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Abstract Non-linear localization phenomena in biological lattices have attracted a steadily

growing interest and their existence has been predicted in a wide range of physical settings.

We investigate the non-linear proton dynamics of a hydrogen-bonded chain in a semi-

classical limit using the coherent state method combined with a Holstein–Primakoff bosonic

representation. We demonstrate that even a weak inherent discreteness in the hydrogen-

bonded (HB) chain may drastically modify the dynamics of the non-linear system, leading

to instabilities that have no analog in the continuum limit. We suggest a possible localization

mechanism of polarization oscillations of protons in a hydrogen-bonded chain through

modulational instability analysis. This mechanism arises due to the neighboring proton–

proton interaction and coherent tunneling of protons along hydrogen bonds and/or around

heavy atoms. We present a detailed analysis of modulational instability, and highlight

the role of the interaction strength of neighboring protons in the process of bioenergy

localization. We perform molecular dynamics simulations and demonstrate the existence

of nanoscale discrete breather (DB) modes in the hydrogen-bonded chain. These highly
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localized and long-lived non-linear breather modes may play a functional role in targeted

energy transfer in biological systems.

Keywords Modulational instability · Hydrogen-bonded chains · Discrete breathers ·
Solitons · Molecular dynamics simulations · Proton dynamics in biological lattices

1 Introduction

There has recently been substantial interest in the study of collective proton motion in

hydrogen-bonded (HB) chains. The transport of energy and charge along one-dimensional

HB chains is an extremely important problem in bioenergetic systems, such as bacte-

riorhodopsin, which pumps protons to higher free energies, and the ATP synthase that

consumes energetic protons [1, 2]. In addition, it may be noted that proton transport has

been implicated in transhydrogenase [3, 4], cytochrome oxidase, and the bc1 redox loop

in mitochondrial respiratory chains [5, 6]. Indeed, one requires proton transport for long

distances along the membrane rather than just proton transport across the membrane. It is

also possible to imagine that even more extensive networks of proton pathways exist in the

cell, perhaps utilizing the cytosol microstructure [7, 8]. Thus, proton transport may be a

part of other bioenergetic mechanisms such as muscle action [9] or flagellar motion [10].

Bioenergy transport through proton dynamics in hydrogen-bonded chains still remains an

intriguing phenomenon to most physicists and biologists. A strong motivation for studying

this problem is to understand the localization of energy along one-dimensional HB chains

through protons. Most of the papers that mention HB chains or proton channels assume

that such channels will transport fast and sufficiently for bioenergetic purposes [2, 11].

Recently, extensive theoretical investigations [12–16] and also some experimental evidence

[17] predicted that solitons may give some answers to the fundamental question of the

transmission of energy in biological macromolecules. The proton dynamics in HB chains

is often modeled by a characteristic non-linear substrate potential with two degenerate

equilibrium positions. The solitons ensure the transport of energy and charges in bioener-

getics, e.g., mitochondrial adenosine triphosphate formation [18, 19], photophosphorylation

in chloroplasts [20], anaerobic metabolism in Halobacterium [21], and proton migration in

ice crystals [22], and explain some aspects of biological processes such as the duplication of

deoxyribonucleic acid (DNA) and the transcription of messenger ribonucleic acid (mRNA)

[23], the denaturation of DNA [24], and the molecular mechanism of muscle contraction

[25, 26]. As a consequence, a detailed understanding of the charge transfer mechanism

of HB chains will have great impact on our picture of the localization of bioenergy in

HB chains.

Intrinsic localized modes (ILMs) or discrete breathers (DBs) are non-linear collective

localized excitations that seem to play a very important role in various biological and

physical systems. Interest in these DBs has been intensified recently due to experimen-

tal generation and observation in some chemical compounds [27, 28], antiferromagnets

[29, 30], coupled arrays of Josephson junctions [31, 32], and even possibly in myoglobin

[33]. Other types of non-linear systems in which DBs could possibly exist and could be

detected experimentally are HB systems such as ice and quasi-one-dimensional HB chains.

The formation of DBs involves no disorder and they extend over a nano-length scale similar

to exact breather soliton solutions in non-linear continuum theories [34]. Pnevmatikos et al.

reported on breather excitations in a one-component model for HB chains [35]. They found a
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form of breathers and demonstrated numerically high-stability properties of the excitations

in the case of a symmetric on-site potential. In HB chains, the power absorbed by non-

linear breather modes in the presence of an external AC field is more significant than

the power absorbed by the linear excitations. This effect may be useful to sufficiently

analyze the non-linear properties of HB chains under external fields and to determine

some of their characteristics experimentally [35]. Zolotaryuk et al. reported that a diatomic

chain of heavy ions coupled by hydrogen bonds admits discrete breather solutions in the

anticontinuous limit [36]. Since the study of breather-type excitations is important for the

theory of protonic conductivity based on soliton phenomenology [37–43], in this paper

we investigate the localization of the charge transfer in one-dimensional hydrogen-bonded

(HB) chains with the nearest neighbor interactions of protons. The paper is organized as

follows: In Section 2, we describe the model and derive the discrete non-linear equation

of motion with the aid of the Holstein–Primakoff transformation combined with Glauber’s

coherent state representation. Section 3 is devoted to the analytical investigation of the

modulational instability of a plane wave propagating in a proton channel of a HB chain. In

Section 4, we discuss the localization of bioenergy in a HB discrete chain and demonstrate

the existence of dissipative and surface mode DBs. The results are concluded in Section 5.

2 Mathematical background of proton dynamics

We consider an idealized periodic HB chain consisting of two interacting sublattices of

harmonically coupled protons as shown below. Proton motion is known to be responsible

for the energy and charge transfer in many HB chains [44]. The conduction via proton

migration along the chain in HB systems appears as:

(H − O − H)+ · · · O − H · · · O − H · · · O − H,

where (−) and (· · · ) stand for the covalent and the hydrogen bond, respectively. The

hydrogen bond bridges the system in many repetitions of the unit cell O–H· · · and the

system is usually considered to be a uni-dimensional macroscopic chain. Here, H
+

travels

from one side of the chain to another by subsequent jumps of protons from one oxygen to

another and finally the system becomes

H − O · · · H − O · · · H − O · · · H − O · · · (H − O − H)+ .

By the earlier work of Tokunaga and Matsubara [45], the Hamiltonian for the protons in a

one-dimensional xz model of a H-bonded system in the presence of an electric field can be

written in terms of spin operators as:

H = −2α
∑

n
Sx

n − (1/2) J1

∑

n

[
Sz

n Sz
n−1

+ Sz
n Sz

n+1

] − (1/2) J2

[
Sx

n Sx
n−1

+ Sx
n Sx

n+1

] − VSz
n.

(1)

Equation (1) is written based on the idea of a quasi-spin in hydrogen-bonded systems. One

half spin corresponds to the two possible positions of the proton in the double-well potential

along the O–O bond (hydrogen bond). This potential is a consequence of the interaction
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Fig. 1 The two possible

orientations of the pseudospin

(�s), which characterize the

polarization vector of the

H-bonded chain

between two negative ions of oxygen or some heavy ions. The discrete changes of the

proton position corresponding to the two projections of spin = (1/2) are represented in

Fig. 1. Here, Sδ
n (δ = x, z) are spin operators with spin magnitude S associated with the

proton in the n-th H-bond. Its x-component Sx
n represents the tunneling of the n-th proton; Sx

n
makes the n-th proton jump from one of the equilibrium positions a to the other equilibrium

position b and vice versa (Fig. 2). Sz
n represents the polarization of the n-th H-bond and the

two possible directions of Sz
n correspond to the two possible positions of the n-th proton.

The first term in the right-hand side of (1) represents the kinetic energy. The second term

represents the energy due to the interaction between neighboring protons. The parameter

J1 represents the strength of the interaction between protons. The terms proportional to J2

represent the longitudinal interactions between a pair of tunneling protons and V = q′ Ez
,

where q′
is the charge of the proton.

The dimensionless spin operator satisfies the commutation relations
[
S+

n , S+
m

] =
2Sz

nδnm,
[
S±

n , Sz
m
] = ∓S±

n δmn with Sn · Sn = S [S + 1], where S±
n = Sx

n ± iSy
n . For treating

the problem semi-classically, we introduce the Holstein–Primakoff transformation [46–48]

for the spin operators in terms of the bosonic operators a†

n, an, which satisfy the usual Bose

commutation relations. At a sufficiently low-temperature limit, the ground-state expectation

value of a†

nan is small compared to 2S and n, therefore we can use the semi-classical

expansions as

S+
n = √

2
[
1 − (

ε2/4
)

a†

nan − (
ε4/32

)
a†

nana†

nan − O
(
ε6

)]
εan,

S−
n = √

2εa+
n

[
1 − (

ε2/4
)

a+
n an − (

ε4/32
)

a+
n ana+

n an − O
(
ε6

)]
,

Sz
n = [

1 − ε2a+
n an

]
, (2)

Fig. 2 Schematic representation

of one-dimensional H-bonded

systems
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where ε =
(

1/
√

S
)

and, using (2), dimension-less Hamiltonian (1) can be written in a

power series of ε, as

H = − 2

√
2α

[
ε
(
an + a†

n
) − (

ε3/4
) (

a†

nanan + a†

na†

nan
)]

− (1/2) J1

[
2 − ε2

(
a†

n−1
an−1 + 2a†

nan + a†

n+1
an+1

)

+ ε4

(
a†

nana†

n−1
an−1 + a†

nana†

n+1
an+1

)]

− J2

[
ε2

(
anan−1 +ana†

n−1
+a†

nan−1 +a†

n−1
a†

n +anan+1 +ana†

n+1
+a†

nan+1 +a†

na†

n+1

)

− (
ε4/4

) (
ana†

n−1
an−1an−1 + a†

nananan−1 + ana†

n−1
a†

n−1
an−1

+ a†

nanana†

n−1
+ a†

na†

n−1
an−1an−1 + a†

na†

nanan−1

+ a†

na†

n−1
a†

n−1
an−1 + a†

na†

nana†

n−1
+ ana†

n+1
an+1an+1

+ a†

nananan+1 + ana†

n+1
a†

n+1
an+1 + a†

nanana†

n+1

+ a†

na†

n+1
an+1an+1 + a†

na†

nanan+1 + a†

na†

n+1
a†

n+1
an+1

+ a†

na†

nana†

n+1

)]
− q′ Ez

(
1 − ε2a†

nan
)
. (3)

Hamiltonian (3) characterizes the low-energy non-linear property of hydrogen-bonded

chains in an oblique electric field. The dynamics of the spins can be expressed in terms

of the Heisenberg equation of motion for the Bose operator an,

i�
(

da j

dt

)
= [a j , H], (4)

We then introduce the Glauber’s coherent-state representation (p-representation) [49]

defined by the product of the multimode coherent states

∣∣u >= ∏
n
∣∣ u (n) >, with

< u|u >= 1. Each component |u(n) > is an eigenstate of the annihilation operator an, i.e.,

an |u >= un| u >, where |u∗(n) > is the coherent-state eigen vector for the operator a†

n and

un is the coherent amplitude in this representation. Since the coherent states are normalized

and overcompleted, the field operators sandwiched by |u(n) > can be represented only by

their diagonal elements. Thep-representation of the non-linear equation leads to

i
∂un

∂t
+ 2

√
2α

[
ε − (

ε3/4
) (

u2

n + 2 |un|2
)] − J1

[−2ε3un + ε4un
(|un+1|2 + |un−1|2

)]

− (J2/2)
[(

2ε2 − ε4u2

n − 2ε4 |un|2
) (

un+1 + un−1 + u∗
n+1

+ u∗
n−1

)

− ε4 |un+1|2
(
un+1 + u∗

n+1

) − ε4 |un−1|2
(
un−1 + u∗

n−1

)]

+ q′ Ezε
2un = 0. (5)
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The above discrete equation contains various non-linear couplings and they lead to different

non-linear phases, which are represented by various types of non-linear excitations.

Equation (5) is difficult to solve due to its non-linearity and discreteness. In addition, the

discreteness makes the properties of the system periodic, so that due to the interplay between

the discreteness and non-linearity, new types of non-linear excitations, which are absent in

continuum models, may be possible in the system.

3 Discrete solitons via modulational instability

Wave instabilities are probably the most remarkable non-linear phenomena that may occur

in nature [50]. One of the first instabilities discovered for non-linear models was the

modulational instability, which is known to be an effective physical mechanism in fluids

[51] and optics [52–54] for the breakup of continuous modes into discrete solitary localized

modes. Discrete models are of great interest for practical applications such as models for

energy transport in biophysical systems proposed by Davydov [55], systems that model the

dynamics of DNA [56], discrete reaction–diffusion models to study propagation failure in

myocardial tissue [57], myelinated axons [58, 59], and discrete quantum motors [60, 61].

The diversity of these models and their richness compared to those in continuous systems

are essentially due to the mutual interplay of the peculiar transport properties such as proton

tunneling in HB chains. In this respect, the non-linear properties of HB chains under an

external field and the relevant localization phenomenon deserve particular attention because

the interaction between two neighboring protons happens at different frequencies and new

degrees of freedom enter into the dynamical process.

In this section, the modulational instability of a plane wave in a proton channel is

investigated by studying the stability of its amplitude in the presence of a sufficiently

small perturbation so that one can linearize the equation for the envelope and the carrier

wave. Looking for the slow modulation of a carrier wave that has its frequency in the linear

frequency band, we invoke the rotating wave approximation (RWA) to the discrete equation

of motion (5):

i
·
φn + (

ω0 + 2J1ε
2 − q′ Ezε

2
)
φn − J1ε

4
[
2φn

(|φn+1|2 + |φn−1|2
) + φ∗

n
(
φ2

n+1
+ φ2

n−1

)]

− J2

[
2ε2 (φn+1 + φn−1) − ε4

[
φ2

n
(
φ∗

n+1
+ φ∗

n−1

) + 2 |φn|2 (φn+1 + φn−1)

+3 |φn+1|2 φn+1 + 3 |φn−1|2 φn−1

]] = 0.

(6)

In order to investigate how weakly the time-dependent perturbations evolve along the HB

chain, we perform the following linear stability analysis. The steady-state solution of (6) is

given by

φn = φ0ei(kn−wt), (7)

where wavenumber k, angular frequency ω and amplitude φ0 satisfy the following disper-

sion relation:

ω = 2ε4φ2

0
[J1 (1 + cos 2k) + 6J2 cos k] − ω0 − 2J1ε

2 + q′ Ezε
2 + 4J2ε

2
cos k. (8)
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The linear stability analysis of the steady state can be examined by introducing the perturbed

field of the form

φn = (φ0 + δφn) ei(kn−ωt), (9)

where δφn is assumed to be a small perturbation in comparison with the carrier

wave amplitude φ0. The equation that describes the evolution of the perturbation is

given by

iδ
·
φn + (

ω + ω0 + 2J1ε
2 − q′ Ezε

2
)
δφn

− J1ε
4φ2

0

[
2

(
δφn+1 + δφn−1 + 2δφn + δφ∗

n+1
+ δφ∗

n−1

)

+2δφn+1e2ik + 2δφ∗
n cos 2k + 2δφn−1e−2ik]

− J2

[
2ε2

(
δφn+1eik + δφn−1e−ik)

−ε4φ2

0

(
2δφ∗

n+1
cos k + 2δφ∗

n−1
cos k + 8δφn cos k + 8δφn+1eik

+8δφn−1e−ik + 4δφ∗
n cos k + 2δφ∗

n+1
eik + 2δφ∗

n−1
e−ik)] , (10)

where the asterisk denotes the complex conjugate. Thus, if the perturbed field grows

exponentially, the steady state becomes unstable. We assume a general solution of the

form

δφn = φ1ei(qn−�t) + φ∗
2
e−i(qn−�∗t), (11)

where q and � represent the wavenumber and angular frequency of the perturbation,

respectively, and φ1 and φ∗
2

are the complex constant amplitudes. Inserting (11) into (10),

we obtain

(
� + A+ B+

B− −� + A−

) (
φ1

φ2

)
=

(
0

0

)
, (12)

where

A± = (
ω + ω0 + 2J1ε

2 − q′ Ezε
2
) − 2J1ε

4φ2

0
(1 + 2 cos q + 2 cos (2k ± q))

− 4J2

[
ε2

cos (k ± q) + 2ε4 (cos k + 2 cos (k ± q))
]
,

B± = − 2J1ε
4φ2

0
(cos 2k + cos q) + 4J2ε

4φ2

0
(cos k + 2 cos (k ± q)) ,
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which has the solution

� = J1ε
4φ2

0
[1 + 2 cos q + 2 cos (2k + q)]

+ 2J2

[
ε2

cos (k + q) + 2ε4
[cos k + 2 cos (k + q)]

]

− J1ε
4φ2

0
[1 + 2 cos q + 2 cos (2k − q)]

− 2J2

[
ε2

cos (k − q) + 2ε4
[cos k + 2 cos (k − q)]

]

+ (1/2)
{[−2J1ε

4φ2

0
[1 + 2 cos q + 2 cos (2k + q)]

− 4J2

[
ε2

cos (k + q) + 2ε4 (cos k + 2 cos (k + q))
]

+ 2J1ε
4φ2

0
[1 + 2 cos q + 2 cos (2k − q)]

+ 4J2

[
ε2

cos (k − q) + 2ε4 (cos k + 2 cos (k − q))
]]

− 4
[−2J1ε

4φ2

0
(cos 2k + cos q) + 4J2ε

4φ2

0
(cos k + 2 cos (k + q))

]

− [
2J1ε

4φ2

0
(cos 2k + cos q) + 4J2ε

4φ2

0
(cos k + 2 cos (k − q))

]

+ 4
[
ω + ω0 + 2J1ε

2 − q′ Ezε
2 − 2J1ε

4φ2

0
(1 + 2 cos q + 2 cos (2k + q))

− 4J2

[
ε2

cos (k + q) + 2ε4 (cos k + 2 cos (k + q))
]]

× [
ω + ω0 + 2J1ε

2 − q′ Ezε
2 − 2J1ε

4φ2

0
(1 + 2 cos q + 2 cos (2k − q))

− 4J2

[
ε2

cos (k − q) + 2ε4 (cos k + 2 cos (k − q))
]]}(1/2)

. (13)

Therefore, the modulational instability (MI) gain is represented as

g (�) = 2Im (�) . (14)

The steady-state solution becomes unstable whenever � < 0 since the perturbation grows

exponentially with the intensity given by the growth rate or the MI gain. The gain in (14)

shows the interesting dependence of � on the coupling parameters J1, J2 and the applied

electric field. Equation (14) determines the stability and instability of a plane wave with

wavenumber q in discrete HB chains. We study the linear stability analysis using the realistic

values of parameters J1, J2 and ω0. Thus, we investigate the effects of the tunneling motion

of the proton and the interaction between two neighboring protons on localization, and we

demonstrate that the features of these coupling coefficients are able to qualitatively affect

the stability properties. Linear stability analysis can determine the instability domain in

parameter space and predicts qualitatively how the amplitude of a modulation sideband

evolves at the onset of the instability.

Figures 3 and 4 depict the regions of stability/instability and the corresponding depen-

dence of the growth rate on the wavenumbers q and k for the various values of J1 and

J2, respectively. The pictorial representation of Figs. 3 and 4 explores the impact of the

coupling between the nearest-neighbor proton–proton interaction on the stability/instability

regime of HB chains. In the figures, the dark bluish area corresponds to a region where

the non-linear plane waves are stable with respect to the modulation of any wavenumber q
and the bright yellow-orange region experiences more instability in which the amplitude

of any wave would be expected to suddenly display an exponential growth. Using the
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Fig. 3 Gain spectrum for J1 = 1.2, 1.3 and 1.5 · 10
−19

J. On all plots, ω0 = 10
−15

, J2 = 1 · 10
−19

J,

q′ = 1.6 · 10
−19

C, Ez = 1 Vm
−1

, ε = 1.93 and φ0 = 10.8

fundamental parameters of the HB chain, we have plotted the growth rate g(�) by choosing

the parameters ω0 = 10
−15

, J2 = 1 · 10
−19

J, q = 1.6 · 10
−19

C, Ez = 1 Vm
−1

, ε = 1.93

and φ0 = 1.8 and by varying the value of J1 from (0.2–0.7) · 10
−19

J. In Fig. 5, the

plot of the gain profile depicts the periodic and coherent breathing of the peaks with

J1 = 0.2 · 10
−19

J becoming more persistent as J1 increases.

When the value of J1 varies, these localized peaks merge into stronger ones while

radiating as low-amplitude waves. The periodic pattern becomes modulated so that the gaps

between the initially equidistant peaks begin to vary. Figure 5 shows the tiny variations

in this distance as the peaks start to move at J1 = 0.4 · 10
−19

J. The most important

phenomenon following the phase instabilities is the formation of stable structures through

merging of localized peaks. Once the coupling between the polarization of the n-th and

(n + 1)-st H-bond increases, peaks that are situated remotely from the first merge together to

become a more persistent one so that they are traced by continuous lines, thus subsequently

driving the HB chain to be more stable against perturbations, as is confirmed by their

corresponding density plots as shown in Fig. 3.

Surprisingly, when the value of J2 is increased, the HB chain drives slowly from a stable

state to an unstable state as depicted in Fig. 4. From Fig. 4, we explain this special feature

by the fact that the size of the stability zone slowly decreases as the value of J2 increases

and the simulations confirm the prediction of the instability when a modulated wave moves

in the HB chain with a non-vanishing imaginary part of the frequency of the modulated

wave, leading back to the formation of localized breathing coherent structures as shown

in Fig. 6. Further, an increase in the value of an applied electric field (see Fig. 7) does not

significantly disturb the periodic evolution of the coherent modes; rather, it produces a small

decrement in the amplitude of the modes. These results confirm that the protonic transport

Fig. 4 Gain spectrum for J2 = 1.0, 6.0 and 9.0 · 10
−19

J. On all plots, ω0 = 10
−15

, J1 = 1 · 10
−19

J,

q′ = 1.6 · 10
−19

C, Ez = 1 Vm
−1

, ε = 1.93 and φ0 = 10.8
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Fig. 5 Growth rate of the HB system for various values of J1. On all plots, ω0 = 10
−15

, J2 = 1 · 10
−19

J,

q′ = 1.6 · 10
−19

C, Ez = 1 Vm
−1

, ε = 1.93 and φ0 = 1.8

is very sensitive and depends entirely on the competition between the two interactions

characterized by the parameters J1 and J2.

4 Molecular dynamical simulations

In order to check the validity of our analytical approach and to determine the evolution of

the system by taking into account the instability zone, we perform molecular dynamics
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(a) J2 = 0.009 × 10−19 J

(b) J2 = 0.03 × 10−19 J

(c) J2 = 0.1 × 10−19 J
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Fig. 6 Growth rate of the HB system for various values of J2. On all plots, ω0 = 10
−15

, J1 = 1 · 10
−19

J,

q′ = 1.6 · 10
−19

C, Ez = 1 Vm
−1

, ε = 1.93 and φ0 = 1.8

(MD) numerical simulations on (5) using the fourth-order Runge–Kutta method. As an

extension of the analytical approach of the modulational instability, it is important to treat

the discreteness completely, especially when both the carrier wave and the envelope cannot

be described in terms of long-wavelength components. Though the modulational instability

of protonic transport in a HB chain has been deduced from the linear stability analysis,

such analysis is based only on the linearization around the unperturbed carrier wave. At

a large time scale, the analysis neglects the additional combination of waves generated
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through wave mixing processes, which becomes significant if the wave vector falls inside

an instability domain. Thus, at the long time scale, the evolution of the modulated extended

non-linear waves can be well explored by molecular dynamics simulations. In these

simulations, the energy scaling in the microcanonical ensemble represents Hmax ∝ N2
,

where N is the norm. Also, we use a time scale with t = TSWF
Sc

i.e., t ≈ TSWF
S� as the unit

of time and Sc = S�, where S is the spin length and � is the Planck constant. Here TSWF
denotes the period of the spin wave that can be derived from the frequency given in the

dispersion relation of (8).

When the instability is fully developed, the formation of localized modes can be

determined by MD numerical simulations. The MD simulation is performed with a chain

of N = 200 units with periodic boundary conditions, so that the wave vector k is defined

as modulo 2π in the lattice and chosen in the form k = (2πp/N) and q = (2π P/N), where

p(P) is an integer lower than (N/2). The initial conditions of the modulated plane wave are

written as

un (t = 0) = [u0 + 0.01 cos (qn)] cos (kn) ,
·un (t = 0) = [u0 + 0.01 cos (qn)] ω sin (kn) , (15)
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and we study the behavior of the modulated wave with the help of a discrete spatial Fourier

transform of un(t). In order to monitor the time evolution of individual Fourier components,

we define the complete spatial Fourier transform of the wavefunction as

Sp (t) =
N−1∑

n=0

un (t) exp [(i2πp/N)] , with 0 ≤ p ≤ (N/2) . (16)

It is to be noted that Sp (t) =< an (t) > is the expectation value of the boson operator, which

is proportional to the transverse value of the proton polarization S+
n = Sx

n + iSy
n and thus

represents the proton transfer amplitude.

First, we attempt to investigate the short-time instability in a HB chain of 200 units

with periodic boundary conditions. In order to analyze precisely the instability of a given

wave, we must not only consider the applied modulation q but also the modulation arising

from the non-linear term and their contribution modes in the simulations. Figure 8 depicts

the complete Fourier spectrum on which we observe the instability as predicted in Figs. 3

and 4, for the wavenumbers (k, q) = ((43π/64) , (33π/64)). Figure 8a portrays the evo-

lution of a carrier wave with (k, q) = ((43π/64) , (33π/64)) for about 300 units of time.

From Fig. 8 it is evident that none of the k ± q satellite side bands display any stability.

Even the higher harmonics of the modulation satellite side bands illustrate the origin of

the oscillatory instability. Thus the analytical prediction of instability is effectively verified

numerically in the log-linear plots of Fig. 8a.

When we investigate the evolution of the carrier wave for a sufficiently larger time

t = 600, a higher instability is induced by the modulation of the carrier wave with the

wavenumbers (k, q) = ((43π/64) , (33π/64)) along with the system parameters as shown

in Fig. 8b. We have found that the oscillatory instability in the satellite bands leads to

localization in the discrete HB chain. We also investigate the evolution of the carrier wave

for a sufficiently larger time t = 900 and eventually a higher instability is induced by

the modulation of the carrier wave with the wavenumbers (k, q) = ((43π/64) , (33π/64))

along with the system parameters as shown in Fig. 8c. Thus the stronger non-linear

coupling for a long time in the presence of other combination modes 2q, 3q, ...k ± q,

along with the principal satellite modulation k ± q, triggers localization of long-lived

excitations in the presence of low-amplitude noise with suitable wavenumbers, as shown

in Fig. 8. Furthermore, it is now possible to create localized excitations in a HB chain

with our approach of modulational instability. Figure 8 shows how the time evolution

of the complete spectrum along with the additional combination modes generated from

wave-mixing processes leads to the localized non-linear modes in a discrete HB chain.

From all the log-Fourier plots, it is evident that, although the amplitudes of most of the

Fourier components of some principal modes k ± q initially increase at a slow rate, the 3q
modulation is the one that rapidly triggers the zigzag instability in the system. This can

be understood by the fact that, though the linear-stability analysis neglects the additional

satellite bands generated through wave-mixing processes, they become significant and

drive the system into a chaotic regime at a larger time scale if their wavevector falls

into an unstable zone. Hence, needless to mention, these molecular dynamics simulations

demonstrate that a HB chain, with a set of fundamental parameters, can support the long-

lived excitations that are excited through modulational instability processes.
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Fig. 8 Time evolution of the Fourier components and the complete spatial Fourier spectrum of the wave

for α = 0.16, J1 = 0.19 · 10
−19

J, J2 = 0.15 · 10
−19

J, q′ = 1.6 · 10
−19

C, Ez = 1.2 Vm
−1

, k = (43π/64),

q = (33π/64), (a) t = 300, (b) t = 600 and (c) t = 900

5 Localization of energy

It has been demonstrated by Lai and Sievers [62] that, in an antiferromagnetic spin chain, a

delocalized state in Fourier space can either be a localized state or a delocalized state in the
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corresponding real space, depending on the relative phases between Fourier components;

the time evolution in Fourier space alone does not tell us the complete process of energy

distribution. However, it is generally believed that the system will finally reach equipartition

of energy over a sufficiently long time since entropy should grow during the system’s time

evolution.

Here we investigate the evolution of energy density and the role of nearest-neighbor

proton–proton interactions on the localization of energy along the HB chains. Previous

studies suggest the physical system should approach a state where the energy is evenly

distributed not only among the modes in Fourier space but also on lattice sites in real

space. The results of the modulational instability suggest that when plane waves are highly

unstable, it leads to the formation of spatially localized structures. This MI-induced energy

localization has been proposed to be the mechanism responsible for the formation of

intrinsic localization by many authors [63–69]. The normalized energy density distribution

is represented by

e (n) =
∑

n

[
−√

2α
[
εu∗

n − (
ε3/4

) (|un|2 un + |un|2 u∗
n
) − (

ε5/32
) (|un|4 un + |un|4 u∗

n
)]

− J1

[−2ε2 |un|2 + ε4 |un+1|2 |un|2
] + J2ε

2
(
un+1u∗

n + unu∗
n+1

+ u∗
n+1

un
)

− J2ε
4
[
un+1 |un|2 u∗

n + u∗
n+1

|un|2 u∗
n + u∗

n+1
|un|2 un + |un+1|2 u∗

n+1
un

+ |un+1|2 u∗
n+1

u∗
n + u2

n+1
u∗

nu∗
n+1

+ un+1 |un|2 un + un−1 |un|2 un
]

+ q′ Ezε
2 |un|2

]
.

(17)

We perform the MD simulations by considering a HB chain of 200 units of atoms to

compute the energy-density distribution defined by (17) and analyze the role of proton–

proton interaction parameters with the same considerations. Figure 9 depicts the evolution

of energy density for various values of the neighboring proton–proton interaction strength

J1 for about 1,000 units of time with periodic boundary conditions. Figure 9a, b portrays the

creation of intrinsic localized excitations via modulational instability and time evolution

of the energy density distribution in real space. From Fig. 9a it is evident that when

J1 = 0.192 · 10
−19

J at t = 0, the uniform mode of the wave band is excited with a specific

amplitude. We find that for t < 250, the large amplitude uniform mode is stable and after

this it breaks up into DBs that are fairly uniformly spaced with a spatially periodic pattern.

Surprisingly, it should be noted that when the value of J1 is increased, the instability breaks

up faster than the previous case and a similar breakup of the uniform mode happens even

at t = 215 when J1 = 0.5 · 10
−19

J as shown in Fig. 9b. Thus it is confirmed that the role

of the interaction between the neighboring protons affects the breakup of the uniform mode

into highly localized DBs along the HB chain.

A contrary trend is observed when J2, the interaction between the tunneling neighboring

protons, is increased from J2 = 0.19 · 10
−19

J to J2 = 2.0 · 10
−19

J (Fig. 10a) and it is

also observed that the large amplitude uniform mode breaks up into localized DBs at

t = 75. Eventually, an increase in the value of J2 delays the breakup and the energy flows in

the spatially and temporally periodic DBs as confirmed by Fig. 10b with a further delayed

breakup at t = 200. It is evident that the interaction parameter J1 hastens the breakup of the

large-amplitude uniform mode into non-linear oscillating DBs in contrast to J2, which in

principle delays the breakup process.
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(a)

(b)

Fig. 9 Long-term evolution of the energy density along the chain for J2 = 0.53 · 10
−19

J, α = 0.021,

q′ = 1.6 · 10
−19

C, Ez = 0.3 Vm
−1

, (a) J1 = 0.192 · 10
−19

J and (b) J1 = 0.5 · 10
−19

J

The adjacent two-dimensional contour plots display the evolution of the energy at each

site as a function of site of the n-th proton and time. In the contour plots, the brighter yellow

region identifies the higher energy excited modes of DBs and the darker area refers to the

minimum or zero energy of the proton. Thus we demonstrate the formation of localized

coherent structures numerically and the role of the interaction parameters J1 and J2. It is

worth noting that the interaction parameters of the neighboring protons effectively influence

the energy density distribution along the HB chains and thus promote the charge transport

in a lossless way. It can also be realized that the lifetime of the DB is increased until 1,000

units of time upon tuning of the proton–proton interaction in the HB chains.

We aim to construct the DBs numerically in the framework of the one-dimensional

model of hydrogen-bonded chains. These localized non-linear oscillating breather solutions
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(a)

(b)

Fig. 10 Long-term evolution of the energy density along the chain for J1 = 0.79 · 10
−19

J, α = 0.021,

q′ = 1.6 · 10
−19

C, Ez = 0.3 Vm
−1

, (a) J2 = 0.19 · 10
−19

J and (b) J2 = 2.0 · 10
−19

J

play an important role in the transport properties of hydrogen-bonded chains [36–43].

The computational tools for studying DB properties are confined to the case of a finite

lattice size. We construct the DBs in a discrete hydrogen-bonded chain through numerical

simulations using a Newton–Raphson scheme. According to the simplest version of this

method, one looks for the stationary wave solutions in the form of un(t) = uneiγ t
, where γ

is the non-linearity-induced shift of the propagation constant. Our numerical calculation

is made at n = 41 atoms and we seek localized modes in the form of DBs by varying

the values of γ . Figure 11 depicts snapshots of the non-linear oscillating discrete breather

modes centered at different proton sites in HB chains near the surface for various values

of the parameter γ . In Fig. 11, the DBs shown are highly localized and they assume their

bulk form within a distance of a few lattice sites from the surface, so that the DBs shown
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(c) = 0.03

(a) = 0.01 (b) = 0.02

(d) = 0.07

Fig. 11 Snapshots of intrinsic surface modes with stationary multisite bulk breathers in hydrogen-bonded

chains. (a) Asymmetric DB, (b and c) symmetric surface mode DBs and (d) symmetric double peaked

DBs. On all plots J1 = 3.51 · 10
−19

J, J2 = 0.19 · 10
−19

J, α = 0.5, q′ = 1.6 · 10
−19

C, ε = 1.4 and

Ez = 5.4 Vm
−1

in Fig. 11 can be considered as bulk multisite breather modes. Upon tuning the initial

conditions appropriately, we obtain the three-site antisymmetric bulk DBs with a non-zero

amplitude at all sites of HB chains when γ = 0.01, as shown in Fig. 11a. In contrast to

Fig. 11a, when γ = 0.02, we observe dissipative single-site multi-surface breather profiles

appearing one layer away from the surface as shown in Fig. 11b and similar single-site

surface breather profiles are observed for the value of γ = 0.03 as shown in Fig. 11c. In

Fig. 11c, the central atom performs a large amplitude oscillation and the nearest neighbors

enjoy small amplitude oscillations. The bio-energy distribution among the DBs is shown in

Fig. 11d when γ = 0.07. Here, essentially in the higher amplitude, DB five lattice sites are

involved in the motion, hence we find a rather localized DB in the nanoscale length range.

Generally, even for a moderate amount of perturbation, the DBs retain their localized shape

and support long-lived coherent proton transfer along the strands of HB chains.

When considering larger time scales compared to the breather period, the mere linear

stability of a breather no longer guarantees the eternal existence of the breathers in the

presence of a small perturbation and there are still many questions open concerning

the various mechanisms by which breathers may grow or decay, or possibly finally be
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destroyed. If the breathers have a finite lifetime, the determination of this lifetime is of

larger importance for understanding the role of breathers in real systems. An important

property of the discrete breather is the so-called targeted energy transfer, which means

that, under some condition, a very selective vibrational energy transfer between discrete

breathers from one part of the system to another can occur. Therefore, in order to better

understand the importance of discrete breathers in physical problems, it is necessary to

study their fundamental properties such as their existence and stability for systems with

a more sophisticated spatial symmetry and structure. In this mechanism, energy could be

transferred between far distances but across specific sites that are weakly coupled. The idea

is that a purely non-linear interaction supports a faster energy transfer than the exponential

spatial decay of breathers.

6 Conclusions

Hydrogen bonds are the glue of life. There is a fundamental non-linearity associated with

the presence of hydrogen bonding that stems from the nature of the bond itself. In this

paper, we have presented a simplified model for bioenergy transport in one-dimensional HB

chains with nearest-neighbor proton interactions. We have investigated the modulational

instability both analytically in the framework of linear stability analysis and numerically

by means of molecular dynamics (MD) simulations. The linear stability analysis predicted

the stability/instability regions and the growth rates of modulation satellites. Our MD

simulations demonstrate that the analytical predictions correctly describe the onset of

instability. Since linear stability analysis fails for longer time scales, numerical simulation

is employed. Our MD simulations have demonstrated that, with appropriate choices of

interaction parameters J1 and J2, it is possible to create long-lived localized non-linear

excitations in the form of DBs.
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