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Quantum networks: topology and spectral characterization
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Abstract. To utilize a scalable quantum network and perform a quantum state
transfer within distant arbitrary nodes, coherence and control of the dynamics
of couplings between the information units must be achieved as a prerequisite
ingredient for quantum information processing within a hierarchical structure.
Graph theoretic approach provides a powerful tool for the characterization of
quantum networks with non-trivial clustering properties. By encoding the topo-
logical features of the underlying quantum graphs, relations between the quan-
tum complexity measures are presented revealing the intricate links between a
quantum and a classical networks dynamics.

1 Introduction

The need of complex networks quantum representation developed rapidly proceeding an in-
tensive research field of quantum computing two decades ago [1]. Ranging from first concepts
of an intersection between complex network systems and quantum dynamics [2], number of
studies introduced the notions of ‘quantum neural network’ [3,4] and spin networks [5-7]. As
the prime motive in latter complex architectures, utilization of linear, unitary dynamics of
quantum computing [1] into highly nonlinear and complex framework of network systems
dynamics, capturing at the same time the interrelations between the individual elements of
systems and complete databases, proved to be a highly demanding task. Presented graph
theoretical approach relies on a master equation intersecting between quantum coherent dy-
namics and the classical diffusion, where linearized dynamical process on a complex network
system is encoded into the simplicial set matrix of the underlying network and related to its
topological properties. Spin networks [5-10] are purely combinatorial structures, represented
by simplicial complexes with edges labeled by numbers j = 0, 1/2, 1, 3/2, etc. These num-
bers stand for total angular momentum or "spin". The imposed condition for spin network
architecture is that three edges meet at each vertex, with the corresponding spins: ji, jo, js,
adding up to an even integer and satisfying the triangle inequality. These rules are motivated
by the quantum properties of angular momentum: if we combine a component with spin j;
and a component with spin jo, the spin jz of the unit system satisfies exactly latter constraint.
In such setting, given that F is a general field, a spin network represents quantum states of
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defined by tensor product states: F-geometry on d = 3 + 1 dimensional space

4
Hjy jojsja = igl Hji, Hy = {EJ?} H?J}’ (1)

where {J} runs over the set of ordered 4-tuples of integers or half-integers such that H{OJ}

is the nonempty complex obtained from the n-skeleton H", constructed from H"' by
attaching n-simplexes (adjoined to a simplicial complex K) via maps ¢ : K»~! — H"~!. In
the PR model [5] a partition function is defined for a given 3-dimensional simplicial complex
(by deforming SU(2) to a quantum group [8], where the partition function depends only on
the topology of the manifold which is triangulated by the simplicial complex) by means of
the following: to each edge of the complex is associated a spin (i.e., an irreducible unitary
SU(2) representation, determined only by its dimension d = 2j + 1).

In particular case, we are interested in the homomorphisms of the simplicial ¢-th homology
group which represents the free abelian group generated by the g-cycles, and their induced
mapping on the stabilizer group (S¢) basis. Assuming that I" and S¢ are free abelian groups
with bases ¢1,...,9, and gi,...,9g.,, respectively, if f : ' — Sg is a homomorphism, then
f(g5) = >, (=1)'\;;¢; for unique integers \;;, where the parity of any transposition is
—1. More general, giving that K is an oriented simplicial complex, and S¢ is an abelian
group, then for non-negative integer ¢, to each (¢ + 1)-tuple (zo,x1,...,24) of vertices
spanning a simplex o,(K), there corresponds an element «(zg,21,...,x4) of Sg defining a
homomorphism « : C,(K) — Sg, where Cy(K) denotes the corresponding chain group, i.e.,
finitely generated abelian group on the oriented simplices.

2 Results and Discussion

Let V be the vertex set and ey, eq, ..., e, be the sequence of edges on V' x V', connected along
a path from a point a to a point b on the surface S, given by: e¢; = P;P;41, PL =a, P11 = b,
where distinct edges possess orientation which coincides with the path direction. Then the
path can be associated to the 1-chain: e; +e1---+e,. A linear transformation of the 1-chain
module is associated by each group element action g € I' which permutes the edges in either
the successive mirror or the dual tiling, defining: aje; + ases + - - - ane, — ayge; + asges +
-+ +Qapgey,. In general, the -action commutes with the boundary operator, i.e., dgn = gon
for every chain, where:

97, (S;R) = Z,, (S;R) = kerd,, : Cp, (S;R) = Cp_1 (S;R),

9B, (S;R) = By, (S;R) =imd, : Cry1 (S;R) — C), (S;R),

showing that distinct elements of I' map homology classes to homology classes, yielding a

linear action of I' on H, (S;R) = ?ngﬁ;. Then, a corresponding vertex set V' represents

a submodule for V' C H,, (S;R) which is I'-invariant or a I'-submodule if gV =V, Vg € T.
Such action of group I' on the homology group of a chain complex is known as the homology
representation.

Let I be a group, where S C I' is a generator subset. Let S be a set of inverses of S with
A = SUS. Then, an underlying graph [16,17] of spin network G = G(I', S) is established
by connecting vertices g, h € Vg, where the set Vg C I', by establishing edge in A under
condition:

1, ifgltheA

(9:h € V) = { 0, otherwise. (2)
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That is, for distinct g € I' and a € A there is an edge relating g to ga. In particular, the
directed edge from g to ga is defined as the element a.

Figure 1. Construction of a spin network by the union of the set of flat connections which can be
defined over the multiply connected manifolds [18], given by unit intervals of a finite set of curves
crosshatching only at their endpoints of the metric space [19].

Given any g,h C T, let a C Viz be a geodesic connecting ga to a point hb, by selecting a
sequence of points, ga = g, 21, ..., T, = hb, see figure 1, along «, such that d (z;,2;11) < 1, Vi.
For each i, g; € Vi are selected so that « : [a,b] — [0,1]. Given a metric space (M,d), let
I C R be an interval. A path which denotes unit interval (geodesic) is
vyiI = {M|d(y(),v(r))=t—7|,Y(t,7) € I}. Assuming v : [a,b] — M is an arbitrary
path, its length is represented as:

sup{ £ (r(t-0) 2 )= t0 <11 <o <1, =0} )

Let X, and X, be subspaces of X such that the covering dimension of simplexes o, 0’ is
maximal covering of X. Let v; : X506 — X, and 7, : X, = X be the inclusions, resulting
that h, : II(X,) — A are functors into a groupoid defining the commutativity relation
he' Il (ig/) = hell (is), i.e., a different path « gives the same result, where a unique functor
A:II(X) — A is defined such that h, = AL (j,7), he = AL (j,) as:

11(is)

is a pushout in groupoid of the inclusions X, D Xy, C X,.

In particular, a path 7 : [a,b] — X represents a morphism [v] in II (X)) from v (a) to 7 (b)
if we arrange it with an increasing homeomorphism « : [a,b] — [0,1]. fa =t <t; < -+ <
t, = b then ~ establishes the composition of the morphisms [vy|[t;, ¢;+1]]- Let v: I — X be a
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path and let o :{0,...,n} — {0,1}|v ([ti; ti+1]) € X (o), then there exists a decomposition
in affine space: 0 =tg < t; < -+ < tp41 = 1 such that: [y|[t;,tiy1]] C X(03), i =0,...,n.
The construction [7 [[t;, t;41]] as path ; in X,,, produces composition

=1 (U'y(n)) [yn]o---oll (07(0)) [v0] - (5)

If subdivision A exists, then A[y] = hy(,) [¥n] © - -+ © hy(0) [70] is inclined by the homotopy
composition of the path.

Let h : (K — X be a homotopy of paths from a to b. We consider edge-paths in the subsets of
3-simplex (K3) which path-connect coordinates a = (000) and b = (111), see figure 2. These
paths differ from h. ) and h,) by composition with a constant interval. h generates two
paths in IC, which give the same result since they differ by a homotopy on subinterval which

belongs to the subsets 0; € K3, i =1, ...,4.

(111) 5,

Figure 2. Two different paths (marked by thin and thick black lines) induce the following stabilizer
generator sets on a base (a face) which belongs to incident simplexes (see theorem 2 and section 3):
o1 Noz = {{a,b}} — {]000),]001),|110) — |111)},

osNoy = {{c,a}} — {]|000),|101),|010) — |111)},

osNos = {{a,b'}} — {|000),]110),|001) — [111)},

o2 Nos = {{c,a}} — {|000),[010),|101) — [111)}.

Given a topological space X representing the union of subsets X, X/, general properties
of X encompassed from those of X, X,/, and X,,» = X, N X,/ can be inferred from the
theorem 2.

([15,16]) Let Ky and K; be subspaces of simplicial complex K such that the covering
dimension of simplexes o9 € Ky, o1 € Ki, is maximal covering of X. Considering
v : Kot = KoNK; — K, and v; : K, — X as inclusions, in particular, let Ko, K1, Ko be
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path connected with base x € Ky;. Then

Tl'(il*)

m1 (Ko, *) 7 (K1, %)

1 (o) l l 71 (J1x) (6)

71 (Ko, *) M m (X, *)

is a pushout in topological space of the inclusions Ky D Ky; C K, representing a fundamental
group. Assuming that simplicial complex I is path connected and z € K, where z = x,
then 7 : II (K) — m (K, z) induces morphism compositions over the full subset z. For each
z € K exists a morphism such that u, = id, uyau,* where a: x — y, represented by:

H(Ko) (—H(KOl) — H(Kl)

lrl lrm lro (7)

w1 (Ko, %) < m (Ko1,%) = 71 (K1, %).

Precisely, restriction of K to subcomplexes: Kyi, Ko, K1 and X with a base point z = x,
yields a commutative relation where morphisms in IT (X) are respectively assigned by the
composition of morphisms in II (Kj) and II (K7), likewise, the group 7 (X, ) is formed by
the images of jox and j;*.

3 Quantum network underlying architecture

Graph state is represented in scope of the stabilizer formalism [21,22] via tensor products of
Pauli operators ox and oz, whose composition and structure are based on the complexity of
the underlying graph which can be seen as 1-dimensional simplicial complex. The stabilizers
establish a group (Sg) under multiplication, formed from n generators g;, associated to a
number of vertices x; of the graph [23]. In particular, stabilizer generators are induced on
the vertex set Vi of a graph G by the bijective mapping (I' (Vi) , A) — (S¢, -), see section 3,
Eq. (3). Graph state is obtained by relating each vertex x; € Vi with a stabilizer generator
gi = o0, where g; |G) =|G), Vi =1,...,n. The stabilizer generators [24-27] g; for n graph
state generate the complete Abelian stabilizer group Sg of |G) with multiplication. The group
S consists of 2" elements which uniquely represent a graph state

on
1G) = {Z:la ) = 3 i S |xi),Z|ai|2:1}. (8)
1= K3 K3

The stabilizer group S¢ is formed from a set of n — k generators g1, ..., gn_x, which: (a)
commute; (b) are unitary and Hermitian; and (c) g7 = I. Each element of the stabilizer
group Sg can be expressed as a product of the generators as Sy = g7 ---gsfjﬁ’“, Sk €
Sa, a; €{0,1},i=1,...,n—k, where S C G,, with G,, denoting a corresponding Pauli group
for n qubit state.

Stabilizer code of length n is represented by the fixed point set [27] S, = {I,X,Y, Z} of
Pauli operators:
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01 (01 (0 - _ (10
z:(lo>,X:JX_(1O),y:oy_<iO)z_az_<0_1),

k = 1,..,n such that S;,S,...,S, are acting over n qubits (i.e., over ((C2)®n). When
stabilizers S are composed of elements {o;},_ y. , of {I, X}®" and {oitiex vz of {1, zyer,
it can be seen that [0;0;] = 2ig;j,01 and {o;0;} = 2§;;. Precisely, I represents the identity
matrix of size 2, X denotes the Pauli matrix encoding the bit flip error and Z denotes the Pauli
matrix describing the phase error. The isomorphisms between {I, X}, {I, Z} and the vector
space [Fo makes possible establishing a connection between classical and quantum codes. On
the basis of these isomorphisms, the stabilizers relate to binary vectors and the commutation
relation corresponds to the orthogonality relation in F3.

oc

0
o

c
a‘Ab
c
:/L.b
oc ¢
a b
c
Ab
Figure 3. Stabilizer generators of three-partite graph states representing elementary segment of

spin network, see Eqgs. (9,10)

In particular, stabilizers of graph state, given in figure 3 under (7), are represented by the
each row of binary matrix [28,29]:

—_ O =M= O OO
—_—_0 = Ok OO
_ == O RO OO
e i e i i e B e B an
R R, O, OOO
O R = OO FO

~~

Ne)

A

where nodes of each specified element of the spin network {a,b,c}, where: a +b > ¢ =
2k, a+c > b =2k, b+ c¢ > a = 2k are encoded in the graph state (n = 3) establishing
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incidence relations via following generators:

(1) {{a}, {0}, {c}} — {]000)},

(2) {{a}} — {]000) ,001),010) , — [O11)},

(3) {{c}} — {]000) , |100),]001) , — [101)},

(4) {{b}} — {[000), |010), [100) , — |110)}, (10)
(5) {{a,c}} — {]000), (010}, [101), [111)},

(6) {{b, c}} — {|000),[100),011) , [111)},

(7) {{a,b}} — {|000) , |001),|110),|111)},

(8) {{a,b,¢}} — {[100),1010),]001), — [111)},

where (5-7) represent standard 3-qubit flip code on the code subspace: Vg = {|000),|111)}
for stabilizer set S = {I, Z) 2y, ZyZs, Z1 25} , 1 = (Z1 Z5)*.

4 Conclusion

We have analyzed implementation of graph states in composing the spin networks archi-
tectures. The characterization of graph states is utilized via underlying graph construction
defined in terms of affine simplexes with respect to path-connection induced homeomorphisms
and polytope construction herein. Future outlook is implementation of higher dimensional
homologies in order to establish a self-correcting memory which allows secure data processing
[29] without continual active error correction via stabilizer measurement.
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