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Abstract: Small, dense low density lipoprotein (sdLDL) represents an emerging 

cardiovascular risk factor, since these particles can be associated with cardiovascular 

disease (CVD) independently of established risk factors, including plasma lipids. Obese 

subjects frequently have atherogenic dyslipidaemia, including elevated sdLDL levels, in 

addition to elevated triglycerides (TG), very low density lipoprotein (VLDL) and 

apolipoprotein-B, as well as decreased high density lipoprotein cholesterol (HDL-C) 

levels. Obesity-related co-morbidities, such as metabolic syndrome (MetS) are also 

characterized by dyslipidaemia. Therefore, agents that favourably modulate LDL 

subclasses may be of clinical value in these subjects. Statins are the lipid-lowering drug of 

choice. Also, anti-obesity and lipid lowering drugs other than statins could be useful in 

these patients. However, the effects of anti-obesity drugs on CVD risk factors remain 
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unclear. We review the clinical significance of sdLDL in being overweight and obesity, as 

well as the efficacy of anti-obesity drugs on LDL subfractions in these individuals; a short 

comment on HDL subclasses is also included. Our literature search was based on PubMed 

and Scopus listings. Further research is required to fully explore both the significance of 

sdLDL and the efficacy of anti-obesity drugs on LDL subfractions in being overweight, 

obesity and MetS. Improving the lipoprotein profile in these patients may represent an 

efficient approach for reducing cardiovascular risk. 

Keywords: lipoproteins; small dense low density lipoprotein; obesity; metabolic 

syndrome; obesity treatment; anti-obesity drugs; lipid-lowering drugs 

 

1. Introduction  

A sedentary lifestyle and high energy diet increases the prevalence of being overweight, obesity, 

metabolic disorders (e.g., metabolic syndrome, MetS) and type 2 diabetes mellitus (T2DM) [1]. 

Obesity and obesity-related co-morbidities, such as MetS and T2DM, are a major health problem 

worldwide [2]. Each of these disorders, in addition to established vascular risk factors  

(e.g., dyslipidaemia, smoking and hypertension) increases the risk of cardiovascular disease (CVD). 

Therefore, the American Diabetes Association and the American College of Cardiology Foundation 

recommend a multifactorial risk reduction strategy targeting each risk factor and underlining both 

lifestyle and pharmacological treatment [3]. 

A commonly observed lipid abnormality in obese individuals (especially those with excess central 

adipose tissue), is an increased presence of small dense low-density lipoprotein (sdLDL) [4–6]. This 

predominance of sdLDL particles is associated with raised triglycerides (TG) and decreased high 

density lipoprotein cholesterol (HDL-C) levels, forming the so-called ―atherogenic lipid triad‖ [7,8]. 

Adipose tissue also produces a diversity of adipokines that play a role in the pathogenesis of 

inflammation, dyslipidaemia and hypertension [9] that increase the rate of CVD morbidity and 

mortality linked to obesity, T2DM and the MetS [10]. Excessive visceral adiposity enhances the 

availability of free fatty acids (FFA) that lead to TG accumulation in muscle and liver (fatty liver) and 

increase circulating TG levels, due to the enhanced hepatic production of very low density lipoprotein 

(VLDL) cholesterol [11–13]. Furthermore, the raised flux of FFA and TG to muscle and other tissues 

induces insulin resistance (IR) [14,15]. 

LDL varies in size, density and metabolic characteristics and comprises at least four distinct 

subclasses (large LDL-I, medium LDL-II, small LDL-III and very small LDL-IV (Table 1)), with 

sdLDL being associated with increased CVD risk [16]. Although the association between IR and 

increased LDL-C levels is not typical, elevated sdLDL levels with lower large LDL concentrations are 

associated with reduced insulin sensitivity and increased adiposity [17–19]. Generally, two phenotypes 

have been described: pattern A, with a higher proportion of larger, more buoyant or medium-sized 

LDL, and pattern B, with a predominance of sdLDL [16]. The difference in size and density among 

LDL subclasses is due to variations in surface lipid content and conformational changes in apoB-100, 

including increased exposure on the particle surface [20]. 
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Table 1. Physicochemical properties of low-density lipoprotein (LDL) subclasses  

(adapted from [11]).  

 
Peak Sf 

Density Peak 

(gm/mL) 

Diameter 

(Å) 

Protein 

(%) 

Cholesteryl 

ester (%) 

Unesterified 

cholesterol (%) 

Triglycerides 

(%) 

Phospholipids 

(%) 

P
a

tt
er

n
 A

 

large LDL-1 7–12 1.019–1.023 272–285 18 43 9 7 22 

medium LDL-2 5–7 
a 1.023–1.028 

b 1.028–1.034 

265–272 

256–265 

19 

21 

45 

45 

10 

9 

4 

3 

23 

22 

P
a

tt
er

n
 B

 

small LDL-3 3–5 
a 1.034–1.041 

b 1.041–1.044 

247–256 

242–247 

22 

24 

46 

44 

8 

7 

3 

3 

21 

21 

very small  

LDL-4 
0–3 

a 1.044–1.051 

b 1.051–1.06 

233–242 

220–233 

26 

29 

42 

40 

7 

7 

5 

6 

19 

18 

Sf: Svedberg flotation. 

Search Strategy: We searched PubMed and Scopus listings for relevant publications using 

combinations of the following keywords: ―lipids‖, ―lipoproteins‖, ―small dense low density 

lipoprotein‖, ―high density lipoprotein‖, ―overweight‖, ―obesity‖, ―obesity treatment‖, ―anti-obesity 

drugs‖, ―lipid-lowering drugs‖ and ―new anti-obesity drugs‖. 

2. The Clinical Relevance of sdLDL 

sdLDL tend to coexist with elevated TG and low HDL-C levels and together comprise the 

―atherogenic dyslipidaemia‖ pattern, which appears to be heritable, but also several non-genetic 

factors, such as abdominal adiposity, influence the expression of this phenotype [16]. However, it is 

still debated whether LDL particle size is an independent CVD risk factor after adjustment for TG and 

HDL-C levels [21]. 

In relation to large buoyant LDL, sdLDL particles are taken up more easily by arterial tissue, show 

lower affinity for the LDL receptor, have a longer half-life in plasma and greater oxidative and 

glycation susceptibility, suggesting a link between sdLDL particles and atherogenesis [22,23]. It has 

been shown that subjects with high levels of sdLDL particles have an approximately three- to seven-fold 

increase in the risk of developing coronary heart disease (CHD), independently of LDL-C 

concentration [24–26]. Some studies found that subjects at high CVD risk, such as those with 

peripheral arterial disease or abdominal aortic aneurysm, may also have higher levels of these 

particles [27,28]. Further, a significant relationship between LDL size and the occurrence of carotid 

atherosclerosis was reported [29–31]. In different metabolic diseases (e.g., polycystic ovary syndrome, 

growth hormone (GH) deficiency) [32–34] and in women with gestational diabetes [35], increased 

levels of sdLDL were also found.  

sdLDL also represents a marker for diagnosis and severity of the MetS [36,37]. In this context,  

we confirmed that sdLDLs are increased in the MetS and showed an independent predictive role for 

future cardiovascular and cerebrovascular events [38]. Additionally, it has been suggested that the  

sdLDL-C/LDL-C ratio correlates with various parameters associated with MetS rather than the LDL-C 

or sdLDL-C levels, thus possibly representing a more useful clinical indicator [39]. Furthermore, an 

increased sdLDL-C/LDL-C ratio was an independent factor determining decreased adiponectin levels 

in MetS patients [39], but the mechanisms involved need to be elucidated. 
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3. Overweight, Obesity and sdLDL 

Visceral obesity and IR have been recognized as the main causes of raised levels of sdLDL, because 

these factors contribute to postprandial hypertriglyceridemia; an essential mechanism is increased FFA 

release from adipocytes, which stimulates hepatic TG output [11,13]. Additionally, if fatty liver is 

present, upregulated de novo synthesis of FFA may increase hepatic TG production and affect the 

hepatic metabolism of TG and/or LDL-C, resulting in increased sdLDL levels and rapid atherogenesis 

in patients with MetS or T2DM [40]. In such metabolic conditions, fatty liver may enhance 

atherogenesis by raising the levels of sdLDL particles [41,42]. Hosoyamada et al. suggest that fatty 

liver may affect LDL particle size independently of both visceral obesity and IR [40]. Thus, treatment 

of fatty liver might decrease atherogenesis in MetS or T2DM by reducing sdLDL-C levels.  

Currently, there is renewed interest in the usefulness of measuring non-fasting TGs, as a more 

powerful and independent predictor of CVD risk than fasting levels [43]. In this context, an expert 

panel provided a consensus statement on the classification of non-fasting TGs concentration and other 

related clinical recommendations [44]. Standard reference values for post-prandial TG levels were 

suggested based on a recent meta-analysis [45]. 

Data from the Mima study [46] indicate that a polymorphism of the beta(3)-adrenergic receptor 

gene (the genetic marker for obesity-related traits) is correlated with the area percentage of sdLDL  

(p < 0.05), independently of age, gender, body mass index (BMI), smoking and IR index, suggesting a 

genetic predisposition to increased sdLDL in the presence of this polymorphism. 

Weight loss in obese, non-diabetic women resulted in a significant reduction of the levels of 

lipoprotein-associated phospholipase A2 (Lp-PLA2) (p < 0.01), a phospholipase primarily associated 

with LDL, especially with sdLDL, while neither the cholesterol levels of sdLDL particles nor the 

percentage of the sdLDL-cholesterol of the total LDL-C were changed [47,48]. This change in  

Lp-PLA2 activity correlated with the changes in VLDL levels (p < 0.05) and could be a potentially 

new predictor for atherosclerotic disease. Lp-PLA2 is also a marker of sdLDL in human plasma [49]. 

Alternate day modified fasting (ADMF) is a dietary restriction that could help overweight and 

obese individuals to lose weight and lower CHD risk [50]. After eight weeks of ADMF, peak and 

integrated LDL particle size, as well as the proportion of large LDL particles increased, whereas the 

proportion of small and medium particles decreased (for all comparisons, p < 0.05). Cholesterol level 

in large particles did not alter, whereas this parameter was reduced within small- and medium-sized 

LDL particles (p < 0.05). Furthermore, LDL particle size was associated with reduced body weight  

(p = 0.04) and smaller waist circumference (p = 0.03). On the other hand, no association was observed 

between LDL particle size and plasma TGs (p = 0.11) or HDL-C concentrations (p = 0.65) [51], 

although reductions in plasma LDL and TGs concentrations were observed. However, given that the 

effect of weight loss on LDL particle size was not evaluated separately from the effect of fasting, it 

remains unclear whether these cardioprotective effects were due to reduced body weight or the 

prolonged fasting period. Future studies are needed to elucidate these effects on changes in  

lipoprotein subfractions. 

The effects of glucose- or fructose-sweetened beverages have been investigated in overweight and 

obese subjects, and differential effects were shown on adipose distribution [52]. Both total abdominal 

fat and visceral adipose tissue (VAT) volume were increased in individuals consuming fructose,  
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while only subcutaneous adipose tissue volume was significantly increased in those consuming 

glucose. Fructose raised sdLDL, oxidized LDL (oxLDL) and postprandial remnant-like particle 

lipoprotein-cholesterol (RLP-C) and RLP-TG, whereas glucose consumption did not [44]. 

Furthermore, sdLDL was mostly affected by pre-existing MetS risk factors (MSRF), and the increase 

in sdLDL levels during fructose consumption was more than two-fold greater in subjects with three 

MSRF than in those with zero to two MSRF [52]. Finally, consumption of fructose at 25% of energy 

requirements with an ad libitum diet decreased glucose tolerance and insulin sensitivity (greater in 

women than in men) compared with glucose consumption. 

A high prevalence of sdLDL in obese children, as well as a relationship between peak LDL 

diameter and abdominal fat accumulation, and the level of both HDL-C and TG was reported [53]. 

When changes in LDL subfractions during a weight loss intervention for overweight and obese 

children were investigated, a reduction in cholesterol concentration of LDL III particles  

(54.1 vs. 40.4 mg/dL; p < 0.01), and shift in mean LDL-C peak particle density (1.041 vs. 1.035 g/mL) 

was found [54]. These alterations were also positively and significantly correlated to changes in VLDL 

metabolism. In contrast, in a later study [55], statistical difference was reported in the LDL particle 

size between 26 obese and 27 healthy children (p = 0.575); the size of LDL particles was not 

correlated with BMI, homeostasis model assessment (HOMA)-IR or serum lipids, although obese 

children had increased TGs and low HDL levels. Based on these results, the authors suggested that 

LDL particle size measurement is not necessary in childhood obesity as a routine procedure. A 

potentially explanation for these different results might be genetic factors and age in different 

populations [55]. Postprandial pro-atherogenic factors in obese boys were significantly improved after 

two different meals: moderate fat (MF: 61% carbohydrate, 27% fat) vs. high fat (HF: 37% carbohydrate, 

52% fat). OxLDL concentration was raised after the HF, but not after the MF meal (9.3(2.2)% vs. 

1.8(2.2)% from baseline, p < 0.02) and the densest LDL particles were associated positively (p < 0.05) 

with oxLDL levels. HDL-C concentration was lower (p < 0.05) at 300 min after HF vs. MF meal [56]. 

These results indicate that an evaluation of postprandial lipids may be relevant in children, as 

suggested earlier [57].  

Reduced GH secretion in obesity could be associated with atherogenic dyslipidaemia, including 

raised sdLDL particles, given that reduced peak-stimulated GH in obesity was independently associated 

with a more atherogenic lipoprotein profile defined in terms of particle size (p < 0.0001) [58,59].  

In this study, obese patients with reduced GH secretion had a smaller mean LDL and HDL particle size 

in comparison with normal weight or obese subjects with sufficient GH (p < 0.0001). 

In another study where the ethnic difference in lipid levels and LDL particle size and subclasses 

were investigated, obese black women had significantly more sdLDL (subclass IV) compared with 

obese white women [60]. 

In summary, the entities of MetS and obesity, with a clinical clustering of CV risk factors and 

underlying IR, are also associated with phenotypical changes in lipoprotein patterns that increase the 

atherosclerotic potential of circulating lipids and their interaction with the vessel wall and 

endothelium. LDL subfraction is positively correlated with higher waist circumference, higher serum 

TG, as well as older age and more statin usage in hypertensive patients. Thus, LDL size could 

represent a risk factor associated with endothelial dysfunction in hypertension [61]. Further, in vitro 
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studies, using cultured endothelial cells, have shown that LDL subfractions from hypercholesterolemic 

patients may deregulate endothelial function [62]. 

The main outcomes of discussed studies in this review are listed in Table 2. 

Table 2. Outcomes of the observed studies that have analysed small dense low density 

lipoprotein cholesterol (sdLDL) in overweight and obese subjects. 

Study Patients sdLDL and measurement Outcome of the study 

Satoh N  

et al. [39] 

214 subjects  

(97 men and  

117 women) 

↑ 

in subjects with MetS  

A dual detection HPLC and 

a Lipoprint LDL system 

The ratio of sd-LDL-C/LDL-C is a 

more useful clinical indicator than 

sdLDL 

Tsuzaki K  

et al. [46] 

277 rural Japanese 

subjects 

↑ 

Lipoprint System 

(Quantimetrix, Redondo 

Beach, CA) 

Genetic predisposition to increased 

sdLDL in subjects with polymorphism 

of the beta(3)-adrenergic receptor gene 

Tzotzas T  

et al. [47] 

28 obese, non-diabetic 

women 

↔ 

3% polyacrylamide gel-tube 

electrophoresis; Lipoprint 

LDL System (Quantimetrix, 

Redondo Beach, CA) 

A low-calorie diet reduces the levels of 

Lp-PLA2; the levels of sdLDL 

particles were not changed 

Varady KA  

et al. [51] 
60 obese subjects 

↓ 

Non-denaturing 2%–16% 

polyacrylamide gradient  

gel electrophoresis 

ADMF is an efficient strategy for 

decreasing of sdLDL level and 

increasing LDL particle size 

Stanhope KL  

et al. [52] 

32 overweight and 

obese subjects 

↑ 

(with fructose) Precipitation 

Dietary fructose promotes 

dyslipidaemia 

Miyashita M  

et al. [53] 
30 obese children 

↑ 

Gel electrophoresis 

High prevalence of sdLDL in obese 

children; a relationship of peak LDL 

diameter with abdominal fat 

accumulation, HDL-C and TG levels 

King RF  

et al. [54] 

65 overweight and 

obese children 

↓ 

Ultracentrifugation 

Reduction in LDL-C, LDL-C III and 

LDL-C peak particle size 

Tascilar ME  

et al. [55] 

26 obese children  

(13 girls, 13 boys) 

↔ 

Polyacrylamide gradient  

gel electrophoresis 

Measurement of LDL particle size is 

not necessary in childhood obesity 

Maffeis C  

et al. [56] 
10 obese boys 

↑ 

After the HF meal  

(abstract; no data  

for measuring) 

A change of ≈25% of energy load from 

fat to carbohydrate in a meal improves 

postprandial pro-atherogenic factors in 

obese boys 

Makimura H  

et al. [58] 

102 normal weight 

and obese men  

and women  

↑ 

GH↓ 

GH stimulation testing and 

NMR spectroscopy 

An independently association between 

reduced peak-stimulated GH and an 

atherogenic lipoprotein profile in 

obesity 
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Table 2. Cont. 

Goedecke JH  

et al. [60] 

15 normal-weight black;  

15 normal-weight white; 

13 obese black;  

13 obese white South 

African women 

↑ 

Non-denaturing 2 to 16% 

polyacrylamide gradient gel 

electrophoresis 

Obese black women had 

significantly more sdLDL 

compared to obese white women 

Filippatos TD  

et al. [63] 

89 overweight and obese 

patients 

↓ 

3% polyacrylamide  

gel-tube electrophoresis; 

Lipoprint LDL System 

(Quantimetrix, 

Redondo Beach, CA) 

Orlistat + fenofibrate led to a 

greater reduction in sdLDL-C 

levels and favourable effects on  

Lp-PLA2 

Nakou ES  

et al. [64] 

86 overweight and obese 

patients with 

hypercholesterolemia 

↓ 

3% polyacrylamide gel-tube 

electrophoresis; Lipoprint 

LDL System (Quantimetrix, 

Redondo Beach, CA) 

The combination orlistat and 

ezetimibe have a more favourable 

effect on LDL-C and sdLDL-C 

levels than either drug alone 

LDL-C—low density lipoprotein cholesterol; sdLDL—small dense LDL; HDL-C—high density lipoprotein 

cholesterol; TG—triglycerides; Lp-PLA2—lipoprotein-associated phospholipase A2; GH—growth hormone; 

ADMF—alternate day modified fasting, MetS—metabolic syndrome; HF—high fat; NMR—nuclear 

magnetic resonance; ↑: increased; ↓: decreased; ↔: no effect. 

4. Treatment Options 

Given that obese individuals with mixed dyslipidaemia have raised sdLDL-C levels, agents that 

have a potential beneficial effect on this LDL phenotype may be useful [65]. In visceral obesity, drugs, 

such as statins, fibrates and insulin sensitizers [66], are often required to correct any associated 

dyslipidaemia [67]; cannabinoid receptor type 1 blockers (such as rimonabant) are not currently on the 

market [52]. Furthermore, statins and other hypolipidemic agents (e.g., ezetimibe and fibrates), as well 

as weight-reducing agents were reported to favourably affect LDL subfractions [63,64]. Briefly, 

ezetimibe decreased the large and medium LDL particles and, to a lesser extent, the sdLDL particles, 

while it had no influence on LDL size; however, its sdLDL lowering capacity may be enhanced in 

individuals with elevated TG levels [65,68]. It seems that fenofibrate is equally or even more effective 

than statins in reducing sdLDL levels and increasing LDL size [69]. Fibrates and niacin reduced 

sdLDL levels and shifted LDL size towards large, buoyant LDL particles [70]. 

It was shown that a normalization of adiposity could lead to conversion from pattern B to pattern A 

LDL phenotype [71]; weight loss through energy restriction also increased LDL particle size and, thus, 

reduced CHD risk in obese subjects [72]. Several anti-obesity drugs were withdrawn from use over the 

past few years, due to adverse events, and currently, orlistat is available for long-term obesity 

management [66]. Orlistat significantly reduced both LDL-C and sdLDL-C levels (−19% and −45%, 

respectively, all p < 0.01); however, the decrease in sdLDL-C levels (−76%; p < 0.01 vs. baseline) and 

the increase in LDL particle diameter (+1.4%; p < 0.01 vs. baseline) were greater with the combination 

of ezetimibe and orlistat compared with either monotherapy (p < 0.05) [64]. These authors explained 

this greater fall in sdLDL-C levels by the greater decrease in TG in the combination group compared 
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with monotherapy. In addition, orlistat, in both cases, alone or in combination with ezetimibe, 

improved anthropometric and metabolic variables (BMI, HOMA, serum uric acid, transaminase 

activities and plasma Lp-PLA2 [64]). In an earlier study, multiple regression analysis showed that the 

orlistat-induced reduction in sdLDL-C levels was significantly and independently correlated with the 

reduction in TG and HOMA [63]; orlistat raised sdLDL-C levels by 35% (p < 0.05 vs. baseline) and 

LDL particle diameter by 0.7% (non-significantly, p > 0.05). Furthermore, the combination treatment 

(orlistat + fenofibrate) was associated with decreases in VLDL-C (−36%; p < 0.01 vs. baseline) and 

sdLDL-C levels (−77%; p < 0.001 vs. baseline), as well as the proportion of the sdLDL-C of the total 

LDL-C (−68%; p < 0.01 vs. baseline) [63]. Orlistat + fenofibrate led to a greater reduction in sdLDL-C 

levels (p <0.05), together with a greater increase in LDL particle diameter (p < 0.05) compared with 

the orlistat group. Lp-PLA2 activity was also significantly decreased [63]. In addition, it was 

suggested that orlistat, alone or in combination with fenofibrate, may decrease LDL concentrations in 

obese MetS patients, confirming the findings that obese T2DM subjects with MetS orlistat + diet 

improved several CVD risk factors (fasting glucose, glycosylated haemoglobin (HbA1c), total 

cholesterol (TC) and LDL-C levels, systolic blood pressure (SBP), waist circumference and HOMA) 

compared with diet and exercise alone [73].  

Bariatric surgery is an effective treatment option in young obese patients with BMI > 40 kg/m
2
 or 

BMI > 35 kg/m
2
 in the presence of significant comorbidities [74,75]. A gender-dependent relationship 

between excess weight loss (EWL) and lipid subfractions (reduced TC, LDL-C, TG and HOMA-IR;  

p < 0.0005 for all) after laparoscopic Roux-en-Y gastric bypass (LRYGB) has been reported [76]. 

Furthermore, a reduction of sdLDL with a rise in LDL relative flotation was observed after 

laparoscopic gastric banding (LAGB) (0.34 ± 0.04 vs. 0.38 ± 0.03; p < 0.001), but neither weight 

reduction nor changes in phospholipid fatty acid composition were found, despite a reduction in TG 

levels [77]. In general, LRYGB seems to be more effective, safer and has lower mortality rates 

compared with LAGB [78]. 

Although rimonabant has been withdrawn from the market, monotherapy with this drug led to a 

decreased sdLDL proportion [79,80], whereas in combination with ezetimibe or fenofibrate,  

a non-significant reduction in sdLDL was observed [65]. The effect of sibutramine, which has also 

been withdrawn from the market, on the sdLDL profile has not been described. Recently, a  

meta-analysis reported that orlistat and rimonabant could lead to an improvement in CVD risk factors 

(reduced SBP, diastolic BP, TC, LDL, fasting glucose, as well as body weight), whereas sibutramine 

might increase CVD risk factors (i.e., hypertension); future studies should fully elucidate the effects of 

any similar drugs on cardiovascular risk factors, if they are marketed [81]. 

5. Effects of New Anti-Obesity Drugs on Lipids  

In the field of anti-obesity drugs, the U.S. Food and Drugs Administration (FDA) has recently 

(June–July 2012) approved two new agents, namely lorcaserin (Belviq; a selective 5-hydroxytryptamine 

receptor 2c agonist) [82] and qsymia (formerly named qnexa, a combination of phentermine with 

controlled release topiramate) [83]. Of note, lorcaserin is contraindicated in combination with drugs 

for migraine and depression, as well as agents that can activate serotonin receptors or increase 

serotonin [82]. Patients with valve abnormalities should be carefully monitored, as serotonin receptors 
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may induce valvular heart disease [84]. With regard to qsymia, heart rate should be monitored 

regularly during treatment, whereas patients with hyperthyroidism, glaucoma, recent (within the last 

six months) or unstable heart disease and stroke should not receive it [83]. Both drugs should be 

discontinued if <5% of initial body weight is lost within three months of treatment. 

Contrave (naltrexone sustained-release (SR) combined with bupropion SR) was rejected by the 

FDA in 2011, due to concerns on CVD risk; however, the FDA agreed to consider the results of a 

currently running cardiovascular outcomes [85]. These anti-obesity drugs were shown not only to 

reduce weight, but also to beneficially affect the cardiometabolic profile of obese patients (e.g., waist 

circumference, lipids, fasting glucose and insulin sensitivity) [86–88]. With regard to lipids, these 

drugs were reported to significantly reduce TC, LDL and TG and increase HDL [86,88–90]. However, 

these data are scarce and, even more, no data exist regarding sdLDL. Future larger studies are needed 

to establish the effect of these anti-obesity drugs on lipids. 

6. Effects of Lipid-Lowering and Anti-Obesity Drugs on HDL Subfractions 

HDL-C also circulates in several subclasses with different properties, composition, metabolism and 

pathophysiological significance [91,92]. The HDL subfraction distribution may potentially affect the 

multiple actions of HDL with clinical consequences [93,94], but the role of each individual HDL 

subfraction on CVD risk remains inconclusive [95,96]. 

MetS has been linked to increased small HDL-3 particles and reduced large HDL-2 levels [97]. 

Patients with acute ischemic stroke were reported to have smaller HDL size with less HDL 2b and 

more HDL 3a, 3b and 3c subclasses [98]. 

Interestingly, atorvastatin was shown to increase HDL particle size in hyperlipidemic patients [99]. 

Similarly, rosuvastatin alone or in combination with ω-3 fatty acids raised larger HDL subfractions, 

whereas rosuvastatin with fenofibrate increased small HDL levels [100]. 

Gemfibrozil was found to increase small HDL subclasses in the Veterans Affairs High-Density 

Lipoprotein Intervention Trial (VA-HIT) [101]. In contrast, when combined with niacin, gemfibrozil 

raised large HDL-2 levels [102]. 

Niacin treatment was associated with increases in large HDL particles in both type 2 diabetics [103] 

and hyperlipidemic patients [102]. Interestingly, the beneficial effects on HDL particles (i.e., increase 

in large HDL and reduction in small HDL) were numerically greater following niacin plus simvastatin 

combination therapy compared with atorvastatin monotherapy in a post-hoc analysis of 137 hyperlipidemic 

patients of the SUPREME study [104]. In another study, niacin monotherapy, as well as its 

combination with simvastatin raised both HDL-3 and HDL-2 levels, the latter in a relatively greater 

degree, in dyslipidemic individuals [105].  

Pioglitazone and metformin were shown to beneficially affect both LDL and HDL subclasses in 

type 2 diabetic patients [106,107]. In contrast, rosiglitazone was found to increase smaller HDL and 

reduce larger HDL particles in patients with T2DM [108], as was troglitazone [109]. Of note, both 

rosiglitazone and troglitazone were withdrawn from the market, due to severe adverse effects 

(cardiovascular and hepatic disorders, respectively). 
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Cilostazol, a selective inhibitor of phosphodiesterase 3A used in patients with intermittent 

claudication to improve their walking distance, was also shown to beneficially affect HDL 

subclasses [110]. This may be relevant if obese patients have peripheral artery disease.  

In obese hyperlipidemic patients, orlistat and ezetimibe, alone or in combination, although not 

affecting HDL quantity, led to significant changes in HDL quality [111]. In detail, orlistat raised  

HDL-2 and decreased HDL-3 subclasses, whereas ezetimibe and their combination reduced HDL-3 

subfraction. Similarly, in another study with obese MetS patients, orlistat increased large HDL and 

decreased small HDL subclasses, whereas fenofibrate raised small HDL particles [112]. Ezetimibe was 

also reported to reduce small HDL subfractions in patients with primary dyslipidaemia [113]. 

With regard to the new anti-obesity drugs (i.e., lorcaserin, qsymia and contrave), no data exist on 

their impact on HDL subclasses; future studies are required to evaluate any possible effect. 

Small HDL3c particles in MetS subjects failed to protect endothelial cells from oxLDL-induced 

apoptosis, and a negative correlation between HDL3c-mediated protection from apoptosis and waist 

circumference, plasma TG, TC/HDL-C ratio and oxLDL were found [114]. This deficiency in  

anti-apoptotic activity of small HDL was associated with altered apolipoprotein and lipid composition. 

7. Lifestyle as the First-Line Therapeutic Option 

Changes in the HDL profile were reported in overweight diabetic men and women following weight 

reduction [115]. Weight loss has been suggested as an effective method in reversing the decrease in 

HDL levels in obesity, and weight loss achieved through exercise is more effective than weight loss 

achieved by diet [116]. In a study with 46 obese subjects [117], only the combination of alternate day 

fasting plus exercise resulted in decreased LDL-C (p < 0.05) and increased HDL-C (p < 0.05) with a 

decreased proportion of small HDL particles (p < 0.01) compared with each intervention alone. 

Several recent meta-analyses [118–120] have also reported beneficial effects of exercise on lipids and 

lipoproteins in patients with MetS, in accordance with the results of many studies that have reported 

that exercise could have an important role in increasing HDL-C level [117,121,122]. Interestingly, 

when associations of all-cause mortality, adiposity and fitness were examined in older adults, fitness 

was inversely associated with mortality, and results were changed a little by adjustments for adiposity 

or fat distribution [123]. Thus, the authors have found that both fitness and BMI are independent 

predictors of all-cause mortality in adults 60 years old or older, emphasizing that further studies are 

needed to confirm if total adiposity per se may be the factor that increases mortality risk. The same 

authors have shown that lower levels of fitness are also associated with a higher risk of all-cause and 

CVD mortality in younger and middle-aged men [124,125]. 

In a six-month randomized study [126] performed in 78 severely obese subjects (86% of them had 

either diabetes or MetS), the authors found a favourable effect of a low carbohydrate diet on 

lipoprotein subfractions compared with a conventional diet, while both diets similarly decreased LDL 

particles and increased large HDL. In addition, both diets significantly decreased postprandial lipemia 

and led to similar (but non-significant) alterations in the total cholesterol/HDL-C ratio, fasting 

triacylglycerols, oxLDL and LDL subclasses distribution [127]. However, a very low carbohydrate 

diet prevents a decrease in HDL-C, although it did not lower LDL-C compared with a low-fat weight 

loss diet [127]. Similar results were also achieved when both diets were consumed for weight 
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maintenance rather than weight loss, thereby reducing the effect of change in body weight on 

lipids [128]. In a study that compared the effects of pioglitazone vs. diet/exercise on body fat, glucose 

and lipid metabolism in obese, insulin-resistant individuals [129], only diet/exercise reduced total 

cholesterol, TG and LDL-C concentrations, whereas both treatment increased large LDL and 

decreased sdLDL particles. Furthermore, a Mediterranean-style diet rich in fruits and vegetables and 

with high polyunsaturated fats reduced cardiovascular events and decreased LDL-C with a 

concomitant increase in HDL-C [130]. 

Increased physical activity may improve sdLDL in hyperlipidemic subjects [131]. In general, 

lifestyle modification is the first-line therapy [132], with smoking cessation, exercise,  

mild-to-moderate alcohol consumption and weight loss increasing HDL-C in patients with levels  

<40 mg/dL [133]. In summary, first-line therapy in obese patients should be a healthy diet and 

physical activity. Lipid-lowering therapies should be prescribed only after or together with lifestyle 

modifications, unless the risk of a vascular event is so high that the prescribing clinician elects not to 

delay effective pharmacological intervention. If after statins therapy, HDL-C remains low, then niacin 

should be prescribed. 

It is known that increased LDL-C (including decreased HDL-C) is one of several factors that are 

linked with high cardiovascular risk. However, the exact mechanisms by which LDL particle size may 

act as an independent CVD risk factor remains unclear. Currently, there is no strong clinical evidence 

to show that targeting lipoprotein subfractions is useful or recommended. Further large studies are 

needed to elucidate the clinical implications of lipoprotein subfractions, as well as to establish the 

effect of the here mentioned anti-obesity drugs on lipoproteins. 

8. Conclusions 

In overweight and obese hypercholesterolemic subjects, statins are the first treatment choice. 

Orlistat and ezetimibe coadministration had a more favourable effect on LDL-C and sdLDL-C levels 

than either drug alone [64]. This combination also exhibited favourable effects on Lp-PLA2 activity 

and LDL phenotype in overweight and obese patients with MetS, but positive effects on the LDL 

distribution profile should be replicated in larger studies. ADMF may increase LDL particle size, thus 

decreasing the sdLDL proportion, and ADMF could be a suitable alternative to traditional energy 

restriction for lowering CVD risk in obese individuals. 

Anti-obesity medications, either as monotherapy or in combination with other drugs, presented 

encouraging results in terms of weight loss, safety and improvement of cardiometabolic risk factors. 

Combinations of drugs targeting different pathways in low doses may have better results than 

strategies that modify one pathway alone; this might represent the future strategy in obesity treatment.  

Improving the quantity and the quality of lipoproteins in obesity and the MetS may represent an 

effective approach to reduce cardiovascular risk. 
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