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The paper presents conditions that should be met in order to make the photothermal
induced temperature variations of a solid sample analogous to the voltage varia-
tions of the electric network with passive linear elements. Further analysis shows
that such analogy enhances experimental determination of the thermal properties
of thin solid layers by photothermal frequency method.
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Introduction

Photothermal (PT) measurement techniques are being intensively developed and ap-
plied with increased success to the measurement of thermal, optical, and other related physical
properties, as well as for the investigation of subsurface structure and macroscopic defects of
various samples [1-6].

PT methods are based on direct or indirect recording of surface temperature variations
that arise from the generation and transfer of heat produced as a consequence of the absorption
of laser radiation of modulated intensity by a sample. The resulting signal depends on the
amount of generated heat (depending on the coefficients of optical absorption and the efficiency
ofthe heat-to-light conversion of the sample) and on the heat transfer process (hence on the sam-
ple’s thermal conductivity, coefficient of thermal diffusivity and other thermophysical proper-
ties). Therefore, PT methods have broad capabilities as tool for non-destructive characterization
of various materials.

In order to determine the physical properties of the investigated structure, it is neces-
sary, as the first step, to develop a mathematical model that sufficiently well describes physical
processes leading from the optical excitation to the thermal response (direct problem), and then
to solve the inverse problem of determining the physical properties of the system once the opti-
cal excitation, thermal response and model are known. The inverse problem is usually solved by
application of curve-fitting. However, non-linear fitting being a rather complex procedure, quite
often gives ambiguous results [7, 8]. There fore it is worthy of effort to investigate approximate
solutions of the problem that enable determining the physical properties of the system without
non-linear curve-fitting, by analyzing only certain ranges of PT signal in function of the modu-
lation frequency.
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This paper deals with one such solution of the inverse problem in analysis of the PT re-
sponse, the case when a mathematical model of the PT induced surface temperature variations is
analogous to the model of the flow of electric current through an electric network consisting of
passive linear elements (resistors, capacitors, and coils). In that case, already developed meth-
ods of solving the inverse problem in passive linear electric networks may also be applied to
solve the inverse problem of characterization of materials by PT methods.

The first part of the paper presents an analysis of a model of the PT heat propagation in
order to determine conditions under which the investigated analogy holds. After that, the ana-
lytic expression for the PT response under those conditions is determined, and finally, a method
of solving the inverse problem in the case under consideration is presented, and its potentials for
application for characterization of material properties are discussed.

Model
Propagation of the PT induced heat through the sample

The analysis presented in the paper considers a typical PT configuration schematically pre-
sented in fig. 1. A solid sample of length d_, mounted on backing of length d,,, is exposed to radi-
_ ation of optical beam passing through air layer
wlr_ It _‘L with length d,. Air and backing present the envi-
: ; ronment of the sample surrounded by ambient
Air Sample | Backing K
_ , with temperature 7,,. As a consequence of the
Amblent AES absorption of light by the sample, the sample is
heated, and due to heat transfer, temperatures of
the sample (7)), air layer (7,), and backing (7})
| Pox are changed. Temperature variations due to
~dfa 0 d T time-dependent PT heating, defined as
82T ~Ty, — T, are proportional to the PT
response [5]. T, is the steady-state temperature
variation.

As the heating of the sample’s surface can be considered uniform over the entire
heated surface, it can be assumed that temperature is uniform over all cross-sections and that it
varies only along the direction of the incident light beam (x-axis in fig.1.). Hence, the heat trans-
fer may be considered one-dimensional, and the validity of this assumption is already recog-
nized [5]. Therefore, the PT response should be represented as a function of only two variables,
9 =9, 1).

Temperature variations arise due to the transfer of heat generated by the absorbed radi-
ation, and they are, in one-dimensional case, described by energy balance equation:

oT (x,1) _ _0q(x,1)
v T S(x,1) Q0 (D

Figure 1. Typical PT experiment setup
MOB stands for modulated optical beam

C

where C,, stands for the volumetric specific thermal capacity of the medium, S(x, #) — for the vol-
umetric heat generation rate, and ¢(x, ¢) — for the heat flux. Taking into account thermal memory
and heat conduction effects, the heat flux depends on the temperature gradient, and this fact is
expressed by the following equation [5, 9-11]:

oq(x,t) _ K 09(x, 1)
ot

X, 0)+T
q(x,1) .
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where k is the heat conductivity, and 7 —the relaxation time of thermal processes in the medium.

In the case of a homogeneous and opaque sample, it can be assumed that the incident
light is absorbed by a very small region of the sample, so that the heat generation rate can be ex-
pressed as S(x, £) = S(f) 5(x), and thus thermal variations and heat flux may be described by a set
of hyperbolic homogeneous differential equations of the second order:

028 (x,t) _ 1 c’)zé}i(x,t)Jrr_i 029 (x,t) 3)
0x? D, ot D, ot?

2g. 2g. . 02g.

¢y (et) _ 1 2qi(n0) T 9% (1) @

Ox? D; ot D; ot?

where the index i denotes part of the considered system (i = a, s, and b stands for air, sample, and
backing, respectively) and D stands for thermal diffusivity of the medium (D = £/C).

To finalize the model for the description of the PT response, eqgs. (3) and (4) are to be
completed with homogeneous initial conditions:

1

9,(x,t=0)=0and g,(x, £ = 0) =0, (5)

homogeneous boundary conditions:
9, (x=-d,,t)=0 and 9, (x=d+d,,1)=0, (6)

and conditions of continuity of temperature and heat flux on interfacial surfaces:

3, (x=0,6)=9,(x=0,¢) and ¢,(x=0,¢)=g,(x=0,1)=5(¢)

7
S (x=d,t)=9,(x=d,t) and g (x=d,t)=q,(x=d,1) 2

Analogy with flow of electric current through lines

Analogies between heat conduction and electric conduction processes were already
investigated and applied to solving thermal problems [6, 11-16], but presenting models neither
includes passive linear electrical network analogy nor conditions that should be met in order to
make this analogy. In the considered case of the model of the PT response presented in the previ-
ous chapter, an analogy with a model of electric current flow through homogeneous lines may
casily be derived. The voltage between the lines, u(x, #), and the electric current passing through
them, i(x, £), satisfy the following equations:

c Ou(x, t) _ oi(x, )

8

ot Ox ®

_ounD) _ iy O 9)
X ot

where r stands for distributed resistance (» = dR/dx), ¢ — for distributed capacitance (¢ = dC/dx),
and / for distributed inductance (/ = dL/dx) of the line.

From egs. (8) and (9), hyperbolic homogeneous differential equations of the second
order describing voltage and electric current, the so-called telegraphy equations, may easily be
derived:

0%u(x, t) e ou(x, t) e 0% u(x, 1)

Ox? ot ot? (19
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. . 5
0%i(x, t) e Oi(x, 1) e 0%i(x,1)
Ox? ot ot?

An analogy between the differential equations describing the PT response — egs. (3)
and (4), and the flow of electric current through lines — eqs. (8) and (9), is established by intro-
ducing the following relationships:

(11)

u<—>9,i<—>q,r<—>%,l<—>%,c<—>€v (12)

However, by introducing analogy (12), it is stated only that heat conduction through
one homogeneous layer (air, sample or backing) can be described by an electric current flow
through homogeneous lines [6, 11-16].

Since in PT frequency methods the excitation of the system (light beam) is modulated
by amplitude, the generated heat can be described as S(f) = S,cos (@f), and it is suitable to em-
ploy the Fourier transform to analyze the problem. Symbol @ signifies modulation frequency.
Temperature variation and heat flux can be represented by their complex representatives §i (x)
and g, (x):

9,(x, 1) =28, (x)cos[ot + 0, (x)] = Re (+23, (x)} (13)
q:(x, 1) =v2¢, (x)cos[w + y, (x)] = Re (27 ,(x)} (14)

The analogous problem is solved by application of complex representatives for volt-
age and current, U and [, respectively:

u(x, ) = 2U (x)cos[ot +0(x)] = Re W20 (x)} (15)

i(x, ) =21(x)cos(@t + y, (x)) = Re 2T (x)} (16)

The symbols 0 and v signify the phase lag of dynamic temperature 9(x,¢), — or voltage
u (x, t) and heat flux g(x, t) — or electric current i(x,f), from dynamic source.

Then, the telegraph equations become ordinary linear differential equations of the sec-
ond order in the complex domain (j is imaginary unit):

d>U (x)

— (7 — 2] Ui
02 = (jorc—w?lc)U(x) (17)
d>T (x) . N
o2 = (jorc—w?lc) 1(x) (18)
It is convenient to write linear differential equations of the second order in the follow-
ing form: 27 _ ) 7 ~
U _z200) and L9 _z27 (0 (19)
dx? dx?
and it follows that &'(x) is given by:
&, =2y, Z=r+jol, 7=joc (20)

&'(x) is called complex transmission coefficient, while Z and 7 are the distributed impedance
and admittance of the line.

The general solution of eqgs. (17) and (18), taking into account the relation between
voltage and electric current, is given by expressions:

U(x) = A, exp (—&x) + A,exp (&,x) (21)
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~ A A
I (x) = Zhexp (= &,x) — == exp(—&,x) (22)
ZC ZC
where Zc stands for the characteristic impedance of the line:

7 =

C

(23)

2
<\

while 4, and A4, are constants which are to be determined from the boundary conditions.
Model of the environment and surface thermal sources

In order to develop an electric network that will be the analog of the PT induced sys-
tem under consideration, the boundary and interfaces conditions — eqgs. (6) and (7), should be
employed. The boundary conditions, eq. (6), essentially mean that the layers of air and backing
are much longer than the layer of the sample, suggesting that the environment of the sample
should be modeled as very long (semi-infinite) lines.

In the case of very long (semi-infinite) lines, the constant 4, has to be zero, to provide
finite values for voltage and current when x — . Therefore, for very long lines there holds the
equation (independent of x)

lz(x) = ZC =const. (24)
I (x)

showing that a very long line can be modeled as electric element with impedance equal to the
characteristic impedance of the line. Besides, the fact that 4, = 0 also implies that near the end of
very long lines voltage and electric current tend to zero.

The derived conclusion may be used to develop an analogous electric model for analy-
sis of PT phenomena in opaque samples, which is presented in fig. 2. Layers of air and backing,
from the point of view of their interactions with the sample, may be modeled with impedances

and that have values: o T
an _ +JCOTa ’ Zcb _ +]60Tb (25)
Jjok,C, Jok,C,

The sample is modeled by electric lines of length d and by the distributed impedance
and admittance:

Z=(l+jor,), T =joC, (26)
S
The generated heat at x = 0 is modeled by ideal o) e
current source giving electric current Sy, thus satis- [~ 1~~~ 1
fying boundary conditions eq. (7). The values of  Z. So (@ Zeo
voltages and electric currents in this circuit are =~ L— | _
equal to the values of temperature variations and g

heat flux at the respective points of the sample.
Figure 2. Analogous electric circuit where

sample is modeled by electric lines

Model of the sample

PT applications to characterization and imaging of materials imply the direct or indi-
rect measurement of temperature variations of one surface of the sample. Therefore, from the
point of view of the analysis of the PT response, a relevant model of the sample should be able to
describe temperature variations on the sample’s surfaces, while temperature variations within
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the sample are not of particular interest. Therefore, the simplest relevant model of the sample
should describe only the relations between surface temperature variations and heat fluxes, i. e.
the simplest relevant analogous electric circuit can be described only by voltages and electric
currents at the ends of the line.

Putting x = 0 and x = d into eqs. (21) and (22), it can be easily shown that the voltages
and the electric currents at the ends of the line of finite length d satisfy the following matrix

equation: ~
700) _ 1ch(ad) Z sh(Gd) J(d) o
7(0) TSh(CNFd) ch(&d) T(d)

It is usual in the theory of ¢ electrlc circuits to formally introduce total line impedance
7 =7%.d and total line admittance ¥ = J.d, which can be used to rewrite the previous matrix
equatlon in the form where only those parameters are used:

—— 7 —
F(O)} hZT) \ES’“E) {tj(d)HaH alz}[tj(d)} o8)
70) \/%sh( 57 a7y @1 lan ax]li@

Relation (28) is known in the theory of electric circuits as the representation of the
electric network by a-parameters. It is also established that, for any given matrix of a-parame-
ters, it is possible to compose a four-terminal electric network consisting of elements with con-
centrated parameters, which is described by the given matrix. Therefore, it is possible to com-
pose an electric network consisting of the elements with concentrated (not anymore distributed)
parameters, which has the same relations between the voltages and electric currents at the ends,
described by eq. (28), as the considered line. The scheme of the network is presented in fig. 3,
while the values of the impedance and admittance in the network are:

ﬂ{WJ

5 5 2 5 o SNZY

oq=Z——= and Y, =Y —— (29)

vZy 24

2

= 5 S i As the considered line of finite length repre-
N0, e sents an electric model of the PT induced sample,
5o) . - the electric network from fig. 3 is an electric model
Yeq va - of temperature variations and heat fluxes at the

surfaces of the sample.

The impedance and the admittance represent-

Figure 3. Electric network modeling the PT  ing the sample in fig. 3 should have the values:
induced sample

h - 2 [ h
t[ «/_r‘/ (w7) +ja)rJ j Cs («/_r

1 d oo d

- —(w7)? + jot
24Dz VDt

VJ-(071)? + ja)TJ

—(w1)? + jor

(30)

d .
Zy :E(l + jor)
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The special case considers multi-layer struc-
tures, where each layer has different thermal
characteristics. However, since the boundary
conditions for the heat transfer between the lay-
ers consist of continuity of heat flux and tem-
perature on interfacial surfaces, while the
boundary conditions between the electric lines  Figure 4. Analogous electrical network for the
consist of continuity of voltage and electric cur- ~ PT induced sample with » layers
rent, multi-layer structures may be modeled by
complex electrical network consisting of several stages, each stage representing one layer of
multi-layer structure by electrical network in fig. 3. Such electric model for analysis of the PT
response of a structure with n layers is presented in fig. 4.

Each layer L™ is represented by impedances and admittance that have values as deter-
mined by eq. (30).

While the circuit in fig. 3 has a rather simple structure, the impedance and the admit-
tance cannot be represented by real electric elements (resistors, capacitors, and coils); so, the ob-
tained analogous circuit is not suitable for application to standard methods of analysis of electric
circuits.

Analogy with passive linear networks

Expressions for the equivalent impedance and admittance, eq. (29), of the PT induced
sample may be expressed using the following series expansions:

ShZT ) _

7Y Z:
+=—+ +

1 . and 31
J77 6 120
m YEX | 77 702
2 I+ —+ + ...
_ 24 1920 (32)
5 7Y 7272
Y 1+ 28 + ZY +
2 8 384
Therefore, when the condition:
%@ (33)
is satisfied, it holds that:
Z =2 =d(r+jo), Y, =Y =joCd (34)
In that case, the analogous electric network from o) T

fig. 3 may be presented by using only passive linear ~ —— A
elements (resistors, capacitors, and coils), as it is Reyf2 Ley2 Reyf2 Logf2
shown in fig. 5.

The elements in a passive linear network (in fur-
ther text also denoted by the abbreviation PLN) that
is the model of a surface temperature variations ofa  gigyre 5. Analogous passive linear network
PT induced sample has the following values: model of the PT induced sample

o

<

L
11
1

P
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d T
R, :E’ Ly, =d;, Ce =dC, (35)
When the PT response can be modeled by PLN, the matrix equation (28) reduces to:
Y S, ZY

~ 1+— 7 (1 + —J ~
R »

1(0 ~ 1

© poZ @

The special case considers multi-layer structures, where each layer satisfies the condi-
tion — eq. (33). These structures may be modeled by PLNs consisting of several stages, each
stage representing one layer of multi-layer structure by PLN in fig. 5.

Discussion
Conditions for modeling PT response by passive linear networks

It is already established that the condition to model analogous electric circuit by pas-
sive linear elements is expressed by eq. (33). Rewritten by electric line parameters, the relations
take the form:

d*(—w*lc + jorc) < 6 37)

Electric line parameters may be used to express condition for the modeling in terms of
the properties of the PT induced sample:

t 1
&2 —0? =+ jo— |<1 38
{ 6, 6DJ %)

N

which, being expressed by complex numbers, may be turned into conjunction of two conditions
expressed by real numbers:
2

<l and 2« (39)

Opd, Op

where the following symbols are introduced:
6D
d?

The conditions given by eq. (39) can also be expressed as:

o o o |o
—<—2 and —< |2 (41)
a)T a)T a)T wT

Introducing critical thickness d/,

1
o, =— and o=

T

: (40)

S

d_ =4,/6D,7, (42)

defined so that:
10) d ?
—D _ (_fj (43)
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the condition for modeling the PT response by PLN — eq. (39), reduces to:

(d j 1 {1, d<d.
o<wo,| < |, where w,=—, d, =46D;1,, n= (44)
d T 2,d>d,

The derived condition (44) shows that the PT response of any sample can be modeled
by PLN for sufficiently low frequencies. For a sample with thickness d,, the limiting frequency
is ,; for samples thinner than d,, the limiting frequency increases inversely proportionally to
the thickness of the sample; for samples thicker than d, the limiting frequency decreases in-
versely proportionally to the square of the thickness of the sample. At the same time, it should be
noted that when the modeling of the sample by PLN is possible, the samples thicker than d, can
be modeled by networks consisting only of resistor and capacitor (RC networks), because ther-
mal memory effects may be neglected at frequencies much lower than ..

The condition (44) is graphically presented in fig. 6: in order to apply the modeling by
PLN, the modulation frequency and depth of the PT induced sample should describe a point
deep within the shadowed area.

Table 1 presents a list of typical representatives of various classes of materials, to-
gether with respective critical thicknesses d, and frequencies w,, calculated on the basis of bulk
material properties.

s

07 Table 1. A list of the critical thickness and the
i who, = 11(cidy) limiting frequencies
3T Material (representative) | d,[m] | o,[s™]
Metal (aluminum) 2.4-10° 10"
T : Semiconductor (silicon) | 2.3-107° 108
o5+ : QSO E Polymer (PVC) 22105 | 103
: Porous (dry sand) 41107 107!
%% o5 1.5) 15 20 @ 25 Y Organic (wood) 3.6:102 | 1072

Figure 6. Graphical presentation of conditions
for modeling PT induced sample by linear
passive electric network

The table suggests that thin layers (up to the order of micrometer) of crystalline materi-
als may be modeled by PLN for all experimentally achievable modulation frequencies (of the or-
der of 10 Hz to 100 MHz), while the thicknesses of the samples of non-crystalline materials,
which may be modeled by PLN, are of the order of millimeter.

Characterization of PT sample properties by analogy with
passive linear networks

This chapter discusses the possibilities of application of the developed analogy in the
determination of the properties of PT induced samples. The analogy will be applied by using
methods for frequency analysis of PLN to analysis of frequency dependence of the PT response.

In order to characterize the material properties of thin layers, frequency response of
differential PT response of the so-called free standing sample is measured. The differential PT
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response is the ratio of temperature variations on the sample’s surfaces, $(d)/3(0), and
free-standing sample is a sample that is surrounded by air or some other gas (ideally vacuum).
Heat conductivities of gases are very low compared with solids; so, assuming that k,;. — 0, it can
be considered that the characteristic impedances of air and backing in analogous electric model,
Z,and Z,, , are infinite, so that electric currents passing through them are equal to zero.

The theory of PLN shows that frequency dependence of any voltage may be expressed
in the complex domain by rational functions of frequency, and analyzed by applying analysis of
zeroes and poles of the functions, as it will be presented later in the text.

In the case of the free-standing sample, /(d) in the analogous electric circuit from fig.
5 equals to zero, and thus eq. (36) gives result:

(7(0):[1+%Jﬁ(d) (45)
Therefore applying the analogy between the electric circuit and the PT induced sample, and the
already established relations (12), (33), (35), (40), and (42), it can be concluded that:

Yol

d) —G(jo) = 1 WO p0,

(0) d 2 ) 2 d 2 ) - 352 + 3(J)TSCO D@,
3 — || j— | +3 — || j— |+]
dT a)T dT a)T

where s = jo. The function G(s) is, in fact, the transfer function of the PT induced sample if the
temperature variation at the illuminated surface 9(0) is considered to be the system input, and
the temperature variation on the opposite side of the PT sample 3(d) the output of the investi-
gated system. G(s) is a transfer function of the second order, and its behavior depends on the
roots of its characteristic polynomial — which is the polynomial in denominator of G(s) [17].
The physical interpretation of G(jw) is that its modulus |G(jw)| shows frequency de-
pendence of the ratio of amplitudes of temperature variations 3(d)/3(0), and its argument
arg[ G(jo)] shows frequency dependence of the phase difference between the temperature varia-
tions $(d) and 3(0). The expressions for |G(jw)|, which is the amplitude-frequency characteris-
tic of the system, and arg[ G(jw)], which is the phase-frequency characteristic of the system, are:

(46)

Yol

D _iGiiol=G ! 47
50, ~|0U@I=6@) — — (47)
ROGIEGIS
dT a)‘[ dT a)l’
0(d) —0(0) = arg G(jow) = arctg 21 (48)
1fd) o _o
3 d] 0 o,

The usual method of analyzing PLN is application of Bode plots, asymptotic log-log plots of
the amplitude-frequency characteristic. If the thickness of the PT sample satisfies the condition:
d>d 2 (49)
W
then the roots of the characteristic polynomial are real, and the amplitude-frequency characteris-
tic of the transfer function can be approximately presented by the Bode plot in fig. 7.
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Therefore, the log-log graph of amplitude of the ex-
perimentally measured differential PT spectra has two
distinct features, frequencies @, and @,, where the graph
changes the slope. The easiest way to determine those
frequencies from the recorded spectra could be to draw
the low-frequency asymptote of the graph (which is par-
allel to abscissa), the high-frequency asymptote of the
graphic (having a slope of —40 dB) and the medium @ @, log®
range asymptote (with a slope of 20 dB); then, the inter-  Figure 7. Bode plot (thick line) and
section of the low-frequency asymptote and the medium  log-log graph (thin line) of amplitude
range asymptote has the abscissa ®,, and the intersection  of differential PT response for PT
of the high-frequency asymptote and the medium range ~ induced sample that satisfies eq. (49)

. where @, and ®, are roots of the char-
asymptote has abscissa @,.

i . acteristic polynomial of G(s)
Frequencies @, and @, can easily be calculated

2 2
B T I A Py P 2 (50)
2 3\ d 2 3\ d

log |G(j)|

to be:

showing that the frequency w, decreases from @ /2 to zero, while the frequency w, increases
from @_/2 to w, with the increase of sample thickness. Taking into consideration that the PLN
model of the PT sample can be applied only to frequencies satisfying the condition described by
eq. (44), the conclusion about the values of @, and @, means that the Bode plot analysis may be
applied only in the determination of @, since the PLN model is not valid for the frequency range
to which w, belongs.

Nevertheless, by determining @, from the experimental data for sufficiently thick PT
samples, it is possible to establish one analytical relation between the material parameters @,
and d, (and consequently 7 and D). It means that the fitting procedure for the determination of
the material parameters may be significantly simplified by application of PLN model, thus im-
proving reliability of the data obtained by fitting.

If the thickness of the PT sample does not comply with the condition (49), the charac-
teristic polynomial has double real, or complex conjugate, roots. The Bode plot in that case has
one distinctive feature, frequency o, where the Bode plot rapidly changes its slope from 0 dB to
—40 dB.

This frequency could easily be determined from log-log graphics of the experimental
differential PT spectra as the intersection of their low-frequency and high-frequency asymp-
totes. However, by analyzing eq. (46), it can easily be shown that the following equation holds:
1 4, ®

V3d T
where from it can be concluded that in the case when the condition expressed by eq. (49) is not
satisfied, the high-frequency asymptote belongs to a frequency range where modeling by PLN is
not applicable, and consequently, Bode plot analysis is not useful for thin samples.

However, it is well known in the theory of electric circuits that a transfer functions of
the form (46), which can be rewritten in the form:

0O p0, 1 3 1,0, 3 d

G(s)= = , T= s = 3—=——(52)
35?2 +30 s+opw, T?s> +2ETs+1 OING) 2V o 2 d,

T

o)

(1)
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has the resonant maximum [15]:

_ 1
e fimer

when the condition & < 0.5 is statisfied, as it is shown in fig. 8
Considering eq. (52), it means that PT spectra of thin samples, satisfying condition
d/d, < 1/3'2, exhibit a peak at a frequency @, , which can still be approximately considered to
belong to the frequency range where PLN model is applicable, because the validity of the model
for thin samples is determined by condition (44).
Therefore, while the Bode plot analysis cannot be
(Glmax ¢ =025) applied for thin samples, the PLN model provides the
possibility of determining @, and & of thin samples from
the experimental data without application of the fitting

- —4@ procedure. Equations (44), (52), and (53) enable further
£=025 \ determination of the values of the sample parameters D,

G at frequency ., =@4/1-2£%2 <@, (53)

|G[dB]

|Glmax (£ = 0.5)

§=05 and 7, thus providing the possibility of performing
) ) characterization of a sample without fitting.

oo Besides, it should be noted that the expression given

0%9\\ by eq. (46), derived by application of the PLN model-

— ing, is suitable for non-linear curve fitting. Thus, even

in the cases when conventional methods of analysis of
Figure 8. Spectra of differential PT  frequency analysis of electric circuits are not applica-
response (eq. 53) for three different ble, the modeling of the PT response by PLN simplifies
values of & the characterization of PT induced samples.

The special case that will be discussed is the case of
the free-standing multi-layer PT sample. In order to model the PT response of such structure by
linear passive electric network presented in fig. 4, it is necessary that the condition (44) be satis-
fied for each of the layers. If that is the case, a PT induced sample with # layers may be modeled
by linear passive electric network that, based on eq. (36), can be represented by a-parameters as

follows: ~ ~ ~
{‘f@}w ...Tn[q(d)}:Ta [9@} (s4)
1(0) @] T11@)
where T, (m =1, 2,...,n) stands for the matrix of a-parameters of m-th layer.
" In the case of the free-standing multi-layer PT induced sample, similar to the case of
the free-standing single layer sample, the differential PT response 3(d)/3(0) can be calculated
by analysis of the analogous network in the case when 7(d)=0. From eq. (54) then follows that:

0(0)=(D),, U(d) (55)
Considering the form of matrix 7, it can be concluded that the elements of the matrix

T, are polynomial expressions of the general form:

nou ~ ~ 2n
(D = 3 5pu 2T = Yayst (56)

u=0v=

where o, and 3, are real constants. Hence, the differential PT response of the multi-layer sam-
ple can be expressed in the following form:
D _Gg=—1
9(0) Sta, st
k=0

(57)
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Therefore, the recommended non-linear fitting procedure for determining thermal
properties of multi-layer samples is to apply modeling by linear passive electric network in or-
der to find the dependence of coefficients @, on the thermal properties of the materials of layers,
and then to perform non-linear fitting of square of the inverse of the differential PT response
spectra to polynomial of order 4n, as:

2
19(0) _ 1 _ n Nkl - 2 n o - ) .
{‘9(””} GG (Biroauo ]+ fenaor) (58)

An example of modeling of a three-layer structure (metal-polymer-metal) by electric
network of the second order is presented in paper [16]. It is also of interest to point out that the
expressions (52) and (53) present theoretical basis for Pade’s approximate procedures for the
determination of thermal properties of bipolar transistors presented in [18].

Conclusions

This paper presents an analysis of the possibility and potentials of modeling of the PT
response of a thin sample by linear passive electric network. It is established that such a possibil-
ity depends on the modulation frequency of PT excitation and the thickness of the sample. If this
condition is satisfied, the environment of the sample may be modeled by impedances and the
sample itself by linear passive network presented in fig. 5.

If the free-standing PT induced sample can be modeled by passive linear network, its
differential PT response is determined and it is shown that thermal properties of the material of
the sample can be determined by the analysis of the peak in PT spectra (for the samples thinner
than d,/3), the combination of the Bode plot analysis and non-linear fitting (for the samples
thicker than d,) or by linear fitting of polynomial expression (for the thin samples of arbitrary
thickness).

Moreover, by analysis of the case of the multi-layer thin film sample, it has been
shown that the modeling of the PT response by electric network may be useful even when the
obtained network is not linear or not simple, since the expressions for the PT response may be
more easily derived and analyzed, offering easier insight into the phenomenon compared with
other models.

It can be concluded that modeling of the PT response by linear passive network is an
easy-to-use and useful tool for the analysis of PT signal in function of modulation frequencies,
since the derived models can significantly simplify the analysis of the PT response. Besides, ob-
tained results could be employed in extraction of thermal properties by other lock-in
thermography methods.
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