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Abstract

Cholecalciferol, vitamin D3, plays an important role in bone metabolism by regulating 

extracellular levels of calcium. Presented here is a study on the effects of the local delivery of 

cholecalciferol (D3) using nanoparticulate carriers composed of hydroxyapatite (HAp) and 

poly(D,L-lactide-co-glycolide) (PLGA). Multifunctional nanoparticulate HAp-based powders 

were prepared for the purpose of: (a) either fast or sustained, local delivery of cholecalciferol, and 

(b) the secondary, osteoconductive and defect-filling effect of the carrier itself. Two types of HAp-

based powders with particles of narrowly dispersed sizes in the nano range were prepared and 

tested in this study: HAp nanoparticles as direct cholecalciferol delivery agents and HAp 

nanoparticles coated with cholecalciferol-loaded poly(D,L)-lactide-co-glycolide (HAp/D3/PLGA).

Satisfying biocompatibility of particulate systems, when incubated in contact with MC3T3-E1 

osteoblastic cells in vitro, was observed for HAp/D3/PLGA and pure HAp. In contrast, an 

extensively fast release of cholecalciferol from the system comprising HAp nanoparticles coated 

with cholecalciferol (HAp/D3) triggered necrosis of the osteoblastic cells in vitro. Artificial 

defects induced in the osteoporotic bone of the rat mandible were successfully reconstructed 

following implantation of cholecalciferol-coated HAp nanoparticles as well as those comprising 

HAp nanoparticles coated with cholecalciferol-loaded PLGA (HAp/D3/PLGA). The greatest 

levels of enhanced angiogenesis, vascularization, osteogenesis and bone structure differentiation 

were achieved upon the implementation of HAp/D3/PLGA systems.
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1. Introduction

Synthetic calcium phosphates, particularly calcium hydroxyapatite (HAp), are suitable 

candidates for a broad range of applications in biomedicine, from bone reconstruction to 

cancer therapies [1,2]. Bioresorbable polymers with comparatively slow degradation times 

in physiological conditions are, on the other hand, viable carriers of hydrophobic drugs, 

difficult to deliver by oral means, and are therefore the focus of study of numerous research 

groups in the drug delivery field [3,4].

The design of particulate platforms for controlled drug delivery is of particular interest for 

the biomedical community [5]. The current attempts to engineer efficient local and targeted 

drug release agents are mainly focused on nanoparticulate systems [6,7]. An interest in the 

applications of nanoparticles of calcium phosphates as carriers in targeted and controlled 

drug delivery and tissue engineering is rapidly growing [8]. HAp nanoparticles have so far 

been used as carriers for different pharmaceutically active components in controlled drug 

and gene delivery [9,10]. At the same time, a significant improvement of the processes of 

bone defect reconstruction has been achieved owing to the use of nanoparticulate systems 

based on HAp [9].

Multifunctional nanoparticulate systems based on HAp coated with drug-loaded 

bioresorbable polymers make up a separate group of controlled drug delivery systems in 

bone tissue engineering. While comparatively slow bioresorption of the polymer enables 

sustained drug release, HAp particles may act as active fillers of the bony defect. One such 

concept has been applied in the design of HAp nanoparticles for the local delivery of 

tigecycline in the treatment of osteomyelitis [10]. Sonochemical homogenous precipitation 

has been used for the controlled synthesis of multifunctional core-shell nanospheres 

composed of a bioresorbable polymer and HAp for the controlled delivery of clindamycin 

[11].

New strategies in the synthesis of multifunctional nanoparticles may lead to creation of 

orally deliverable, injectable or surgically implantable platforms as carriers of both 

diagnostic and therapeutic agents [12]. Precipitation techniques and membrane dialysis have 

helped create nanoparticulate systems for combined targeted and controlled drug delivery, 

allowing for their simultaneous diagnostic and therapeutic efficacy [13,14]. In this study, we 

have used precipitation chemistry to prepare multifunctional nanoparticulate systems for: (a) 

both rapid and sustained local delivery of cholecalciferol; and (b) the secondary 

osteoconductive effect of the defect-filling HAp carrier itself.

Cholecalciferol, an important regulator of concentrations of calcium and phosphate ions in 

blood serum, plays a critical role in skeletal homeostasis by controlling bone metabolism 

and regulating osteoblast differentiation, proliferation, apoptosis and expression of specific 

bone proteins and growth factors in the newly forming bone tissue [15,16]. Two types of 

nanoparticulate powders with controlled particle shapes, sizes and properties were prepared 

in this study: HAp particles as nanocarriers of cholecalciferol (HAp/D3), and HAp 

nanoparticles coated with cholecalciferol-loaded poly(D,L)-lactide-co-glycolide (HAp/D3/

PLGA). Their synthesis was complemented with physicochemical characterization of 
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structure and properties as well as the evaluation of their effect on osteoblastic cells and the 

regeneration of artificially made bone defects in vivo.

2. Experimental

2.1. Synthesis of materials

Aqueous calcium nitrate (Ca(NO3)2) solution (150 ml; 26.6 wt. %) was added to the solution 

of ammonium phosphate ((NH4)3PO4) (7 ml H3PO4 +165 ml NH4OH+228 ml H2O) at 50 

°C over the period of 60 minutes, while stirring at the rate of 100 rpm. The solution was then 

subjected to heat treatment for 60 minutes at 100 °C [9,17]. The resulting gel was dried at 

room temperature in a vacuum drier for 72 h, after which the final product – HAp powder – 

was obtained.

Cholecalciferol (crystalline 99+%, Acros Organics) dissolved in acetone (0.4 wt.%) was 

mixed with the HAp gel in the 2:8 mass ratio while stirring with a magnetic stirrer at 700 

rpm. Distilled water was added drop-wise to the mixture of cholecalciferol and HAp, while 

stirring at 21,000 rpm (Ultra-Turrax T25, IKA, Germany). The resulting mixture was then 

centrifuged at 5000 rpm and 5 °C for 1 h (Hettich Universal 320R). The obtained powder 

was subjected to frozen vacuum drying at −10 to −60 °C, under pressures between 0.37 and 

0.1 mbar over the periods between 1 and 8 h (Christ Alpha 1–2/LD Plus). The obtained 

product was the powder composed of cholecalciferol-coated HAp nanoparticles (HAp/D3). 

PLGA (50:50, Sigma, USA) and cholecalciferol dissolved in acetone were mixed with the 

HAp gel in the mass ratio of 3:2:8, respectively. The obtained mixture of cholecalciferol, 

PLGA and the HAp gel was slowly poured into 0.1 vol% water solution of poloxamer 188 

(polyethylene-polypropylene glycol) at the speed of 21,000 rpm for one hour. The obtained 

mixture was then centrifuged at 500 rpm and 5 °C for 1 h, and the obtained powder was 

subjected to frozen vacuum drying at −10 to −60 °C, and pressures from 0.37 mbar to 0.1 

mbar for 1 to 8 h. The obtained product was the powder composed of HAp nanoparticles 

coated with cholecalciferol-loaded poly(D,L)-lactide-co-glycolide (HAp/D3/PLGA).

2.2. Characterization of the products

Roentgen structural analysis (XRD) was performed on a Philips PW-1050 diffractometer 

with Ni-filtered CuKα radiation. The scanning step was 0.02°. Infrared spectroscopy (FTIR) 

was done on a Bomem MB 100 (Hartmann & Braun) spectrometer using the KBr technique 

in the spectral range from 400 to 4000 cm−1. The spectral resolution was 4 cm−1. The field-

emission scanning electron microscopy (FE-SEM) measurements were performed on a 

SUPRA 35 VP Carl Zeiss microscope. Electrokinetic parameters of the suspensions of 

synthesized particles were analyzed using a Zeta-Sizer Nano (Malvern Instruments Ltd.) in 

distilled water and pH 6.5. The particle size distribution (PSD) was measured on 10 mg/ml 

of powders dispersed in water using a Mastersizer 2000 (Malvern Instruments Ltd.) and a 

HydroS dispersion unit for liquid dispersants.

2.3. Cell culture

Mouse calvarial preosteoblastic cell line, MC3T3-E1 subclone 4, was purchased from 

American Tissue Culture Collection (ATCC, Rockville, MD). MC3T3-E1 cells were 
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cultured in Alpha Minimum Essential Medium (α-MEM; Gibco) supplemented with 10% 

fetal bovine serum (FBS, Invitrogen) and no ascorbic acid (AA). The medium was replaced 

every 48 h, and the cultures were incubated at 37 °C in a humidified atmosphere containing 

5% CO2. Every 7 days, the cells were detached from the surface of the 75 cm2 cell culture 

flask (Greiner Bio-One) using 0.25 wt.% trypsin, washed, centrifuged (1000 rpm×3 min), 

resuspended in 10 ml of the cell culture medium and subcultured in 1:7 volume ratio. Cell 

passages 6–12 were used for the experiments reported hereby. The cultures were regularly 

examined under an optical microscope to monitor growth and possible contamination.

MC3T3-E1 cells were seeded on glass cover slips placed in 24 well plates and 500 μl of α-

MEM supplemented with 10% fetal bovine serum (FBS, Invitrogen) and no AA at the 

density of 6×104 cells per well. After 5 days of incubation, nearly confluent cells were 

treated with α-MEM containing 50 μg/ml AA as the mineralization inductor. At the same 

time, 2 mg/cm2 of HAp, HAp/D3 and HAp/D3/PLGA were added to the cells, separately. 

The subsequent incubation lasted for 7 days, during which α-MEM supplemented with 50 

μg/ml AA was replenished every 48 h. After the given period, one portion of cells was fixed 

for 15 min in 3.7 wt.% paraformaldehyde at room temperature and then stained for f-actin 

and nucleus using phalloidin-tetramethylrhodamine (AlexaFluor 555, Invitrogen) and 4′,6-

diamidino-2-phenylindole dihydrochloride nuclear counterstain (DAPI, Invitrogen), 

following a previously described protocol [18].

The cover slips containing the fixed and stained cells were mounted onto glass slides using 

hard set vectashield and nail hardener and were subsequently imaged under a confocal laser 

scanning microscope –C1si (UCSF Nikon Imaging Center) at 100× magnification in oil.

2.4. In vivo tests

Bone regeneration tests were conducted on 36 rats, Wister species. The animals were 

introduced to the experiment when they reached the age of six to eight weeks. They were 

divided into two groups: one group (9 animals) was the control group and the other one was 

the experimental group (27 animals). The experimental group was treated with 

glucocorticoids in order to induce osteoporosis. The animals were given glucocorticoids–

metilprednisolone Na-succinate (Lemod-Solu, Hemofarm, Vršac, Srbija) dosed 2 mg per kg 

of body mass and dexamethasone-Na-phosphate (Dexason, ICN Galenika, Belgrade, Serbia) 

dosed 0.2 mg per kg of body mass. These substances were applied intramuscularly and 

alternately in the course of 12 weeks, so that each substance was applied every other day. 

During those 12 weeks, the control group of animals received saline intramuscularly on a 

daily basis. After the 12 week period the animals in the control group did not exhibit any 

defects, whereas the animals from the experimental group had defects introduced on the left 

side of the mandible alveolar bone, in the region between the medial line and foramen 

mentale. The defect was created using a sterile steel borer, 1.6 mm in diameter and 1.8 mm 

in length. The animals had been prepared for this intervention by the application of 

diazepam (Bensendin, ICN Galenika, Belgrade, Serbia) and were subsequently anesthetized 

with ketamine hydrochloride USP (Ketalar, Rotexmedica Gmbh, Trittau, Germany). The 

experimental group was divided into three subgroups with nine animals each. Rats in the 

first group had HAp powder implanted into the defect; rats in the second group had HAp/D3 
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powder implanted into the defect; rats in the third group had HAp/D3/PLGA powder 

implanted into the defect. The powders delivered to of all three experimental subgroups had 

previously been mixed with saline (0.9% NaCl solution) in the 2:1 ratio. The animals were 

sacrificed 6 and 24 weeks after the intervention because previous studies have shown that 

the best results can be expected in this period [9]. After the mentioned time interval, 

decalcified samples of the alveolar bone were taken, and after dehydration in a series of 

alcohol, paraffin blocks were made, out of which we took fragments with 10 μm in width, 

coloured according to H&E method for pathohistological analysis [9]. The procedures 

involving experimental animals were done in accordance with the Guidelines for Work with 

Experimental Animals adopted by the Ethics Committee of the Faculty of Medicine, 

University of Niš, Serbia (No 01-890-3/2011).

3. Results and discussion

Fig. 1 shows the diffractograms of PLGA, HAp, cholecalciferol, HAp/D3 and HAp/D3/

PLGA. No diffraction peaks are visible on the diffractogram of PLGA, as expected due to 

the amorphous nature of this polymer. The most intensive peaks of HAp (International 

Center for Diffraction Data, JCPDS file No. 09-432) are found at 31.8° (2 1 1), 32.2° (1 1 2), 

32.9° (3 0 0), 25.9° (0 0 2) and 49.5° (2 1 3). It is likely that the given phase is calcium-

deficient HAp, as in accordance with the previously published results [17,19]. The mean 

crystallite size (D) of the powders calculated from the half-width (β1/2) of the XRD 

reflection of the (002) plane (2θ=25.9°) using the Scherrer equation was 12.5 nm. The 

degree of crystallinity of HAp could be facilely determined from its XRD pattern [20]. 

Similar in appearance to that obtained by different researchers [17,19,21], the diffractogram 

shown in Fig. 1 corresponds mainly to poorly crystalline HAp. This result was expected 

bearing in mind that the HAp gel was synthesized by precipitation at 100 °C and pH 12; 

HAp synthesis at this temperature leads to poorly crystalline HAp [21]. Hand-in-hand with 

poor crystallinity of HAp powders typically goes a reduction in stoichiometric Ca/P ratios 

towards values lower than 1.67, as observed by others [22]. Thus obtained poorly crystalline 

form of HAp bears resemblance to bone apatite and can be hypothesized to present a more 

osteogenic crystalline form compared to highly structured apatite obtainable by annealing at 

elevated temperatures. The high crystalline form of HAp, distinguished by narrow and sharp 

diffraction peaks, was obtained using a similar synthesis procedure, but involving also 

additional calcination at high temperatures [17,21,23].

The diffractogram of cholecalciferol with the most intensive peak at 18.2° suggests its 

existence in a crystalline form and is in agreement with the XRD research reported 

elsewhere [24]. The diffractogram of HAp/D3 powder exhibits the diffraction peaks typical 

for the two phases separately, confirming their mutual presence in it. Comparatively broader 

diffraction peaks discernable in the XRD pattern of HAp/D3/PLGA indicate that the 

structure of the organic component in the composite sample exhibits a lesser degree of 

ordering compared to its pure crystalline state.

The electrokinetic parameters of materials in aqueous suspension indicate their stability in 

suspended state and thus suggest the possibility for their therapeutic application by injection 

using water as the dispersion medium. Generally, zeta potential (ZP) values of 0 to ± 15 mV 
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indicate sols prone to flocculation and aggregation, whereas absolute ZP values higher than 

15 mV are characteristic for stable and aggregation-resistant particles [25,26]. Table 1 

shows the values of ZP, mobility and conductivity of particles in the aqueous medium. Fig. 

2 shows the distribution of the ZP values for the synthesized particles of HAp, HAp/D3 and 

HAp/D3/PLGA in distilled water at 25 °C and pH 6.5. ZP values are in the range of −7.5 

mV for HAp to −23.6 mV for HAp/D3 to −33.1 mV for HAp/D3/PLGA. Electrophoretic 

mobility and conductivity values also follow the decreasing trend in the sequence 

HAp>HAp/D3 >HAp/D3/PLGA and confirm the different electrodynamic nature of the 

particle surfaces. The process of coating of HAp nanoparticles as well as their subjugation to 

encapsulation of hydrophobic drugs can be confirmed by following the corresponding 

changes in electrokinetic parameters, particularly ZP [27]. The results shown in Table 1 

indicate a progressive increase in the absolute values of ZP as the core HAp particles are 

first coated with cholecalciferol and then with cholecalciferol-loaded poly(D,L)-lactide-co-

glycolide. Whereas ZP of HAp particles is comparatively low, in the order of 0 to −10 mV 

[28], both cholecalciferol and poly(D,L)-lactide-co-glycolide are typified by significantly 

more negative ZP values, approaching −40 mV at the physiological pH for the latter [29]. To 

further confirm this observation, FT-IR and FE-SEM examination were performed next.

FT-IR spectra of cholecalciferol, HAp, HAp/D3 and HAp/D3/PLGA, as well as the 

magnified spectrum in Region A are shown in Fig. 3. The FT-IR spectrum of HAp is 

defined by a doublet with maxima at 1035 and 1092 cm−1 and by a triplet with most 

pronounced maxima at 561 and 603 cm−1, all of which are due to vibrations of the 

phosphate group. The bands with maxima at 632 and 3567 cm−1 are caused by the vibrations 

of the hydroxyl group in the crystal lattice of HAp [30]. Cholecalciferol is typified by the 

CH3 asymmetric stretching mode and the CH2 symmetric stretching mode at 2943 and 2875 

cm−1, respectively [31,32], the two bands that are observable in our spectrum of the vitamin 

too. The spectrum of HAp/D3 exhibits the most intensive bands of both HAp and 

cholecalciferol, indicating that the synthesized material is composed of HAp and 

cholecalciferol, as in accordance with the XRD results. The appearance of new bands is also 

noticed, especially in the region marked by A. In comparison with the X-ray diffractograms 

of HAp/D3/PLGA, its FT-IR spectrum shows the specific bands of PLGA (the most 

significant one being the stretching C=O vibrations at around 1760 cm−1 [33]), as well as the 

presence of the bands of HAp and cholecalciferol.

Phosphate groups in calcium phosphates can form hydrogen bonds in contact with vitamins 

from the group D [32]. The appearance of new and weak bands in spectra of HAp/D3 and 

HAp/D3/PLGA, in the range of 3650–3690 cm−1, may indicate the formation of the surface 

P-O-H groups originating from the protonation of the surface  groups of HAp [34]. 

The surface groups from HAp are prone to forming hydrogen bonds in the close 

presence of hydroxyl groups [35], being the basic mechanism by which hydrogen bonds 

between HAp and cholecalciferol or PLGA form. Fig. 3b shows the magnified spectra of the 

materials in the region 3620–3750 cm−1 where the appearance of new bands reflecting the 

formation of hydrogen bonds between HAp and other constituents that make up the particles 

can be observed. The weak bands at 3689 cm−1, 3675 cm−1 and 3648 cm−1 are assigned to 

hydrogen bonding to the surface P-OH groups of HAp. The mechanism for the formation of 
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hydrogen bonds in HAp/D3/PLGA is more complex because the protonation of the surface 

groups of HAp most likely does not originate solely from cholecalciferol, but also from 

PLGA. The appearance of new and weak bands in HAp/polylactide nanocomposites in the 

range of 3650–3690 cm−1 has thus been explained by the formation of hydrogen bonds 

between the polymer and HAp [36]. The structure of cholecalciferol (9,10-

Secocholesta-5,7,10(19)-trien-3beta-ol) suggests the existence of spatially interconnected —

H and —OH groups, while the structure of PLGA has spatially connected O and —H groups 

in the polymer chain available to participate in the formation of hydrogen bonds with the 

surface groups of HAp.

FE-SEM images of HAp, HAp/D3 and HAp/D3/PLGA are shown in Fig. 4. The particles of 

HAp display a rod-like morphology (Fig. 4a). After the coating of HAp with cholecalciferol 

(Fig. 4b), more round particle shapes were obtained compared to pure HAp (Fig. 4a). 

HAp/D3/PLGA particles had spherical morphologies too (Fig. 4c). Additional processing in 

the centrifugal field of the suspension of nanoparticles of HAp coated with PLGA has 

previously led to the formation of spherical morphologies [37,38]; accordingly, since we 

used centrifugal processing too in the processing method reported herein, spherical 

morphologies were obtained as well.

Aqueous suspensions of the particles of HAp, HAp/D3 and HAp/D3/PLGA were analyzed 

with the aim of establishing their size distributions. Fig. 5 shows the size distributions for 

the suspended particles of HAp, HAp/D3 and HAp/D3/PLGA powders in distilled water. 

The particle sizes for all the analyzed powders range from 30 nm to 1 μm. HAp particles 

(Fig. 5a) have d10=35 nm; d50=65 nm and d90=124 nm. HAp/D3 system has a distribution 

with the parameters d10=36 nm, d50=68 nm and d90=143 nm, and HAp/D3/PLGA d10=37 

nm, d50=71 nm and d90=168 nm (Fig. 5b–c). A general trend towards increasing the 

average particle size (d50) with the addition of a new component can be noticed; hence, the 

sequence HAp>HAp/D3 >HAp/D3/PLGA with respect to d50, d10 and d90. The largest 

particles of 1.5 μm were detected in HAp/D3/PLGA and comprised 0.01% of the overall 

particle number. The smallest ones, measuring 22 nm in size, were detected in HAp (0.5% 

of the total particle count).

A consistent increase in the particle size (HAp>HAp/D3 >HAp/D3/PLGA) is expected as the 

result of the coating process. The coating of HAp particles with cholecalciferol thus leads to 

an increase in their size, while coating of HAp particles with a polymer in which the vitamin 

was immobilized leads to a further increase in size. The procedure for coating HAp particles 

with cholecalciferol (or cholecalciferol-loaded PLGA) takes place by adding a non-solvent 

to induce the precipitation of cholecalciferol (or cholecalciferol-loaded PLGA) with the 

existing HAp particles acting as sedimentation centres. In our earlier research, we examined 

the possibility of coating the microparticles of HAp with PLGA by the solvent/non-solvent 

method in which HAp particles were the sedimentation centres for PLGA [23]. For the 

abovementioned reasons, the size increase of particles after coating HAp with 

cholecalciferol or the polymer is expected. The thickness of the coated layer chiefly depends 

on the mass proportion of cholecalciferol and PLGA relative to the quantity of the initial 

HAp particles.
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Fig. 6 displays the confocal optical images of osteoblastic cells following incubation with 

the three types of particles prepared and analyzed in this study, fluorescently counterstained 

for nucleus (blue) and f-actin cytoskeletal microfilaments (red). It is apparent that while the 

viability of cells incubated in the presence of either pure HAp or HAp/D3/PLGA does not 

show any diminishment nor the healthy morphology of cells seems to be lost when 

compared to the control, cells incubated with HAp/D3 appear morphologically deformed, 

necrotic and exhibiting a significantly lower cell density in comparison with the control 

sample. An extensive amount of cholecalciferol released into the cell medium has thus been 

shown to have a drastic effect on reducing the cell viability. A possible explanation for this 

effect may relate to the already observed ability of calcitriol, the bioactive form of vitamin 

D3 derivative, to force the release of RANKL, a tumor necrosis factor cytokine, which stops 

the bone formation process and activates osteoclasts, the bone-resorbing cells [39].

Having a role in mitosis and differentiation of osteoblasts, it was natural to expect that 

cholecalciferol would have an effect on osteogenesis. So far, no results of in vivo analyses 

related to multifunctional nanoparticulate systems for local delivery of the vitamins from the 

D group could be found in literature. Figs. 7 and 8 show histopathological images of the 

mandible bone 6 and 24 weeks after the implantation of different materials has been carried 

out, respectively. Fig. 7a of the control group, in which no defect has been made, shows 

mature bone as well as blood vessels and Haversian canals. The new bone with remains of 

ossification centres can be seen in Fig. 7b. Fig. 7c shows numerous ossification centres with 

giant cells which are not distributed in a palisade, but scattered in a disordered manner. 

Specific forms of ossification distributed in islet-like formations, the creation of young bone, 

i.e., accelerated activity of osteogenesis cells, cement lines and mature bone can be seen in 

Fig. 7d.

Compared to the cortical bone of the control group 24 weeks after the implantation, healing 

in the presence of any of the materials synthesized within this study seems to be facilitated. 

After the defects have been filled with HAp, the resorption of the implanted material and its 

replacement by the newly formed bone are observed (Fig. 7b). After the implantation of the 

HAp/D3, patches of poorly mineralized new hard tissue become visible too (Fig. 7c).

Six weeks after the reconstruction of the defect with HAp/D3/PLGA (Fig. 8d), newly formed 

bone around the defect was visible as well as cement lines and the blood supply. In the 

centre of the defect, a piece of the implanted material with ray-like zones where the material 

was replaced with the newly formed, poorly mineralized bone tissue can be observed. 

Intensive angiogenesis is present, as well as vascularization and osteogenesis. 

Vascularization is essential for successful regeneration of bone, as confirmed in other 

studies [40].

Twenty-four weeks after the reconstruction of the bone defect, the formation of new bone 

tissue has additionally improved after the application of all types of materials. After the 

reconstruction with HAp/D3 (Fig. 8c), numerous ossification centres were visible, along 

with the giant cells. The transition of young bone tissue into mature tissue is observable in 

all the reconstructed defects. Following the period of intensive angiogenesis and 

vascularization (Fig. 7d), the most intensive differentiation and osteogenesis were seen when 
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HAp/D3/PLGA was used as the filler (Fig. 8d). In the central area of the image, a broad line 

of young bone tissue transforming into mature tissue is visible, interspersed with several 

islet-like ossification centres. Moving from right to left in Fig. 8d, represented is the 

transition from young bone to mature bone.

To become bioactive, cholecalciferol has to be hydroxylated twice: first in the liver and then 

by the convoluted tubule cells of the kidney. Its direct delivery to cells in its raw, naturally 

found form and in overly high fluxes apparently has a negative effect on osteoblastic cells 

which undergo necrosis under such conditions. The positive effects on the orthodontic 

stability of teeth in the treatment of parodontopathy has been noted previously upon the 

local delivery of calcitriol, that is, 1,25-dihydroxycholecalciferol, the bioactive form of 

cholecalciferol [41,42]. In those studies, the activation effect of vitamin D on monocytes 

was shown, as well as the stimulating effect on cell-mediated immunity with the suppression 

of lymphocytic proliferation [41]. The local use of calcitriol significantly increased the 

activity of osteoblasts, which resulted in an improved recovery of alveolar bone [42]. In the 

future studies, we will extend our investigation of the local delivery of vitamin D family of 

compounds to calcitriol.

4. Conclusion

Development of a multifunctional nanoparticulate material for simultaneous (a) acceleration 

of natural bone regeneration and (b) sustained drug release, composed of hydroxyapatite and 

poly-(DL-lactide-co-glycolide), presented the subject of this study. In this work, we 

prepared two different osteoconductive carriers for the local delivery of cholecalciferol: 

pulse (HAp/D3) and sustained (HAp/D3/PLGA). The fast delivery was achieved by 

desorption of the drug from the HAp particle surface, while the slow delivery was 

conditioned by the rather slow degradation of PLGA in physiological conditions. Although 

the former way of delivery had a highly negative effect on osteoblastic cells in vitro, it did 

not hinder the healing of osteoporotic bone in vivo. An important feature of these 

nanoparticulate carriers is their multifunctionality. Namely, after the drug has been 

delivered, HAp could take the role of the defect filler that is to be gradually substituted with 

the new bone.
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Fig. 1. 
XRD diagrams of HAp, HAp/D3 and HAp/D3/PLGA.
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Fig. 2. 
Zeta potential distribution for HAp, HAp/D3 and HAp/D3/PLGA particles.
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Fig. 3. 
FT-IR spectra of cholecalciferol, HAp, HAp/D3 and HAp/D3/PLGA (a), magnified spectra 

in Region A (b).
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Fig. 4. 
SEM micrographs of HAp (a), HAp/D3 (b), HAp/D3/PLGA (c).
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Fig. 5. 
Particle size distributions of HAp (a), HAp/D3 (b), HAp/D3/PLGA (c).
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Fig. 6. 
Confocal optical micrographs of osteoblastic cells incubated with no particles (a), with HAp 

(b), with HAp/D3 (c), or with HAp/D3/PLGA (d), fluorescently stained for nucleus (blue) 

and cytoskeletal f-actin (red) following 4 days of incubation. The size of each image is 

300×300 μm.
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Fig. 7. 
Histological analysis of the control and experimental groups of animals six weeks after the 

implantation: control group (a), HAp (b), HAp/D3 (c), HAp/D3/PLGA (d). Legend: 1) 

normal cortical bone 2) Haversian canals 3) blood vessels 4) the replacement of material 

with a new bone 5) implanted material 6) poorly mineralized newly formed bone 7) newly 

formed bone tissue 8) old bone 9) osteogenesis, 10) the process in which the newly formed 

tissue is replaced with mature bone 11) mature bone 12) ossification centres with large giant 

cells 13) ossification sites distributed in islet forms 14) creation of young bone and 15) 

cement lines.
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Fig. 8. 
Histological analysis of the control and experimental groups of animals 24 weeks after the 

implantation: control group (a), HAp (b), HAp/D3 (c), HAp/D3/PLGA (d). Legend: 1) 

normal cortical bone, 2) Haversian canals, 3) blood vessels, 4) the replacement of material 

with a new bone, 5) implanted material, 6) poorly mineralized newly formed bone, 7) newly 

formed bone tissue, 8) old bone, 9) osteogenesis, 10) the process in which the newly formed 

tissue is replaced with mature bone, 11) mature bone, 12) ossification centres with large 

giant cells 13) ossification sites distributed in islet forms, 14) creation of young bone, 15) 

cement lines.
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