycoconjugate vaccines cap-

able of providing increasingly broad coverage and pro-

tection from deadly infectious diseases.

Human immunodeficiency virus

The clustered high-mannose patch as an antigenic

epitope

Even after 40 years of attempts, an effective vaccine

against the HIV is still not available [145]. A late-stage

clinical trial (NCT02315703) is going to start with the

“mosaic” HIV-1 vaccine candidate [146] based on

priming with adenovirus serotype 26 (Ad26) vectors,

which encode for the Env/Gag/Pol antigens, and

boosting with Ad26 in the presence of aluminum-

adjuvanted clade C Env gp140 protein. From a carbo-

hydrate point of view, it is widely accepted that gly-

cans play a key role in the immunology and pathology

of HIV. In the accompanying review (“emerging glyco-

based strategies to steer immune responses”), we dis-

cussed how certain carbohydrates are able to target

APCs and can thus be used as vectors to bring other

synthetic antigens to APCs for further T-cell activa-

tion. Nevertheless, carbohydrate-dependent epitopes

on glycoprotein gp120 exist, and thus, selected HIV

glycans might be used for the generation of functional

IgGs.

In this section, we present an overview of the differ-

ent strategies, which have been proposed to elicit anti-

bodies capable of neutralizing the virus, taking into

account the specific N-linked glycans on gp120. Then,

linker/spacer used in the glycoconjugate vaccine proto-

types and conjugation strategies has been described in

Table 3.

In some cases, N-linked glycans on gp120 are

directly involved and required for the binding of

broadly neutralizing antibodies (bNAbs) isolated from

patients, while in other cases they contribute to the

display of the protein epitope, or to the conforma-

tional stability of the HIV envelope (Env) trimer.

These strategies include the development of synthetic
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Table 3. Saccharide antigens, carrier, linker/spacer of some of the glycoconjugate vaccine described in this manuscript.

Saccharide

antigen Carrier Linker/spacer

Conjugation

method Ref

Man9GlcNAc2 at

N322

V3 antigen

Three-

component

self-adjuvating

immunogen:

V3-glycopeptide

epitope;

T-helper

peptide P30;

TLR2 ligand

N
H

O

Glycopeptide V3

H
N

O

N
N N

N
H

H
N

O

O H
N T-Cell Epitope

O

N
H

O H
N TLR 2 Ligand

Amide

coupling and

copper-

catalyzed

azide-alkyne

cycloaddition

(CuAAC)

[160]

Man9GlcNAc2 at

N334

V3 antigen

Three-

component

self-adjuvating

immunogen: V3

glycopeptide

epitope; T-

helper peptide

P30; TLR2

ligand

N
H

O

Glycopeptide V3

H
N

O

N
N N

N
H

H
N

O

O H
N T-Cell Epitope

O

N
H

O H
N TLR 2 Ligand

Amide

coupling and

copper-

catalyzed

azide-alkyne

cycloaddition

(CuAAC)

[162]

Bi-, tri, and tetra-

antennary

complex-type N-

Glycans

DT

N
H

O
N

O

O

SN
H

O
O

Amide

coupling and

thiol-

maleimide

chemistry

[165]

Man9GlcNAc2 Thiolated KLH
N
H

CO2H

O HN

O
S N

O

O

5

H
N

O
S O

O
R

O
R

R

N
H

H
N

N

O

5 O
5

O

O

S(scaffold)

Amide

coupling and

thiol-

maleimide

chemistry

[169]

Man9GlcNAc2 Outer

Membrane

Protein

Complex

(OMPC)

NH

O
NP

p A

Y A

Y N

P
p

AC

AF

S
N

O

O

N
H

O

NH
O

Lys-OMPC
(scaffold)

sSMCC (thiol-

maleimide

and amine-

activated

carboxylic

acid

chemistry)

[170]

Linear Man4 BSA

N
H

O N
H

S
Thiourea

linkage

[171]
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Table 3. (Continued).

Saccharide

antigen Carrier Linker/spacer

Conjugation

method Ref

Linear Man4 or

Man9

Capsids of

bacteriophage

Qb (QbK16M) O N
N N

O

HN Copper-

catalyzed

azide-alkyne

cycloaddition

(CuAAC)

[172]

Linear Man4 or

Man9

CRM197

O
N
H

O H
N

O

H
N

O
N
H

O

PAMAM4(8)

Amide

coupling

[173]

Man9 CRM197

O

N
N
H

O
N
N N homopropargylGly- & Cys-

containing peptide

O

O

S

Copper-

catalyzed

azide-alkyne

cycloaddition

(CuAAC) and

thiol-ene

chemistry

[174]

Linear Man4 and

branched Man5

or Man2

AuNPs H
N

H
N

S
O

4
S

4
O

Thiourea

linkage

[175,179]

Branched Man7

from bacterium

Rhizobium radiobacter BSA

N
H

O N
H

S
Thiourea

linkage

[176]

Branched Man3 COOH-modified

poly(styrene)

(PS) NPs NHO

O Amide

coupling

[178]
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glycopeptides (section Protein/peptide-based glycocon-

jugates) through the identification of the minimal neu-

tralizing epitopes recognized by bNAbs, the mimicking

of the clustered glycan presentation by means of

nanotechnology-based scaffolds (section Nanoglyco-

conjugates), and the use of bacterial lipooligosaccha-

ride (LOS) fragments (section Nanoglycoconjugates).

The glycosylation of the HIV envelope spike has

been recognized as a big challenge and an opportunity

at the same time. Indeed, in up to 20% of infected

individuals bNAbs have been found [147], and many

of these antibodies (� 40%) target a dense high-

mannose region on gp120 [148], known as the “high-

mannose patch” (HMP; Fig. 6). These antibodies neu-

tralize diverse strains of HIV, and they are often pro-

tective in animal models of infection, thus providing

clues for vaccine design. In addition, the unusual clus-

tering of glycans, and in particular of the high-

mannose type oligosaccharides of the HMP, results in

a significant opportunity from an immunological

perspective. Indeed, the HMP has been identified as a

nonself-element, which could be exploited to elicit a

specific immune response against the virus [149]. Many

attempts to develop glycoconjugate vaccines struc-

turally mimicking the HMP and thus following the

principle of epitope-focused vaccine design have been

performed with the aim of eliciting bNAbs targeting

this conserved epitope [150]. For example, the PG9,

PG16, and CH01–CH04 antibodies recognize a glycan-

dependent region within the first and second variable

loops (V1/V2) of gp120 [151,152]. Crystal structure

studies of the complex between PG9 and a scaffolded

V1V2 domain revealed that the Ab makes contacts

with two high-mannose glycans at the Asn160 and

Asn156 sites and a contiguous V1V2 peptide b-strand
[153]. Other bNAbs, such as PGT121–123 and PG125–
128, target the third variable (V3) loop domain of

gp120 [154,155]. The V3 domain of HIV-1 typically

contains three potential N-glycosylation sites with the

N295 and N332 sites at the base and the N301 site

Fig. 6. High-mannose structures found in HIV gp120. Adapted from [334].
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within the loop [156], and these domains are recog-

nized by bNAbs. In Fig. 7, the trimeric HIV-1 envel-

ope including the membrane proximal external region

(MPER) in gp41 on the viral spike is depicted with the

different bNAbs (including the glycan specific ones)

that target the different regions in the HIV-1 envelope

trimer. Altogether, these findings provide the rationale

to generate anticarbohydrate vaccines for HIV or to

use these antibodies as therapeutic agents in passive

immunization [157,158].

Protein/peptide-based glycoconjugates

A lot of effort has been focused on the identification

of the minimal neutralizing epitope recognized by

bNAbs in order to facilitate the design of the proper

HIV immunogens. Early synthetic efforts in the field

were focused on the design of N-glycopeptides derived

from the V3 domain. The chemoenzymatic synthesis of

a disulfide-linked, cyclic V3 glycopeptide containing

the N-linked core pentasaccharide (Man3GlcNAc2) at

two conserved sites (Asn332, Asn295), with improved

resistance to proteolysis in comparison with the naked

peptide, has been reported [159]. The synthetic V3 gly-

copeptides carrying a high-mannose N-glycan at

Asn332 could indeed mimic the conserved epitope rec-

ognized by several bNAbs and elicited glycan-

dependent Ab responses in immunization studies in

animals. In follow-up experiments, a synthetic self-

adjuvating three-component immunogen, consisting of

a 33-mer V3 glycopeptide epitope, a universal T-helper

epitope P30, and a lipopeptide-based TLR-2 ligand

(Pam3CSK4), elicited substantial glycan-dependent

antibodies with a broader recognition of HIV-1 gp120

compared with the nonglycosylated V3 peptide

(Table 3). These findings suggested that the self-

adjuvating synthetic glycopeptide can serve as an

important component to elicit glycan-specific antibod-

ies in HIV vaccine design [160]. Moreover, the highly

conserved N-glycans at Asn332 are at the center of the

intrinsic HMP. Nevertheless, about 17% of HIV iso-

lates carry the Asn332 to Asn334 mutation [161]. In

this regard, synthetic V3 glycopeptides from HIV-1

A244 gp120 carrying an Asn334 high-mannose glycan

displayed the proper recognition by bNAbs PGT128

and PGT126. Subsequent, rabbit immunization with

synthetic A244 glycopeptides elicited substantial

glycan-dependent antibodies with broad reactivity

toward various HIV-1 gp120/gp140 carrying Asn332

or Asn334 glycosylation sites [162].

In contrast, strong binding of V1V2 bNAbs required

both oligomannose derivatization and conformational

stabilization by disulfide-linked dimer formation of syn-

thetic V1V2 peptides [163]. In an effort to dissect the

glycan-binding specificity of the bNAbs PG9 and PG16,

a library of different V1V2 cyclic glycopeptides derived

from the HIV-1 strains CAP45 and ZM109 was synthe-

sized by Wong et al. [164]. Specific high-mannose and/or

complex-type glycans were installed chemoenzymatically

at three predetermined N-glycosylation sites (Asn160,

Asn156, and Asn173). Whereas Man5GlcNAc2 at

Asn160 was critical for recognition, an additional sialy-

lated complex-type N-glycan at the secondary glycosyla-

tion site facilitated the enhanced binding affinity. Similar

results were obtained by probing a glycan array, which

demonstrated that particularly PG16 was able to bind

complex-type multi-antennary N-glycans bearing a termi-

nal a-2,6-linked sialic acid unit [165].

Another strategy to design carbohydrate vaccines

against HIV is based on mimicking the high-mannose

type oligosaccharides of the HIV envelope (Env) glyco-

protein using different scaffolds in order to display

these glycans in a multivalent fashion [166,167]. As a

first step, a series of gp120 V1V2 N-glycopeptides,

bearing well-defined N-glycans at Asn160 and Asn156,

and derived from the CRF 01AE A244 HIV-1 strain

were designed and chemically synthesized [168]. The

corresponding peptide sequence consisted of 35 amino

acids of the main region of the envelope glycoprotein

recognized by the PG9 Ab, while the carbohydrate

domain targeted two Man5GlcNAc2 residues, encom-

passing the binding epitope of PG9. Additionally,

other simplified glycopeptides were pursued with

Man3GlcNAc2 and chitobiose (GlcNAc2) units to

probe the relevance of the outer mannose residues for

bNAb recognition. Following a classic glycoconjugate

vaccine approach, conserved oligomannose

Fig. 7. Epitope specificity of known bNAbs to HIV-1 envelope.

Figure reproduced from Refs. [335,336].
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Man9GlcNAc2 clusters have also been tetravalently

displayed on a galactose scaffold and chemoselectively

conjugated either to thiolated keyhole limpet hemo-

cyanin (KLH; Fig. 8B, Table 3) or to a thiolated T-

helper peptide from TT [169].

Subcutaneous immunization of rabbits resulted in

antisera with high titers of IgG antibodies. However,

most of the IgGs were directed against the linker

rather than the carbohydrate antigens, indicating that

the choice of the linker has a key role in vaccine

design. Indeed, the antisera were unable to neutralize

the virus even if a slight reactivity toward HIV-1

gp120 was detected. These data confirmed that only

low levels of specific anticarbohydrate and neutraliz-

ing antibodies were raised. Similar results were

obtained with divalent Man9GlcNAc2 displayed on a

cyclic peptide scaffold, which was conjugated to an

outer membrane protein complex carrier (Fig. 8A

Table 3). Again, specific HIV neutralization was not

observed in immunization experiments in both guinea

pigs and rhesus macaques [170]. In an effort to use

minimal glycan epitopes, the tetramannoside Man4,

corresponding to the D1 arm of Man9GlcNAc2, was

chosen as the antigen fragment and conjugated to

BSA [171]. Multivalent BSA-(Man4)14 was indeed

immunogenic and elicited Man-specific IgG, which,

however, did not cross-react with gp120 (Fig. 8C,

Table 3).

Several efforts were aimed at pushing the chemical

design toward either a better control on the

Fig. 8. Multivalent high-mannose glycan

clusters. Specifically: (A) Cyclic peptide

bearing two Man9GlcNAc2 glycans,

conjugated to outer membrane protein

complex (OMPC) of Neisseria meningitidis.

(B) Tetravalent Man9GlcNAc2 conjugated

through a flexible linker to KLH protein. (C)

Man4 tetrasaccharide conjugated to BSA

protein. (D) Heteromultivalent clustering of

Man8 or Man9 on Qb phage particles. (E)

PAMAM8-Man9 dendrimers conjugated to

CRM-197 protein. (F) Highly multivalent

Man9 dendrimers. Figure reproduced from

Ref. [166]. Copyright 2014, Springer Nature.
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oligomannoside display and a higher glycans density

on the scaffold in order to mimic the heavy glycosyla-

tion of HIV Env. Unfortunately, all these attempts did

not lead to anticarbohydrate antibodies able to cross-

react with HIV Env. This is the case of rabbits immu-

nized either with VLPs (icosahedral capsids of bacte-

riophage Qb) [172] functionalized with Man4 and

Man9 (Fig. 8D, Table 3) or with the synthetic 4-valent

and 8-valent Man4 and Man9 dendrons based on

polyamidoamine (PAMAM) scaffold further conju-

gated to the immunogenic carrier protein CRM197

(Fig. 8E,F, Table 3) [173]. One of the main reasons

for the failure of the systems described above has been

attributed to the oligomannoside display in (semi)syn-

thetic nanoclusters, which also includes the flexibility

of the antigenic presentation and the distance between

the targeted glycans on the scaffold/carrier (Table 3)

[174]. A warning on high-mannose oligosaccharide dis-

play in synthetic constructs has been raised by a recent

study that demonstrates that endogenous mannosidase

trimming favors the elicitation of antibodies targeted

to the glycan core instead of Mana1–2Man-specific

antibodies [174]. All these examples also indicate the

difficulty in rationalizing the results due to the differ-

ent protocols employed for the immunization (e.g.,

adjuvants, animal models, carrier proteins or immuno-

genic peptides, amount of antigens in primary immu-

nization, and boosts).

Nanoglycoconjugates

Nanotechnology has also been explored for the design

of vaccine candidates against HIV. Studies, based on a

“minimalistic” or “reductionist” approach, included

the use of nanoscaffolds, optimal presentation of mini-

mal epitope moieties, and the use of immunogenic

fragments instead of whole carrier proteins. Especially,

AuNPs have been widely investigated as carriers for a

fully synthetic carbohydrate vaccine candidate. In a

preliminary study, AuNPs coated with Man4 at 10%

and 50% NP-coating densities were able to inhibit the

gp120/2G12 binding (Table 3) [175]. Next, the same

group tailored these AuNPs with a TT immunogenic

peptide and included Man5, in addition to Man4, to

get a better mimic of the gp120 glycan display. In par-

ticular, NPs in the range <100 nm able to reach the

lymph nodes were used [175]. However, immunization

of rabbits only elicited carbohydrate-specific IgGs,

which were not able to recognize gp120 (M. Marradi

and F. Chiodo, personal communication).

Another strategy was based on a bacterial LOS frag-

ment from the Rhizobium radiobacter Rv3 strain. The

selected LOS fragment contains a Mana1–2Mana1–

2Mana1–3Man-oligomannose epitope that resembles

the HIV Env oligomannosides (Table 3). Indeed,

immunization of mice with heat-killed bacteria elicited

HIV-1 gp120 cross-reactive antibodies. Thus, a syn-

thetic LOS-based heptasaccharide was conjugated to

BSA, which elicited low titers of bNAbs in human- Ab

transgenic rats [176]. In an effort to generalize this

approach, these synthetically modified bacterial oligo-

mannoside mimetics are now used to probe 2G12

recognition [177].

In general, two main points need to be clarified:

(a) how the antigen display on NPs affects the

immunological outcome; and, (b) how the NPs behave

in vivo. Concerning the latter, functionalized NPs both

have to reach the lymph nodes and to enter the B-cell

zone where the follicular DCs initiate the efficient

crosstalk with B cells for specific and functional Ab

production. Recently, a study on glycan-engineered

NPs shed light on this issue [178]. A gp120-derived

mini-protein (engineered outer domain of gp120) and

a large gp140 Env trimer were used as “reductionist”

antigens. Multivalent antigen presentation onto the

NP and the presence of high-mannose oligosaccharides

were essential for mannose binding lectin (MBL)-

mediated innate immune recognition. This in turn was

critical for efficient humoral responses, presumably by

promoting a complement-dependent antigen transfer

to follicular DCs in vivo. Indeed, experiments with

MBL-deficient mice or deglycosylated immunogens

lowered Ab production, which matched with a loss of

follicular DC colocalization. Thus, glyco-engineered

NPs with a selected array of synthetic glycans can

enhance recognition by MBL, the transfer of antigen

to the B-cell compartment and the overall humoral

immune response. Next, this concept was translated to

different-sized polystyrene (PS) NPs, which were func-

tionalized with a synthetic trimannoside. While 40 nm

PS NPs accumulated in follicular DCs, > 100 nm PS

NPs did not reach the follicles with detrimental effects

on the B-cell response.

AuNPs have also been used as scaffolds to host

high-mannose type oligosaccharides as targeting moi-

eties to improve DC uptake, antigen presentation, and

T-cell crosstalk in order to modulate innate immunity

and to enhance the humoral immune response against

the selected HIV-1 peptides [179]. NP-based codelivery

of the HIV-1 antigen SLYNTVATL (HIV Gag p17

peptide) and a dimannose (Mana1–2Man) derivative

improved the capacity of DCs to process and present

HIV-1-peptides to autologous T cells from HIV-1

patients. Moreover, compared to HIV peptides alone,

an increased HIV-specific CD4+ and CD8+ T-cell pro-

liferation and a higher pro-TH1 and pro-TH2 cytokine
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and chemokine secretion, along with other proinflam-

matory cytokines [tumor necrosis factor-a and inter-

leukin (IL)-1b], were recorded. The induction of HIV-

specific cellular immune responses is a good prerequi-

site to activate B cells and to enhance the humoral

response. More information on targeting DCs through

AuNPs, not strictly related to glycan functionalization,

can be found elsewhere [180]. In general, the uptake of

AuNPs by immune cells usually triggers the produc-

tion of proinflammatory cytokines, and, for this rea-

son, AuNPs are considered as “immunostimulatory”

[181]. Much emphasis has been put on the size and

shape of the AuNPs core, although general conclu-

sions are sometimes difficult to draw, as the NP coat-

ing also plays a key role, especially when recognition

elements as glycans are present in the organic shell.

Recombinant HIV-1 gp120/gp41 Env glycoprotein

trimers have been designed as stable structural mimet-

ics of the native virion-associated spike with the aim

of overcoming the limitations of immunizing with

gp120 monomers [182]. These stabilized trimers effi-

ciently present multiple bNAb epitopes and elicit

bNAbs against the autologous tier 2 (typically resis-

tant) viruses. The rationale behind this strategy is

based on experiences with the hepatitis B virus [183]

and human papillomavirus [184], in which protective

antiviral subunit vaccines have been achieved by pre-

senting the viral surface immunogenic protein on

VLPs. This VLP multivalent approach profits of some

key characteristics, namely: (a) the size, which resem-

bles that of native viruses, (b) the multiple copies of

the antigen in a limited region of space which results

in high local concentration, and (c) the flexibility of

the carrier controlling B-cell activation (a rigid carrier

should trigger stronger activation signals than a more

flexible one). In this sense, synthetic liposomes of

around 100 nm were used to display well-ordered HIV

Env spike trimers in high-density arrays (Fig. 9) [185].

This synthetic nanoconstruct with 300–500 spikes/lipo-

some enhanced the specific activation of B cells

through B-cell receptor engagement compared with

soluble trimers, as demonstrated by an ex vivo experi-

ment using B cells from b12 knock-in mice, for exam-

ple, transgenic knock-in mice expressing, in the

physiological immunoglobulin heavy and light chain

loci, two well-studied bNAbs, 4E10 and b12 [186].

Furthermore, the trimer-conjugated single bilayer lipo-

somes enhanced the generation of germinal center B

cells in vivo, indicating that the secondary lymphoid

organs were efficiently reached and that the activated

B cells underwent IgG class switching. Moreover, neu-

tralizing antibodies were elicited in immunized rabbits,

although at low levels, using the trimer-conjugated

liposomes in the presence of the exogenous adjuvant

Adjuplex [185].

Final remarks

Overall, the examples reported above confirm the dual

function of HIV glycans: (a) as targets for bNAb pro-

duction against the clustered HIV carbohydrates and

(b) as targeting moieties toward an enhanced antigen

presentation by DCs, able to activate T-cell-mediated

immune responses. The influence of NP engineering in

glycoconjugate vaccines in relation to the transport

mechanisms in vivo has been the object of a recent

Fig. 9. Structural view of the HIV Trimers. (A) EM micrographs of JRFL gp140-foldon oligomers, JRFL NFL, and JRFL SOSIP trimers. Scale

bars, 20 nm. Representative trimers are circled in red. Top and aside views of representative trimer is depicted below the EM micrographs.

(B) Schematic representation of liposomes displaying HIV-1 trimers. Figure reproduced from Ref. [185].
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commentary [187], which links the critical issues of

nanoparticle glycosylation, antigen display, and size to

other systems, such as polysaccharide- and outer mem-

brane vesicles-based vaccines.

Improving the antitumor immunity through

glycoconjugate vaccines

Toward the development of therapeutic glycoconjugate

vaccines based on tumor-associated carbohydrate

antigens

Anticancer vaccines are based on different grounds

compared with the antimicrobial vaccines described in

section Improving the immunogenicity of pathogen

glycan structures through glycoconjugate vaccines, as

they are developed for therapeutic purposes instead of

preventive goals. The difficulty in developing prophy-

lactic anticancer vaccines is mainly due to the fact that

cancer cells are considered by the immune system as

“self-” elements and do not induce high inflammatory

signals (unlike viruses and bacteria). Moreover, thera-

peutic vaccines are often based on targeting

overexpressed tumor antigens that, however, often

occur at relatively late stages of tumor progression.

The aberrant expression of glycans on both cell surface

glycoproteins and glycolipids, either in terms of

amount of glycans and the presence of truncated

forms, has been considered a fingerprint of several

cancer cell phenotypes [38,188,189]. The expression of

these glycans epitopes, commonly referred to as

tumor-associated carbohydrate antigens (TACAs;

Figs 10 and 11), has been associated with tumor pro-

gression and aggressiveness, as well as to modulation

of immune recognition and evasion in cancer [190]. In

addition, the role of TACAs in the maintenance of

stemness, tumor development, and metastasis of cancer

stem cells has been recently reviewed [191].

Tumor-associated carbohydrate antigens are

regarded as a promising anticancer epitopes and thus

have been considered as target molecules for anti-

cancer carbohydrate-based vaccines [8,12,31,36–
39,188,192–195]. As in the case of HIV (section

Human immunodeficiency virus), carbohydrates are

therefore treated as antigens toward which specific and

efficient IgG responses might be generated. Many

Fig. 10. Schematic representation of potential strategies for the display of TACAs onto multivalent scaffolds (including viruses, VLPs,

polymer conjugates, liposomes, and NPs) and for the activation of specific antitumor adaptive immune responses.
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Fig. 11. Overview of the most representative TACAs expressed on glycoproteins and glycolipids on the cancer cell surface.
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investigations have indeed resulted in TACA-specific

antibodies able to target the tumor, for either diagnos-

tic or therapeutic purposes. Some of these antibodies

have been through preclinical and early-stage clinical

testing against some cancer types (e.g., unituxin, dinu-

tuximab) [196]. Nevertheless, TACAs commonly show

weak immunogenicity (T-cell-independent type II anti-

gens) and they have low in vivo stability/availability

[36,188]. To overcome these issues glycoconjugate vac-

cines employing structurally diverse immunogenic car-

riers, glycomimetics, TACA analogs, and metabolic

oligosaccharide engineered (MOE) vaccines have been

developed [8,197]. Here, we report on some of the

main recent advancements in the development of

TACA-based therapeutic vaccines in cancer. In partic-

ular, we will discuss the outcome of some fully syn-

thetic vaccine prototypes, emphasizing the role of: (a)

the selected carrier (sections Glycoconjugate vaccines

containing mucin-like antigens: the role of the

immunogenic carrier and of multivalent antigen dis-

play and Nanoglycoconjugates); (b) multivalent pre-

sentation of the antigen (sections Glycoconjugate

vaccines containing mucin-like antigens: the role of the

immunogenic carrier and of multivalent antigen dis-

play and Nanoglycoconjugates) and (c) of glycomimet-

ics (section Glycomimetics in the discovery of

anticancer glycoconjugate vaccines) on the immunolog-

ical outcome In addition, mucin-like antigens will be

discussed in more detail according to the huge pro-

gress, made in this field (section Glycoconjugate vacci-

nes containing mucin-like antigens: the role of the

immunogenic carrier and of multivalent antigen dis-

play). In Fig. 11, the structure of the most representa-

tive TACAs expressed on glycoproteins and glycolipids

on cancer cells surface is depicted.

A variety of TACAs has been described: (a) Ganglio-

sides including: GalNAcb1–4[NeuAca2–8NeuAca2–3]
Gal-b1–4GlcbCer (GD2), NeuAca2–8NeuAca2–
3Galb1–4GlcbCer (GD3), GalNAcb1–4[NeuAca2–3]
Galb1–4GlcbCer (GM2), NeuAca2–3Galb1–4GlcbCer
(GM3) and Fuca1–2Galb1–3GalNAcb1–4[NeuAca2–3]
Galb1–4GlcbCer (fucosyl-GM1); (b) Globo series gly-

colipids, including: Fuca1–2Galb1–3GalNAcb1–
3Gala1–4Galb1–4GlcbCer (Globo-H), NeuAca2–
3Galb1–3GalNAcb1–3Gala1–4Galb1–4GlcbCer (SSEA4),

Galb1–3GalNAcb1–3Gala1–4Galb1–4GlcbCer (SSEA3);

(c) Lewis antigens, including: Galb1–4[Fuca1–3]GlcNAc-

R (Lewis X, Lex), Fuca1–2Galb1–4[Fuca1–3]GlcNAc-R

(Lewis Y, Ley), NeuAca2–3Galb1–4[Fuca1–3]GlcNAc-R

(sialyl Lewis X, sLex), NeuAca2–3Galb1–4[Fuca1–4]
GlcNAc-R (sialyl Lewis a, sLea); (d) Truncated mucin-

type O-glycan epitopes including: GalNAca-Ser/Thr
(Thomsen-nouveau, Tn antigen), Galb1–3GalNAca-Ser/

Thr (Thomsen�Friedenreich, TF or T antigen),

NeuAca2–6GalNAca-Ser/Thr (sialyl-Tn, sTn) and

NeuAca2–6Galb1–3GalNAca-Ser/Thr and NeuAca2–
3Galb1–3GalNAca-Ser/Thr (sialyl-TF, sTF, including 2–
3-sialyl-TF and 2–6-sialyl-TF); (e) tetra-antennary

N‑linked glycans, and an increase in the a2–8‑linked poly-

mer known as polysialic acid [189,198–210].
Several pioneering studies [211–214] have paved the

way for the development of glycoconjugate vaccines

containing glycan epitopes. Significant contributions

have been made during the last three decades, and

some TACA-based conjugates have entered clinical tri-

als, but only some of them have reached randomized

Phase III trials for melanoma, breast cancer, and non-

small-cell lung cancer (among others theratope, OPT-

822, GM2-KLH, racotumomab, and GD2-directed

mAb) [38,188,215–218]. Although significant advance-

ments have been made in the field of TACA-based

vaccine development, several issues have so far pre-

vented the carbohydrate-protein conjugate vaccines

from getting FDA approval. The main concerns of

vaccine researchers are related to the choice of the

proper carrier protein, the undesired cross-reactivity

against the carrier protein and the linker employed for

the conjugation, the low yield of the conjugation reac-

tion, the hydrolytic stability of the glycan conjugate,

and, finally, the targeting of specific immune compart-

ments. Moreover, difficulties in isolating particular gly-

can epitopes from natural sources have limited vaccine

design and development for a long time. Advance-

ments in synthetic carbohydrate chemistry and the

availability of high performance spectroscopic tech-

niques have allowed to address some of these issues in

the last two decades and to access a wide range of

complex glycans, which can now be used in conjuga-

tion and immunization protocols [219–222].
The classical carrier proteins (e.g., BSA, KLH, DT,

OVA, TT, CRM197) have been widely employed in the

development of TACA-based glycoconjugate vaccines;

however, different carrier proteins resulted in different

immune outcomes, as was shown for ganglioside-

protein conjugates. Several cancers are characterized

by the overexpression of some particular gangliosides

(Fig. 12) [205,214,223]. The biological effects associ-

ated with overexpression of gangliosides are not fully

clarified and still under investigation; however, some

seminal studies [214,223] employed these glycan epi-

topes for the development of TACA-based vaccines.

Immunization studies in mice using GD3 conjugated

to different carrier proteins demonstrated that the

strongest Ab titers were obtained with the GD3-KLH

conjugate compared with other carrier protein conju-

gates [211]. Similar results have been reported about
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Fig. 12. Structures of: 8 unimolecular pentavalent vaccine containing MUC antigens together with the Globo-H, and GM2 ganglioside

[222,242,243]; 9 TACA-MUC1 glycopeptide conjugated with TT as a carrier protein [248], 10 which contains four copies of Tn antigen, a Th

epitope, a CTL epitope, and a TLR2 ligand were combined in a glycoconjugate construct [253]; 11 MUC1-TF and sTn glycopeptides

conjugated to Qb [255]; TACA antigens conjugated to PS A1 (12) and PS B (13) [257]. Qb conjugate image is reproduced from Ref. [255].

Copyright 2019 American Chemical Society.
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conjugates containing mucin-like antigens (Fig. 11)

[212]. In contrast, the fully synthetic glycosphingolipid

Globo-H epitope (Fig. 12) conjugated to CRM197 pro-

tein was more efficient in eliciting IgG Ab production

compared with KLH conjugates, and these antibodies

cross-reacted with Globo-H and Globo-H-related epi-

topes (e.g., SSEA3 and SSEA4) [221]. The commonly

known CA19-9 or sLea marker is expressed on glycol-

ipids or glycoproteins on the cell surface of several

human cancer types. Vaccination studies using a chem-

ically synthesized sLea-KLH conjugate [224] revealed

that sLea-specific IgG and IgM antibodies were raised,

which showed no detectable cross-reactivity against a

series of other blood group-related antigens (e.g., Ley,

Lex, and sLex). Of note, some immunization studies

used structurally different constructs, in terms of both

TACA and carriers, indicating that the linker can sig-

nificantly affect the immunological response and thus,

have to be taken into account in vaccine design

[12,225–227].

Glycoconjugate vaccines containing mucin-like antigens:

the role of the immunogenic carrier and of multivalent

antigen display

Several glycoconjugate constructs containing struc-

turally different immunogenic carriers have been

designed with the aim to avoid cross-reactivity against

the carrier proteins. In particular, in the last 10 years

attention has been mainly focused on constructs con-

taining mucin-like antigens. Mucins (MUC) are the

most abundant macromolecules present in the mucus.

They are highly glycosylated proteins, synthesized

principally by epithelial cells, and they provide protec-

tion and lubrication to epithelial surfaces [228–230].
Although MUC1 is densely glycosylated in normal

cells, it is aberrantly glycosylated in cancer cells and

carries simple and truncated carbohydrates as a result

of alterations in glycosyltransferase expression, like

downregulation of the b1–6GlcNAc transferase or

aberrant expression of GalNAc transferases, or muta-

tions in the molecular chaperone COSMC [231–234].
Thus, immature O-glycan structures, such as Tn (Gal-

NAca-Ser/Thr) and TF (Galb1–3GalNAca-Ser/Thr,
Thomsen–Friedenreich) antigens, are expressed on

malignant cells and they are abundant TACAs

(Fig. 11). The aberrant overexpression and glycosyla-

tion of mucins drive oncogenesis, as they promote can-

cer cell differentiation, proliferation, invasion, and

metastasis [235,236]. The MUC1 extracellular domain

comprises of a variable number (30–200) of 20 amino

acid tandem repeats with the sequence SAPDTR-

PAPGSTAPPAHGVT [237]. Every repeat region

includes five potential O-glycosylation sites, three thre-

onine (Thr), and two serine (Ser) residues, the primary

attachment sites for the aGalNAc residue. In parallel,

a2–6- and a2–3-sialyltransferases are frequently upreg-

ulated, which causes premature sialylation of these

antigens, resulting in the formation of the sTn antigen

or the 2–3-sialyl-TF and 2–6-sialyl-TF determinants,

which are also considered TACAs (Fig. 11)

[189,208,238]. Additionally, incomplete glycosylation

in tumor cells leads to the exposure of peptide epi-

topes, which are masked in healthy cells. Moreover,

the expression level of MUC1 on tumor cells can be

100-times higher than that on normal cells, rendering

MUC1 glycopeptides an attractive target for cancer

immunotherapy [190,239,240].

With the aim to avoid the carrier protein and to

boost the immune response toward MUC antigens,

several approaches toward conjugates containing

TACA on structurally different carriers have been pro-

posed. BSA conjugates containing multiple copies of

sialylated and nonsialylated Tn and TF antigen linked

to the tandem repeat sequence of the PDTRP epitope

were able to evoke immunological memory, and both

the elicited IgG (mainly IgG1) and IgM antibodies

could recognize native antigens on breast cancer cells

[241]. The unimolecular pentavalent vaccine containing

MUC antigens together with the Globo-H and GM2

ganglioside (8; Fig. 12) was synthesized by conjugating

the glycan epitopes to a peptide scaffold, which was

subsequently linked to the KLH protein [222,242,243].

Preliminary immunization studies showed that the

multicomponent vaccine was able to elicit a strong

IgG/IgM response and that the antibodies cross-

reacted with the overexpressed carbohydrate antigens

on cell surface. This vaccine prototype has entered

Phase 1 clinical studies.

Seminal reports introduced the development of

TACA-based conjugates containing T-helper epitopes

[such as the Pan DR epitope (PADRe) and poliovirus

peptide] coupled to addressable functionalized tem-

plates [reversible addition fragmentation chain transfer

polymerization (RAFTs)], providing a multivalent dis-

play of TACA antigens and TLR ligands [244–247].
Notably, a two-component vaccine based on a TACA-

MUC1 glycopeptide and a T-cell epitope from TT

[248] was able to induce substantial titers of TACA-

specific antibodies. As a follow-up, the conjugation of

a TACA-MUC1 glycopeptide with the complete TT as

carrier protein (9; Fig. 12) was described. These conju-

gates induced high titers of tumor-associated MUC1-

specific IgG antibodies, which were able to discrimi-

nate between normal and tumor mammary cells. This

is one of the most potent MUC1 vaccine candidates
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and anti-TACA-MUC1 antibodies so far, allowing the

diagnosis of human pancreatic cancer [249].

The RAFT cyclopeptide scaffold has been further

exploited for the multivalent presentation of a cluster

of MUC1 antigen residues, containing two separate

spatial domains, which allow the presentation of both

the antigen and different immunogenic carriers [e.g., T

epitopes (both CD4+ and CD8+), TLR-ligands] on the

same construct [250–252]. Immunization studies in

mice have proven that these constructs are able to

induce both Th cells and CTL responses [252] and in

some cases established a reduction in tumor size in

mice inoculated with syngeneic murine cancer cells

[251]. Next, a cluster of Tn antigen, a Th epitope, a

CTL epitope, and a TLR2 ligand, combined in a gly-

coconjugate construct, could induce strong Ab

responses (10; Fig. 12) [253]. However, the immuno-

logical outcome, in terms of Ab titers and Ab speci-

ficity, was dependent on the spatial arrangement of the

T-cell epitopes within the construct [254].

In order to generate effective anti-MUC1 immune

responses, MUC1 peptides and glycopeptides have also

been conjugated by different research groups to VLPs,

such as the bacteriophage Qb, which could signifi-

cantly boost immune responses against glycopeptide

antigens [255]. The short synthetic Tn-nonapeptide of

MUC1 (SAPDT*RPAP, where * denotes glycosyla-

tion) conjugated to the bacteriophage Qb carrier was

even effective at inducing high levels of anti-MUC1

IgG antibodies in immune-tolerant human MUC1

transgenic mice. These antibodies exhibited high tumor

binding and killing activities, good selectivity in gly-

copeptide recognition, and excellent recognition of

human breast cancer over normal mammary tissues

[256]. Also the MUC1-TF and sTn glycopeptides (11;

Fig. 12) conjugated to Qb were used to immunize

human MUC1 transgenic mice. The MUC1-TF elicited

higher titers of anti-MUC1 IgG antibodies compared

with the Qb-MUC1-Tn conjugates. These antibodies

showed the strongest binding to MUC1-positive mela-

noma B16-MUC1 cells and effectively killed these cells

in vitro. Moreover, profylactic vaccination with Qb-
MUC1-TF could significantly reduce the number of

metastatic tumor foci in the lungs of immunized mice.

Many efforts have been dedicated to the synthesis

and evaluation of glycan-containing glycoconjugates

aimed at overcoming the T-cell-independent activation

of the immune system associated with TACA-based

epitopes. Significant contributions to this field have

come from the use of fully carbohydrate-based con-

structs composed of synthetic TACA-ZPSs conjugates

[257,258]. ZPSs are a unique group of microbial

polysaccharides expressed in some pathogenic strains

of S. aureus, S. pneumoniae type 1 polysaccharide, and

Bacteroides fragilis polysaccharide A1 and B, display-

ing strong immunogenic properties [259,260]. These

polysaccharides share a common feature of positively

and negatively charged centers within a single repeat-

ing unit, and they are therefore referred to as ZPS.

Some ZPSs have been reported to activate T cells

through entry into APCs utilizing the same endocytic

pathway as protein antigens, activating the MHC class

II-mediated CD4+ T-cell response [261–263] ZPSs,

including PS A1 and PS B from B. fragilis, have been

isolated from the capsule of the bacteria and struc-

turally modified for conjugation to TACA antigens

(e.g., Tn, sTn, TF, 12, and 13; Fig. 12) [36,257,258].

Adjuvant-free immunization protocols using Tn-PS A1

(12a; Fig. 12) in mice resulted in production of anti-

bodies able to recognize the Tn hapten on human

tumor cells, thus providing encouraging results for

anticancer immune responses [264], and indicating the

possibility of a dual role of PS A1 as both carrier and

adjuvant [257,258]. Indeed, PS A1 is known to bind

TLR-2 on DCs, which causes the release of IL-12. In

addition, PS A1 can enhance expression of CD40,

CD86, and CD80 on the surface of APCs [265,266].

These findings led to the discovery of a novel carbohy-

drate binding mAb, called Kt-IgM-8 [267]. This new

Ab, which was generated via hybridoma technique

from Tn-PS A1 hyperimmunized mice, was able to kill

sTn-expressing cancer cell line MCF-7 both in vitro

and in vivo [267]. Promising results have also been

obtained with TF antigen conjugated to PS B (13,

Fig. 12) [268], showing elevated IgM and IgG Ab

titers with anti-TF specificity after immunization in

mice. In a recent study, the sTn antigen was conju-

gated to PS A1 (sTn-PS A1, 12b; Fig. 12) and

combined with a commercially available monophos-

phorylated derivative of lipid A (MPLA) for immu-

nization studies in mice, where it elicited a strong

immune response with the generation of anti-sTn

IgM/IgG antibodies. These antibodies were able to

bind sTn-expressing cancer cell lines MCF-7 and

OVCAR-5 [257]. Recently, a tetrasaccharide repeating

unit of PS A1 was synthesized with alternative charges

on adjacent monosaccharides with the aim to dissect

the role of ZPSs in carbohydrate immunity [269].

Glycomimetics in the discovery of anticancer

glycoconjugate vaccines

The main drawback of therapeutic vaccines is that

cancer cells readily adopt immune escape mechanisms

[270], resulting in increased resistance to immune

recognition. An attractive approach to tackle these
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issues may be the use of unnatural derivatives, like

TACA analogs and/or glycomimetics [8,36]. In princi-

ple, these derivatives would be more resistant to enzy-

matic degradation, which could translate into stronger

and longer-lasting immunogenicity and protective effi-

cacy [84]. The substitution of a hydrogen with a fluo-

rine atom on TACAs (e.g., sTn, Globo-H) has been

successfully investigated by some other research groups

as well [226,271]. The comparable size of fluorine atom

compared with hydrogen is probably the reason why

the antibodies elicited in immunization protocols are

still able to recognize the natural antigen. For exam-

ple, a vaccine carrying a fluorinated TF antigen was

able to elicit strong responses in mice and the resulting

antibodies showed a similar structural selectivity to

those obtained with the natural vaccine [84,272]. A tri-

partite vaccine containing the more immunogenic

domain of MUC1 and the unnatural amino acid a-
methylserine glycosylated with GalNAc (glycopeptide

14; Fig. 13) was more resistant to enzymatic degrada-

tion than the natural counterpart and elicited an

immune response comparable to a vaccine candidate

containing a natural MUC1 fragment [273]. There-

after, a new strategy for designing potent antigen mim-

ics was proposed based on the replacement of the

anomeric oxygen with a sulfur or a selenium atom

[274]. These minimal chemical modifications bring

about two key structural changes to the glycopeptide.

Namely, they increase the carbohydrate-peptide dis-

tance and change the orientation and dynamics of the

glycosidic linkage. As a result, the peptide acquires a

preorganized and optimal structure suitable for Ab

binding. Indeed, these synthetic glycopeptides could

adopt a distinct structure in solution, which markedly

differs from their natural counterparts. Compared to

the native antigens, these new glycopeptides displayed

an improved binding to a representative anti-MUC1

Ab. To prove the potential of these glycopeptides as

tumor-associated MUC1 antigen mimics, the derivative

bearing the S-glycosidic linkage was conjugated to

AuNPs and tested in mice in a formulation without

adjuvant. As a result, significant humoral immune

responses were induced and, in particular, the murine

antisera recognized cancer cells in biopsies of breast

cancer patients with high selectivity. These findings

demonstrate that the antibodies elicited against the

mimetic antigen were able to recognize the naturally

occurring glycosylated antigen in its physiological con-

text. In this framework, a hydrolytically stable mimetic

of a GM3 metabolite expressed on melanoma cells

(e.g., GM3-lactone) [275] has been recently proposed.

Even if structurally simpler than the endogenous anti-

gen, it maintains the characteristic folded shape of the

native GM3-lactone. This mimetic was conjugated to

structurally different scaffolds ranging from protein

(e.g., KLH) [275], to multivalent scaffolds [e.g., cal-

ixarene, carbon-based nanomaterials, and an address-

able functionalized templates (RAFTs)] [276,277].

The ability to induce a specific immune response

and to affect melanoma progression was evaluated

both in in vitro and in vivo studies. In particular, the

KLH conjugate 15 (Fig. 13) was successfully elicited

Ab titers with confirmed specificity for GM3. In addi-

tion, a conformationally constrained mimetic of the

Tn antigen was developed into a fully synthetic vaccine

prototype, consisting of four copies of the antigen

mimetic and an immunogenic PADRe peptide dis-

played on the two sides of a RAFT template. This

vaccine prototype has been used in immunization stud-

ies in mice and elicited long-lasting antibodies (e.g.,

IgG1, IgG2a, and IgG3) able to bind Tn expressing

MCF-7 human breast cancer cells [278]. The same

Fig. 13. Structures of: 14 a tripartite

vaccine containing the unnatural amino acid

a-methylserine glycosylated with GalNAc;

[273] 15 GM3-lactone mimetic conjugated

to KLH protein [275].
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mimetic was also able to activate iNKT cells, when

conjugated to a phospholipid carrier, which enabled

the mimetic to be presented in the context of the con-

served nonpolymorphic MHC class I-like molecules

(CD1d) [279]. Modification at the N-acetamido posi-

tion of the galactose residue of MUC antigens and in

the sialic acid containing antigens (e.g., GM3, sTn,

sTF) has likewise been widely investigated [280–283].
In this context, a study on Tn and sTn analogs con-

taining either a thio-glycosidic linkage and modifica-

tions at N-acetamido group of both galactose and

sialic acid residues have been recently reported [284].

Some of these analogs have been conjugated to carrier

proteins and stimulated IgG antibodies responses,

which were able to recognize the natural antigens in

ELISA.

Nanoglycoconjugates

Nanotechnology approaches have been proposed to

improve the delivery of anticancer drugs by reducing

side effects and improving therapeutic efficacy [285].

Much effort has been dedicated to find the optimal

nanosystem, through combinations with microparticles

and via multistage vector approaches, aimed at target-

ing the tumor microenvironment and overcoming the

biological barriers, which can reduce the therapeutic

efficacy [286]. Functionalized NPs for anticancer drug

delivery are a major strategy, which depends on the

proper selection of the target (glycoconjugate and

cancer-associated glycoform). This specificity depends

on the tumor type, and therefore, successful targeting

requires a detailed analytical tumor glycophenotype

characterization. Regarding cancer immunotherapies,

NPs have been used for delivery of immunomodula-

tory compounds in combination with chemo- or radio-

therapy, and as platforms for antigens and adjuvants

codelivery in order to generate therapeutic T cells

[287,288]. Due to the key role of glycans in cancer sig-

naling and development, the combination of NPs and

carbohydrates is showing promise for prolonged

immune stimulation and modulation toward novel

carbohydrate-based nanovaccines [289].

Diverse nanocarriers in terms of structure, shape,

chemical composition, properties, and degree and type

of functionalization have been proposed for the multi-

valent antigen display of vaccine prototypes. In addi-

tion, nanotechnology allows for multifunctional

theranostic systems to be designed [289]. As it was

already discussed in section Improving the immuno-

genicity of pathogen glycan structures through glyco-

conjugate vaccines, liposomes are very attractive

nanocarriers since they are versatile, biocompatible

and characterized by a low immunogenicity and toxic-

ity, and they offer the opportunity to carry multicopy

of different ligands mixes [290,291]. Liposomes con-

taining fully synthetic anticancer vaccine candidates

able to generate T-cell-dependent Ab response in mice

have been reported in a seminal study by Boons et al.

[292]. They studied the effect of self-adjuvating and

multicomponent vaccines combining the Tn antigen or

a partial sequence of the TACA-MUC1 tandem repeat

including the Tn antigen in the PDTR region, a TLR2

ligand (e.g., Pam3CysSerK4), and T-cell peptide epi-

topes, for the activation of the adaptive immune sys-

tem [12,190]. Strong IgG responses were elicited in

wild-type mice, and further mechanistic studies in a

mouse model of mammary cancer demonstrated that

the elicited IgGs were able to neutralize cancer cells by

Ab-dependent cell-mediated cytotoxicity, that is, acti-

vation of cytotoxic T-lymphocytes [293]. Varying these

lipidated glycopeptides by proper modulation of the

MUC1 glycosylation and peptide length, the inclusion

(and the type) of endogenous T-helper epitopes [294],

or the structure of TLR2 ligand (e.g., Pam3CysSerK4

vs Pam2CysSerK4) [295] should help at finding the

optimal formulation toward therapeutic antitumor

glyco-nano-vaccines. Notably, in all these studies the

presence of the TACA and the covalent conjugation of

the vaccine components were essential to reach a speci-

fic immune response [293,296]. More recently, a lipo-

some formulation containing the tandem repeating

unit of MUC-1 conjugated to the TLR2 ligand (16;

Fig. 14) has been reported. Immunization studies

showed that even without exogenous helper T epi-

topes, the vaccine candidate was able to activate T

cells and to elicit robust cytotoxic IgG Ab responses

[294].

Also CpG motifs have been employed as built-in

adjuvant [297]. The immune response of a tripartite

vaccine candidate, composed of a Tn glycosylated

MUC1 epitope, a CpG-ODN, and a T-helper epitope,

was investigated in a mouse model of breast cancer,

and compared to the responses elicited by a similar

compound with the lipopeptide Pam3CSK4 as a built-

in adjuvant. A weaker cellular immune response was

reached with the CpG-ODN-containing vaccine candi-

date compared with the Pam3CSK4 conjugate. More-

over, the CPG tripartite vaccine could not significantly

reduce the tumor burden over control in a mouse

model, demonstrating that the nature of the covalently

linked adjuvant significantly impacts the quality of the

immune response. Although the conjugation of a pro-

tein antigen to CpG-ODN creates a potent immuno-

gen with therapeutic implications [298,299], more

studies are needed for the optimization of a vaccine

4282 The FEBS Journal 289 (2022) 4251–4303 ª 2021 The Authors. The FEBS Journal published by John Wiley & Sons Ltd on behalf of

Federation of European Biochemical Societies.

Glycoconjugate vaccines in infections and cancer M. Anderluh et al.

 17424658, 2022, 14, D
ow

nloaded from
 https://febs.onlinelibrary.w

iley.com
/doi/10.1111/febs.15909 by U

niversity O
f B

elgrade, W
iley O

nline L
ibrary on [13/02/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Fig. 14. Structures of: 16 glycoconjugate vaccine containing tandem repeating unit of MUC-1 conjugated to the TLR2 ligand [294]; 17

glycoconjugate vaccine containing a TACA antigen (sTn, GM3, Globo-H) conjugated to a TLR-4 ligand [300–302], 18 a synthetic Tn antigen-

glycolipid containing an a-GalCer residue [305]; 19 Au nanoconstructs, containing the TF disaccharide antigen instead of the Tn antigen.

Figure of compound 19 reproduced from Ref. [308]. Copyright 2012, American Chemical Society.
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containing antigenic saccharides or glycopeptides con-

jugated to a TLR-9 ligand.

The targeting of TLR receptor has also been investi-

gated using a fully synthetic vaccines based on a car-

bohydrate antigen (sTn, GM3, Globo-H) and MPLA

residue conjugated through a linker (17; Fig. 14) [300–
302]. Indeed, as discussed in section Bacterial infec-

tions, MPLA works as a TLR-4 agonist on the APC

surface and it is well-known for its strong immunos-

timulatory activity. GM3 conjugated to MPLA 17

(Fig. 14) was incorporated into liposomes and subse-

quently inoculated in mice [300]. The resulting con-

structs elicited T-cell-mediated immunity without an

external adjuvant, thus showing self-adjuvating proper-

ties. The generated antibodies were able to bind to tar-

get tumor cells. Surprisingly, the immunological

activity of the conjugates was reduced rather than

increased, when inoculated together with an external

adjuvant, for example, Titermax Gold. Moreover, the

liposome formulation seems to be crucial for the

immunological activity. Indeed, immunization of mice

using pure glycoconjugates yielded inconsistent results,

which was ascribed to glycoconjugate insolubility in

buffer and a lack of a homogeneous preparation [300].

In this context, four monophosphoryl derivatives of

N. meningitidis lipid A conjugated to sTn antigen [301]

and formulated as liposomes elicited high titers of

antigen-specific IgG antibodies, in adjuvant-free condi-

tions. Among the MPLAs examined, the natural

N. meningitidis MPLA exhibited the most promising

immunological activity. Promising results toward the

development of anticancer vaccines were also obtained

with MPLA conjugated to the GM2 TACA, a tumor

antigen overexpressed in several tumor types, such as

renal cancer, sarcoma, and melanoma [303].

The same strategy was applied for the synthesis of

self-adjuvating Globo-H-MPLA glycoconjugates 17

(Fig. 14) [302]. Formulated as liposomes, these Globo-

H-glycoconjugates were shown to elicit high production

of IgG1 Ab and activation of T-cell-dependent immu-

nity. The antibodies induced by this vaccine prototype

had the ability to bind to Globo-H-expressing MCF-7

cancer cells and to mediate strong complement-

dependent cytotoxicity.

The immunostimulatory potential of LPS lipid A is

strongly influenced, and tuned by its primary structure,

and thus, the moderate agonist activity of LPS isolated

from nonhuman pathogenic bacteria can also be

exploited to design potential cancer vaccine adjuvants.

With the aim of improving anticancer vaccination pro-

tocols, a micellar-based platform was developed for

improved codelivery of a LPS lipid A, acting as a

moderate TLR4 agonist, and a model antigen. This

pathogen-mimicking nanovaccine featured the model

antigen OVA linked to iron oxide NPs to which the

adjuvant, namely LPS from the plant-pathogen Xan-

thomonas campestris (Xcc LOS), was grafted. The

nanovaccines were able to elicit antitumor immune

responses against B16-F10 melanoma, whereby its

delivery as iron oxide NPs improved the immunostim-

ulatory properties and promoted reduced cytotoxicity

[304]. Recently, size-controlled glyco-liposomes were

prepared by employing a synthetic Tn antigen-

glycolipid containing an a-GalCer residue (18, Fig. 14)

[305]. In this construct, the a-GalCer glycosphingolipid

acts as an immunostimulatory agent for the weakly

immunogenic Tn antigen [136]. The resulting glycan

liposomes were used to immunize mice and were able

to generate specific high-affinity antibodies and T-cell-

dependent immunity, without the use of further adju-

vants. Moreover, the use of liposomes with tunable

sizes demonstrated that it is possible to drive the

response toward cellular (Th1) or humoral (Th2)

immunity when larger (around 400 nm) or smaller

(around 120 nm) NPs are employed, respectively.

Next to liposomes, other nano-prototypes have been

evaluated as potential anticancer vaccines. A

supramolecular self-assembling peptide of Nap-

GDFDFDYDK (where the upper D denotes amino acid

of the D-series) has been reported as an efficient

nanovector, which worked both as a multivalent car-

rier and as an adjuvant. In particular, the Tn-Nap vac-

cine self-assembled into NPs and elicited a potent

immune response (both humoral and cellular). More-

over, the antisera induced by Tn-Nap mediated a

strong complement-dependent cytotoxicity (CDC) to

breast cancer MCF-7 cells [306]. Immunization studies

with AuNPs tailored with a MUC1-derived glycopep-

tide, containing three Tn antigens per peptide, and the

T-cell epitope P30 from TT indicated Th1 and Th2

mediated immune responses directed to the glycopep-

tide antigen [307]. On gold nanoconstructs, containing

the TF disaccharide antigen instead of the Tn antigen

(19; Fig. 14) [308], the B-cell and T-cell epitopes were

separately conjugated onto the nanoplatform. Mice

were immunized with AuNPs bearing one or two TF

antigens accommodated on a MUC4-related peptide

and a peptide from the complement-derived protein

C3d (for B-cell activation). Analysis of antisera

revealed statistically significant IgG and IgM

responses, which strongly depended on the number

and position of the TF substitution in the glycopep-

tides and were mainly directed toward the glycopep-

tides and, only in part, toward the free peptide and

the linker. A combination of AuNPs with glycopoly-

mers has been reported by B. G. Davis and
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collaborators as a potential synthetic and multivalent

Tn-based cancer vaccine [46]. Homopolymers bearing

multiple copies of the tumor-associated Tn antigen,

conjugated to AuNPs, elicited a quite Tn-specific

immune response in rabbits, whereby a glycan density

of 20–25 units per polymer chain appeared optimal.

The density of Tn antigen presumably influenced the

B-cell response through cross-linking of B-cell recep-

tors and coreceptors, which in turn modulated B-cell

activation and IgG production. Although the absolute

IgG titers were lower than those obtained with related

glycoconjugate vaccines, the absence of carrier proteins

or immunogenic peptides seems to indicate the possi-

bility that a high multivalent display of the carbohy-

drate antigens is able to compensate for the lack of

other immunogenic components [304]. In addition to

the need of multivalent TACA display, synthetic

strategies have been developed to improve their in vivo

stability/availability. In particular, a structurally con-

strained mimetic of Tn antigen, resistant to enzyme-

mediated degradation, was multimerized onto iron

oxide NPs, which also can be combined with tumor

treatment (magnetic hyperthermia, in addition to vac-

cination), diagnosis, and monitoring (contrast agents

for magnetic resonance imaging) [309]. The conjuga-

tion of the same synthetic Tn antigen mimetic to bio-

compatible and water-dispersible dextran-based single-

chain NPs afforded nanosystems capable of specifically

activating the innate immune system through the mul-

tivalent presentation of the carbohydrate antigen [310].

Although not tested in vivo, these NP-based systems

are promising, as the Tn antigen mimetic already

showed immunogenicity in mice [278].

Final remarks and future perspectives

When designing TACA-based anticancer vaccines, one

must consider that cancer cells exploit the immune

modulatory ability of mucins to evade immune surveil-

lance. Mucin-associated (sialyl-)Tn antigens bind to

various receptors present on the DCs, macrophages,

and natural killer (NK) cells, resulting in overall

immunosuppression either by receptor masking or by

inhibition of cytolytic activity [311–313]. The Tn anti-

gen is famous in this respect through its specific bind-

ing to the CLR MGL (macrophage galactose-type

lectin). Upon binding of the Tn antigen by the MGL

receptor, which is abundantly expressed on tolerogenic

DCs and macrophages [314], the DC secretes large

amounts of the anti-inflammatory cytokine IL-10 [315]

and is also able to instruct the differentiation of regu-

latory Tr1 cells [316]. A recent report even indicates

that binding of tumor-associated glycans to MGL

leads to metabolically quiescent DCs [317], which

could strongly hamper vaccine efficacy when combined

with IL-10 secretion and Tr1 induction. Therefore,

caution is needed when using tumor-associated glycans

in vaccine preparations, and also the potential

immunosuppressive properties of the vaccine should be

carefully addressed.

Spike protein glycosylation of SARS-
CoV-2 and glycan-mediated
interactions

Betacoronaviruses, and among them SARS-CoV-2,

express on their surface glycosylated spike proteins

[318]. To date, there is no evidence available, support-

ing the possibility to exploit the spike protein glycan for

the development of glycoconjugate vaccines (where the

antigen is a pathogen-associated glycans),toward SARS-

CoV-2. Nevertheless, some recent papers have described

that the degree of glycosylation on the spike protein

plays a crucial role in the molecular recognition pro-

cesses by lectins expressed on immune cells and there-

fore in the mechanisms of the SARS-CoV-2 uptake and

infection. In particular, the spike protein from SARS-

CoV-2 participates in different carbohydrate-mediated

interactions at the host-pathogen interface. The SARS-

CoV-2 spike glycoprotein expressed in human embry-

onic kidney 293 cells (HEK293) displays different glyco-

sylation sites decorated with a combination of high

mannoses and complex-type oligosaccharides, including

highly processed sialylated complex-type and fucosy-

lated N-glycans [319,320]. In addition to the mentioned

N-glycan profile, O-linked residues have been also

described [320]. 3D structures of the spike glycoprotein

from SARS-CoV-2 have been recently reported based

on reported 3D structures and glycomics data for the

protein produced in HEK293 cells (Fig. 15) [321]. These

3D structures revealed that, similarly to the HIV gp120,

the glycans on the spike protein of SARS-CoV-2 shield

approximately 40% of the protein surface, with the

notable exception of the ACE-2 binding site [321].

The glycan shield on the SARS-CoV-2 spike protein

could have several immunologic implications important

to control and understand the COVID-19 pandemic

[322]. In this context, the SARS-CoV-2 spike protein

showed binding to different human lectins in solid-

phase immunoassays (i.e., SPR and STD-NMR experi-

ment) [323,324]. The C-type lectins DC-specific intercel-

lular adhesion molecule-3-grabbing nonintegrin and

MGL, as well as sialic acid-binding immunoglobulin-

type lectin 9 and 10, recognized the SARS-CoV-2 spike

protein in most of these assays. Functional in vitro

experiments also proved and confirmed the roles of
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different human lectins in “supporting” the viral infec-

tion [323]. Conversely, the spike protein can recognize

structures and glycans from the host, especially during

the first infection steps. The SARS-CoV-2 primarily

binds to angiotensin-converting enzyme 2 (ACE2), but

different glycosylated host-structures can be accommo-

dated as other viral attachment points. Heparan sulfates

have been reported to bind SARS-CoV-2 [325,326] as

well as heparin [327]. Interestingly, the SARS-CoV-2

spike protein could also be involved in different

carbohydrate-mediated interactions with the host lung

microbiota glycoconjugates. As recently described with

solid-phase immunoassays, the spike protein was able

to specifically bind to some CPS of S. pneumoniae as

well as to the LPS from P. aeruginosa [324].

Interestingly, the SARS-CoV-2 glycosylation sites are

highly stable and do not differ between 7813 isolates

tested [328], suggesting that the glycosylation of SARS-

CoV-2 might be crucial for innate immune evasion.

Understanding and interfering with these immune inter-

actions could help in designing novel therapies and sup-

porting from a different angle the complex clinical

aspects of the COVID-19 pandemic. In addition, taken

together these preliminary data suggest the importance

of carbohydrate-mediated interactions during the

SARS-CoV-2 infection [321]. This could help in design-

ing glycan-based therapies or to have better clinical per-

spectives for patients’ diagnosis and prognosis.

Final considerations and future
perspective

Since the early days of Edward Jenner, vaccine develop-

ment has experienced a tremendous evolution, leading

to the successful eradication of smallpox and the near

control of other infectious diseases, such as polio or

mumps. However, effective vaccines for rapidly evolving

pathogens, such as the HIV, have not yet been estab-

lished. Moreover, the recent COVID-19 pandemic has

emphasized that novel viruses could manifest at any

time and that vaccine development will be a continuous

process to contain these emerging novel pathogens.

The use of carbohydrates in vaccine design has not

reached its full potential, considering that the unique

glycan coats, covering both pathogens and tumor cells,

provide attractive, novel vaccine candidates. Through

the coupling to immunogenic carriers, such as

immunogenic proteins, lipids, nuclei acids, or incorpo-

ration into NPs of liposomes, humoral responses can

be induced to bacterial polysaccharides, viral spike

proteins, or tumor-associated glycan antigens.

Nevertheless, several challenges in carbohydrate vac-

cine development lie ahead. So far, many efforts have

focussed on identifying appropriate carriers and adju-

vants in order to elicit the appropriate immune reac-

tions. Although many small advances have been made,

the treatment of cancer and HIV through vaccination

still requires breakthrough innovations. In parallel to

continued attempts to identify the most optimal carrier

and adjuvant pairs, one may utilize, as vaccines, glyco-

variant cell lines that are known to induce specific

anticarbohydrate IgG antibodies. As crucial differences

exist between the human and murine glycosylation pat-

terns as well as in their respective immune systems,

observations made in mouse experiments may not be

directly translated into humans. Phase I, II, and II

clinical trials may take a long time, and most vaccine

candidates identified in mice may thus fail.

One additional challenge might be the resistance

developed by pathogens and cancer cells due to the

Fig. 15. 3D models of the glycosylated S

(spike) protein of SARS-CoV-2. High-

mannose structures Man9 are depicted in

green and Man5 in dark yellow. Hybrid N-

glycans are shown in orange and complex

N-glycans in pink. Figure reproduced from

Ref. [321].
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suppression of carbohydrate antigen expression. This

acquisition of resistance could easily nullify the effects

of vaccination. Unfortunately, this could be easily

achieved by shutting down the expression of certain

glycosyltransferase gene(s) by DNA methylation and/

or histone modification, and/or by expressing certain

glycosyltransferase gene(s) followed by the modifica-

tion into another structure, and/or by expression of

certain glycosidases.

Moreover, the expression of many glycans, though

cell type dependent, may be shared among different

cells. Therefore, there is always a possibility of causing

unfavorable side effects, including autoimmunity,

through the use of carbohydrate-based vaccines. Due

to molecular mimicry between bacterial, tumor and

human peptides and oligosaccharides, auto-antibodies

may be generated, which are responsible for inflamma-

tory reactions resulting in development or progression

of autoimmune diseases. In this regard, we should not

forget about the human microbiome present in intes-

tine, skin, and urinary tract, where it contributes to

health as well as disease development. Thus, potential

vaccines need to consider bacterial cell glycan surface

based molecular mimicry.

We envision that a continuous crosstalk between

chemists and immunologists will substantially pro-

gress the field. This review could provide a road-

map and starting point to initiate novel

collaborative efforts to advance our knowledge on

antiglycan immune response and the development

of the next generation of carbohydrate-based vacci-

nes.

Box 1. Bringing vaccines from the lab onto the market

Most of the contemporary vaccines in the final drug product formulation contain either single or multiple sets of

antigens and adjuvant(s). According to the definition accepted by regulatory agencies worldwide, the drug product is

a finished dosage form (e.g., tablet, capsule, or solution) that contains one or more drug substances (i.e. antigens,

pure materials, which exert a pharmacological action), in combination with excipients and adjuvants meant for use

by humans.

Vaccine antigens and vaccine product presentations vary in complexity, from single or multivalent antigens (recombi-

nant protein, live attenuated, bioconjugates, etc.) to encapsulated nucleic acids encoding the antigen of interest. These

antigens are intended to elicit the appropriate immune response and ultimately protection in vaccinated individuals.

To assure vaccine safety and efficacy, each of the components has to be stable during manufacturing, storage, and

administration. As such, it is important to understand molecular properties and degradation pathways of the antigen

or various antigens that will make up an intended vaccine product.

The stabilization of the multicomponent vaccine encompasses challenges of characterization and stabilization of each

antigen in the mixture. In addition, interactions of the antigen with adjuvant and the stability of the adjuvant (e.g.,

the instability of aluminum adjuvants during freezing, often resulting in irreversible aggregation/agglomeration that

can lead to low reproducibility of otherwise efficacious vaccine) have to be evaluated.

Preformulation development is focused on probing these molecular susceptibilities and understanding potential degra-

dation pathways through stress testing of the antigens and proper analytical characterization. Preformulation will aid

in indicating the likely path for formulation development, either liquid formulation or solid-state formulation

(lyophilization). During formulation development, excipients (buffer, sugars, surfactants, antioxidants, etc.) and con-

centrations of excipients are selected based on ability to infer stability on the antigen(s) and based upon function for

intended dosage form.

All characteristics of formulation will also impact processability and must be carefully selected to ensure a manufac-

turable product with adequate shelf-life. During the development life cycle for drug products from early clinical entry

to late-stage activities, adjuvant considerations, interactions, and impact on final administration must also be consid-

ered in formulation design.

Once a preclinical proof of concept has been established for a new vaccine formulation candidate, the clinical devel-

opment is typically carried out in well-defined stages (i.e., Phases I, II, and III; Fig. 16 (Box 1)), with increasing num-

bers of study participants at each stage, to minimize potential adverse impacts of the vaccine candidate on study

subjects, as well as to determine whether clinical effects warrant proceeding to more comprehensive efficacy studies,

involving much larger numbers of study subjects. The use of materials that are comparable to those that first

achieved the proof of concept for the vaccine candidate is a fundamental requirement starting from the toxicology
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