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a b s t r a c t

In this paper, the higher-order tangent numbers and higher-order secant numbers,
{T (n, k)}∞n,k=0 and {S (n, k)}∞n,k=0, have been studied in detail. Several known results
regarding T (n, k) and S (n, k) have been brought together along with many new results
and insights and they all have been proved in a simple and unified manner. In particular,
it is shown that the higher-order tangent numbers T (n, k) constitute a special class of
the partial multivariate Bell polynomials and that S (n, k) can be computed from the
knowledge of T (n, k). In addition, a simple explicit formula involving a double finite sum
is deduced for the numbers T (n, k) and it is shown that T (n, k) are linear combinations
of the classical tangent numbers Tn.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Let us define the nth tangent number of order k, T (n, k) for the non-negative integers n and k, by the generating relation
(see [1, p. 259]; cf. [2, p. 428] and [3, p. 305])

tank t
k!

=

∞−
n=k

T (n, k)
tn

n!
. (1.1)

Similarly, define the nth secant number of order k, S (n, k), by (cf. [2, p. 428])

sec t tank t
k!

=

∞−
n=k

S (n, k)
tn

n!
. (1.2)

Since T (n, k) and S (n, k) are, respectively, generalizations of the classical (and well-known) tangent (or, zag) numbers Tn
(see [1,4, p. 259])

tan t =

∞−
n=1

Tn
tn

n!
, i.e., Tn := T (n, 1) (1.3)

and secant (or, zig) numbers Sn (see [4] and [5, p. 63])

sec t =

∞−
n=0

Sn
tn

n!
, i.e., Sn := S (n, 0), (1.4)

the numbers T (n, k) and S (n, k) may also be referred to as the higher-order (or, generalized) tangent numbers and the
higher-order (or, generalized) secant numbers.
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In a recent paper by Cvijović [6], very simple and compact closed-form higher derivative formulae are derived for eight
trigonometric and hyperbolic functions [6, Corollaries 1 and 2] and they involve the numbers T (n, k) and S(n, k) given by

T (n, k) = T (n, k)k! and S(n, k) = S (n, k)k!. (1.5)

The elegance and remarkable simplicity of the results obtained (see Propositions 11 and 12) have been the main motivation
behind our further interest in these numbers. It turns out that they have not been studied sufficiently as yet and it is aimed
here to thoroughly examine T (n, k) and S (n, k). Several known results have been brought together along with many new
results and insights and they all have been proved in a simple and unified manner (for further details, see Section 3).

2. Properties of numbers T (n, k) and S (n, k)

In what follows, it is assumed, unless otherwise indicated, that k, l,m and n are non-negative integers and we set an
empty sum to be zero and

Dn
t :=

dn

dtn
(n ≥ 1).

Webegin by an observation that it can be easily seen, fromdefinitions (1.1) and (1.2) and after someparity considerations,
that Proposition 1 holds true.

Proposition 1. Let T (n, k) andS (n, k) be the numbers defined by (1.1) and (1.2). Then: (a) T (n, k) ≠ 0, only when 1 ≤ k ≤ n
and either both n and k are even or both n and k are odd. In otherwords,T (2m, 2l+1) = 0 andT (2m+1, 2l) = 0; (b)S (n, k) ≠

0, only when 0 ≤ k ≤ n and either both n and k are even or both n and k are odd. In other words, S (2m, 2l + 1) = 0 and
S (2m + 1, 2l) = 0.

Proposition 2. Assume that n, k ≥ 1 and let T (n, k) and Tn, respectively, be the higher-order tangent numbers and tangent
numbers. Then, we have

T (k, k) = T k
1 (2.1)

and, for n ≠ k,

T (n, k) =
n + 1
n − k

·
1
T1

n−k−
r=1

n
r

 k + 1
n + 1

−
1

r + 1


Tr+1T (n − r, k). (2.2)

Demonstration. The proof is based on the following known formula for powers of series [7, Eqs. (1.1) and (3.2)]. For a fixed
k, put 

∞−
n=1

antn
k

=

∞−
n=k

bntn (k ≥ 1),

then the coefficients bn, n ≥ k, are given by bk = ak1 and

bn =
1

a1(n − k)

n−k−
r=1

[(r + 1)(k + 1) − (n + 1)]ar+1bn−r (n ≥ k + 1).

It is not difficult to show that this result together with the definitions of the numbers T (n, k) and Tn in (1.1) and (1.3) yields
(2.1) and (2.2).

Proposition 3. Let T (n, k), S (n, k) and Sn, respectively, be the higher-order tangent numbers, the higher-order secant numbers
and secant numbers. Then

S (n, k) =

n−
n∗=0

 n
n∗


T (n∗, k)Sn−n∗ . (2.3)

Demonstration. Recall that if
∑

∞

n=0 an and
∑

∞

n=0 bn are two series, then their Cauchy’s product is the series
∑

∞

n=0 cn where
cn =

∑n
k=0 akbn−k. Hence, the required formula (2.3) is implied by the Cauchy product of power series expansions (1.4) and

(1.1) for functions involving the product sec t tank t/k! in (1.2).
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Proposition 4. Consider the multivariate (exponential) partial Bell polynomials Bn,k(x1, x2, . . . , xn) defined by the formal power
series expansion ([1, pp. 133–137] and [8, pp. 412–417])

1
k!


∞−

m=1

xm
tm

m!

k

=

∞−
n=k

Bn,k(x1, x2, . . . , xn)
tn

n!
(2.4)

and let T (n, k) and Tn be the higher-order tangent numbers and tangent numbers, respectively. Then

T (n, k) = Bn,k(T1, T2, . . . , Tn). (2.5)

Demonstration. The proposed identity is readily available from (2.4) and (1.3) in conjunction with (1.1).
In view of Proposition 4, the higher-order tangent numbers constitute a special class of the Bell polynomials. Thus, for

fixed n and k, T (n, k) is a homogeneous and isobaric polynomial in T1, T2, . . . , Tn of total degree k and total weight n,
i.e., it is a linear combination of monomials T k1

1 · T k2
2 · · · T kn

n whose partial degrees and weights are constantly given by
k1 + k2 + · · · + kn = k and k1 + 2k2 + · · · + nkn = n.

Example 1. In order to demonstrate an application of Proposition 4, we tabulate several T (n, k) given in terms of Tn. Note
that a list of Bn,k ≡ Bn,k(x1, x2, . . . , xn) for k ≤ n ≤ 12 can be, for instance, found in [1, pp. 307–308], while the needed
values of Tn are T1 = 1, T3 = 2, T5 = 16, T7 = 272, T9 = 7936.

T (1, 1) = T1,
T (2, 2) = T 2

1 ,

T (3, 1) = T3, T (3, 3) = T 3
1 ,

T (4, 2) = 4T1T3, T (4, 4) = T 4
1 ,

T (5, 1) = T5, T (5, 3) = 10T 2
1 T3, T (5, 5) = T 5

1 ,

T (6, 2) = 6T1T5 + 10T 2
3 , T (6, 4) = 20T 3

1 T3, T (6, 6) = T 6
1 ,

T (7, 1) = T7, T (7, 3) = 21T 2
1 T5 + 70T1T 2

3 , T (7, 5) = 35T 4
1 T3, T (7, 7) = T 7

1 ,

T (8, 2) = 8T1T7 + 56T3T5, T (8, 4) = 56T 3
1 T5 + 280T 2

1 T
2
3 , T (8, 6) = 56T 5

1 T3,

T (8, 8) = T 8
1 ,

T (9, 1) = T9, T (9, 3) = 36T 2
1 T7 + 504T1T3T5 + 280T 3

3 , T (9, 5) = 126T 4
1 T5 + 840T 3

1 T
3
3 ,

T (9, 7) = 84T 6
1 T3, T (9, 9) = T 9

1 .

Corollary 1. Let T (n, k) and Tn be the higher-order tangent numbers and tangent numbers, respectively. Then

(a) T (n + 1, k + 1) =

n−k−
r=0

n
r


Tr+1T (n − r, k), (2.6)

T (0, 0) = 1, T (n, 0) = 0 (n ≥ 1);

(b) T (n + 1, k + 1) =
1

k + 1

n−k−
r=0


n + 1
r + 1


Tr+1T (n − r, k), (2.7)

T (0, 0) = 1, T (n, 0) = 0 (n ≥ 1).

Demonstration. The results are immediate consequences of Proposition 4 and the recurrence relations [8, p. 415, Eqs. (11.11)
and (11.12)]

Bn+1,k+1 =

n−k−
r=0

n
r


xr+1Bn−r,k

and

Bn+1,k+1 =
1

k + 1

n−k−
r=0


n + 1
r + 1


xr+1Bn−r,k

satisfied by the partial Bell polynomials Bn,k with B0,0 := 1.
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Table 1
Higher-order tangent numbers T (n \ k).

n \

k
0 1 2 3 4 5 6 7 8 9

0 1
1 0 1
2 0 0 1
3 0 2 0 1
4 0 0 8 0 1
5 0 16 0 20 0 1
6 0 0 136 0 40 0 1
7 0 272 0 616 0 70 0 1
8 0 0 3968 0 2016 0 112 0 1
9 0 7936 0 28160 0 5376 0 168 0 1

Proposition 5. Let Sn be the secant numbers (1.4). The numbers T (n, k) and S (n, k) obey the following recurrence relations

(a) T (n + 1, k) = T (n, k − 1) + k(k + 1)T (n, k + 1) (n ≥ 0, k ≥ 1), (2.8)
T (0, 0) = 1, T (n, 0) = 0 (n ≥ 1);

(b) S (n + 1, k) = S (n, k − 1) + (k + 1)2S (n, k + 1) (n ≥ 0, k ≥ 1), (2.9)
S (n, 0) = Sn (n ≥ 0).

Demonstration. The recurrence relation (2.8) follows at once from
tank−1 t
(k − 1)!

+ k(k + 1)
tank+1 t
(k + 1)!

=
sec2 t tank−1 t

(k − 1)!
=

1
k!
Dt tank t

and
1
k!
Dt tank t =

∞−
n+1=k

T (n + 1, k)
tn

n!
.

Similarly, by making use of
1
k!
Dt(sec t tank t) =

sec3 t tank−1 t
(k − 1)!

+
sec t tank+1 t

k!
=

∞−
n+1=k

T (n + 1, k)
tn

n!

and
sec t tank−1 t

(k − 1)!
+ k(k + 1)

sec t tank+1 t
(k + 1)!

=
sec3 t tank−1 t

(k − 1)!
,

it is straightforward to arrive at (2.9).
For the sake of ready reference, by employing Proposition 5, we compute and list several of the numbers T (n, k) in

Table 1 and several of the numbers S (n, k) in Table 2.

Proposition 6. We have that:

(a)
n+1−
k=1

(k − 1)!T (n + 1, k) =


(2n

− 1)Tn n odd
2nSn n even; (2.10)

(b)
n−

k=0

k!T (n, k) = 2n−1

Tn n odd
Sn n even. (2.11)

Demonstration. Observe that the nth derivative of tan z is a polynomial in tan z, i.e. Dn
t tan z = Pn(tan z), where Pn(x) is

explicitly given by (cf. (1.3) and (1.5) and [6, Eq. (3.5)])

Pn(x) = Tn +

n+1−
k=1

(k − 1)!T (n + 1, k)xk.

Then, having in mind the identities Dn
t tan(π/4 + z/2) = 2−nPn(tan(π/4 + z/2)) and tan(π/4 + z/2) = tan z + sec z, by

the last formula we obtain (2.10). Further, starting from the left-hand side of (2.10) and by applying the recurrence relation
(2.8), we have

n+1−
k=1

(k − 1)!T (n + 1, k) =

n−
k=0

k!T (n, k) +

n+2−
k=2

k!T (n, k) = 2
n−

k=0

k!T (n, k) − Tn,

which, by appealing to the right-hand side of (2.10), yields (2.11).
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Table 2
Higher-order secant numbers S (n \ k).

n \

k
0 1 2 3 4 5 6 7 8 9

0 1
1 0 1
2 1 0 1
3 0 5 0 1
4 5 0 14 0 1
5 0 61 0 30 0 1
6 61 0 331 0 55 0 1
7 0 1385 0 1211 0 91 0 1
8 1385 0 12284 0 3486 0 140 0 1
9 0 50521 0 68060 0 8526 0 204 0 1

Table 3
Higher-order arctangent numbers T ∗(n \ k).

n \

k
0 1 2 3 4 5 6 7 8 9

0 1
1 0 1
2 0 0 1
3 0 −2 0 1
4 0 0 −8 0 1
5 0 24 0 −20 0 1
6 0 0 184 0 −40 0 1
7 0 −720 0 784 0 −70 0 1
8 0 0 −8448 0 2464 0 −112 0 1
9 0 40320 0 −52352 0 6384 0 −168 0 1

In Proposition 7, we shall require the higher-order arctangent numbers T ∗(n, k) defined by the generating relation
[1, p. 260]

arctank t
k!

=

∞−
n=k

T ∗(n, k)
tn

n!
, (2.12)

or, equivalently, by the recurrence relation [1, p. 260]

T ∗(n + 1, k) = T ∗(n, k − 1) − n(n − 1)T ∗(n − 1, k) (n ≥ 0, k ≥ 1), (2.13)
T ∗(0, 0) = 1, T ∗(n, 0) = 0 (n ≥ 1).

The numbers T ∗(n, k) (see Table 3) are involved in the following formula which can be easily proved (cf.
[12, Eqs. (3.4)–(3.7)])

tann t =
1

(n − 1)!

n−1−
r=0

T ∗(n, r + 1)Dr
t tan t +


0 n odd
(−1)

n
2 n even

(n ≥ 1). (2.14)

Indeed, let us make use of the induction on n. In case n = 1, formula (2.14) is clearly true. For the induction step, we
assume that (2.14) is true for n and establish it for n + 1. This obviously follows, since by the recurrence relation (2.13) we
have

1
n!

n−
r=0

T ∗(n + 1, r + 1)Dr
t tan t = ∆1 − ∆2 =

1
n
Dt tann t − tann−1 t = tann+1 t,

where

n∆1 =
1

(n − 1)!

n−
r=1

T ∗(n, r)Dr
t tan t = Dt


1

(n − 1)!

n−1−
r=0

T ∗(n, r + 1)Dr
t tan t


= Dt tann t

and

(n − 2)!∆2 =

n−
r=0

T ∗(n − 1, r + 1)Dr
t tan t =

n−2−
r=0

T ∗(n − 1, r + 1)Dr
t tan t

= (n − 2)! tann−1 t.
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Proposition 7. Let Tn and T ∗(n, k) be the tangent numbers and the higher-order arctangent numbers. Then, the higher-order
tangent numbers T (n, k) are given by

T (n, k) =
1
k!

·
1

(k − 1)!

k−1−
r=0

Tn+rT
∗(k, r + 1) (n, k ≥ 1). (2.15)

Demonstration. Clearly, by the definition (1.1), we have that

T (n, k) =
1
k!

Dn
t tan

k t

t=0.

Now, since Tn = Dn
t tan t


t=0, the proposed formula for T (n, k) in (2.15) could be obtained upon setting n = k in (2.14),

then differentiating n times both sides of the resulting expression with respect to t and putting t = 0.
In view of Proposition 7, the higher-order tangent numbers T (n, k) are linear combinations of the tangent numbers Tn

as is demonstrated through examples in Example 2.

Example 2. The numbers T (n, k) expressed through the tangent numbers Tn

T (1, 1) = T1, T (2, 2) =
1
2
T3 T (3, 1) = T3, T (3, 3) = −

1
6
T3 +

1
12

T5,

T (4, 2) =
1
2
T5, T (4, 4) = −

1
18

T5 +
1

144
T7,

T (5, 1) = T5, T (5, 3) = −
1
6
T5 +

1
12

T7, T (5, 5) =
1

120
T5 −

1
144

T7 +
1

2880
T9,

T (6, 2) =
1
2
T7, T (6, 4) = −

1
18

T7 +
1

144
T9, T (6, 6) =

23
10800

T7 −
1

2160
T9 +

1
86400

T11,

T (7, 1) = T7, T (7, 3) = −
1
6
T7 +

1
12

T9, T (7, 5) =
1

120
T7 −

1
144

T9 +
1

2880
T11,

T (7, 7) = −
1

5040
T7 +

7
32400

T9 −
1

51840
T11 +

1
3628800

T13,

T (8, 2) =
1
2
T9, T (8, 4) = −

1
18

T9 +
1

144
T11, T (8, 6) =

23
10800

T9 −
1

2160
T11 +

1
86400

T13,

T (8, 8) = −
11

264600
T9 +

11
907200

T11 −
1

1814400
T13 +

1
203212800

T15.

Proposition 8. We have:

T (n, k) = (−1)
n−k
2 (−1)n

2n

k!

n−
α=k

α−
β=1

(−1)β


α − 1
k − 1


α

β


βn

2α
(n ≥ 1, k ≥ 0). (2.16)

Demonstration. To prove this formula, it suffices to recall the following power series expansion of tank xwhich was deduced
by Schwatt [9, p. 67, Eq. (76)]

tank x =

∞−
n=k

(−1)
n−k
2 (−1)n2n

n−
α=k

α−
β=1

(−1)β


α − 1
k − 1


α

β


βn

2α
·
xn

n!
.

Proposition 9. Let S(n, k) and Ln,k respectively be the Stirling numbers of the second kind and Lah numbers defined by [1, p. 50]

(et − 1)k = k!
∞−
n=k

S(n, k)
tn

n!

and [1, p. 156]

Ln,k = (−1)n

n − 1
k − 1


n!
k!

.

Then, for n ≥ 1 and k ≥ 0, we have that

T (n, k) = (−1)
n−k
2 (−1)n

n−
α=k

(−1)α2n−αS(n, α)


α − 1
k − 1


α!

k!
(2.17)
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and

T (n, k) = (−1)
n−k
2 (−1)n

n−
α=k

2n−αLα,kS(n, α). (2.18)

Demonstration. It is well known that the Stirling numbers of the second kind are given by means of S(n, k) =
1
k!

∑k
j=1

(−1)k−j


k
j


jn [1, p. 204]. It is clear, then, that the sought formula (2.17) follows straightforwardly by making use of this

sum and (2.16). Furthermore, the expression on the right-hand side of the Eq. (2.17), in view of the definition of the Lah
numbers Ln,k, may be written in the form given by (2.18).

For the sake of completeness of this paper, the following result is reproduced from the work of Butzer et al.
[10, Proposition 7.5, p. 482], which the interested reader may refer to for a simple proof.

Proposition 10. In terms of central factorial numbers T (n, k) which are explicitly given by T (n, k) =
1
k!

∑k
α=0(−1)α


k
α


 k
2 − α

n
(see [10, p. 429] and [11, pp. 213–217]), for n, k ≥ 1, we have:

T (2n, 2k) =

n−
α=k

(−1)n−α22n−2α (2α)!

(2k)!


α − 1
α − k


T (2n, 2α), (2.19)

T (2n + 1, 2k + 1) =

n−
α=k

(−1)n−α22n−2α (2α + 1)!
(2k + 1)!


α − 1/2
α − k


T (2n + 1, 2α + 1). (2.20)

3. Concluding remarks

In this paper, two sequences of non-negative integer numbers, {T (n, k)}∞n,k=0 and {S (n, k)}∞n,k=0, have been thoroughly
investigated and many of their properties have been determined. In particular, it should be mentioned that the higher-
order tangent numbers T (n, k) constitute a special class of the partial multivariate Bell polynomials. Furthermore, from
the knowledge of T (n, k), the higher-order secant numbers S (n, k) can be easily computed since S (n, k) and T (n, k) are
related (see Proposition 3). In addition, a simple explicit formula involving a double finite sum is deduced for the higher-
order tangent numbers T (n, k) (Proposition 8) and it is shown that T (n, k) are linear combinations of the classical tangent
numbers Tn (Proposition 7).

As an example of an application of the numbers T (n, k) and S (n, k) we give, without proof, the recently established
[6, Corollaries 1 and 2], and here slightly modified (observe that T (n, k) = T (n, k)k! and S(n, k) = S (n, k)k!), closed-form
higher derivative formulae.

Proposition 11. In terms of the tangent and secant numbers of order k, T (n, k) and S (n, k), for n ≥ 0, we have:

(a) Dn
t tan x = T (n, 1) +

n+1−
k=1

(k − 1)!T (n + 1, k) tank x;

(b) Dn
t sec x = sec x

n−
k=0

k!S (n, k) tank x;

(c) Dn
t cot x = (−1)n


T (n, 1) +

n+1−
k=1

(k − 1)!T (n + 1, k) cotk x


;

(d) Dn
t csc x = (−1)n csc x

n−
k=0

k!S (n, k) cotk x.

Proposition 12. In terms of the tangent and secant numbers of order k, T (n, k) and S (n, k), for n ≥ 0, we have:

(a) Dn
t tanh x = (−1)

n−1
2 T (n, 1) +

n+1−
k=1

(−1)
n+k−1

2 (k − 1)!T (n + 1, k) tanhk x;

(b) Dn
t sech x = sech x

n−
k=0

(−1)
n+k
2 S (n, k) tanhk x;
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(c) Dn
t coth x = (−1)

n−1
2 T (n, 1) +

n+1−
k=1

(−1)
n+k−1

2 (k − 1)!T (n + 1, k) cothk x;

(d) Dn
t csch x = csch x

n−
k=0

(−1)
n+k
2 S (n, k) cothk x.

We remark that, apart from T (n, k), which were introduced by Comtet (see the definition of T (n, k) in [1, p. 259]),
in the literature, several more definitions of the higher-order tangent numbers can be found: Carlitz and Scoville
considered the numbers T (k)

n := k!T (n, k) ([2, p. 428] and [3, p. 305]), while Lomont studied C (k)
n given by C (k)

n :=

(−1)
n−k
2 (−1)nk!T (n, k) [12, Eq. (3.1)]. However, it seems that the numbers T (z)

n defined by Cenkci [13, p. 1500] cannot
be brought into connection with T (n, k). We also note that Carlitz and Scoville [2, p. 428] defined the higher-order secant
numbers S(k)

n := k!S (n, k) (see also [4, p. 665]). The tangent and secant numbers, Tn and Sn, were first studied by André in
1879 [14].

The majority of the results presented here are new, while the known results are two recurrence relations given by
Proposition 5 [for the recurrence (2.8) see [4, Eq. (7)] and [1, p. 258]; for the recurrence (2.9) see [4, p. 665, Eq. (9)]] as
well as the formula given by Proposition 6(b) [cf. (2.11) and [4, p. 665, Eq. (10)]]. Also, the formula (2.18) was deduced
earlier by different arguments [15, p. 156]. In addition, it should be noted that, judging by the results of extensive numerical
calculations which support such a conclusion, our simple and rather compact formulae (2.6) and (2.15) appear to be
equivalent to the (relatively complicated-looking) formulae which were established by Lomont [12, see, respectively, Eqs.
(3.2), (3.4), (3.6) and (3.7)].
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