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Abstract: Resorcinol-formaldehyde (RF) cryogels were synthesized by the sol-gel
polycondensation of resorcinol (R) with formaldehyde (F) and freeze-drying was
carried out with #-butanol. Carbon cryogels were obtained by pyrolyzing RF cryo-
gels in an inert atmosphere. Characterization by nitrogen adsorption showed that the
carbon cryogels were micro and mesoporous materials with high specific surface ar-
eas (Sgpy & 550 m2/g). Cyclic voltammetry experiments at various scan rates (2 to
200 mV s!) were performed to study the electrical double-layer charging of carbon
cryogel electrodes in 0.5 mol dm™ HCIO, solution. It has been demonstrated that it
is possible to sub-divide the total specific capacitance into the mesoporous and the
microporous specific capacitance by analyzing the linear dependence of the charge
(¢) on the reciprocal of the square root of the potential scan rate (v-1/2), and the linear
dependence of the reciprocal charge (1/q) on the square root of the potential scan
rate (v"1/2). The specific capacitance was found to be constant over a wide range of
sample weight (12.5 to 50.0 ng) and a very promising specific capacitance value of
150 F/g, was found for this material operating in an acidic 0.5 mol dm HCIO, solu-
tion at room temperature.

Keywords: carbon cryogel, carbonization, porosity, BET specific surface area, cy-
clic voltammetry, impedance, specific capacitance.

INTRODUCTION

Carbon aerogels are a special class of carbon aerogels (air-filled foams) devel-
oped at the Lawrence Livermore National Laboratory,!-2 with many common char-
acteristics such as: a tortuous open-cell structure, ultrafine particle (cell), and pore
size (<50 nm), and high specific surface area (4001000 m2/g). The aerogel solid
matrix is composed of interconnected colloidal-like carbon particles or polymeric
carbon chains depending on the precursor formulation and processing conditions.
Carbon aerogels are usually formed by the sol-gel polycondensation of resorcinol

* Corresponding author.

21



22 BABIC, DJOKIC and KRSTAJIC

and formaldehyde, followed by supercritical or evaporative drying, and subse-
quent pyrolysis at an elevated temperature (ca. 1050 °C) in an inert atmosphere.!-3
The resulting carbon aerogels are electrically conductive in contrast to all other
types of organic and inorganic aerogels, which are generally insulating materials.
Carbon aerogels can be produced as monoliths, composites, thin films, powders, or
microspheres. The monolithic porous carbon aerogels have low electrical resistiv-
ity because the monolithic form of the carbon aerogel decreases the contact resis-
tance to a great extent. Other advantages of carbon aerogels include high interfa-
cial resistance,* which can translate into an ideal polarizable interface for electric
double layer capacitor applications.

The ability to control the structure and properties of porous carbon aerogels
has led to their increased use as electrode materials in advanced energy storage de-
vices and other electrochemical devices. Aerocapacitors and electrosorption pro-
cesses, including the process that has become known as carbon aerogel capacitive
deionization (CDI), have been successfully developped. Both are currently under
commercial development.

As previusly mentioned, carbon gels are usually obtained through the carbon-
ization of organic aerogels prepared by the sol-gel polycondensation of resorcinol
(R) with formaldehyde (F), followed by supercritical drying with carbon dioxide.
Although they possess superior porous properties, their commercial applicability
is quite limited, mainly due to their high cost of production. Therefore, a great deal
of effort has been made to decrease this high cost, such as decreasing the cost of
processing. Supercritical drying is thought to be the most costly process during the
production of carbon gels. It has been shown that micro and mesoporous carbons
could be obtained even when more economical drying methods, such as free-
ze-drying,%7 are used instead of supercritical drying.

In this study, RF carbon cryogels were prepared and the porous structures of
the cryogels were estimated by nitrogen adsorption and the pore size distribution
of the cryogels is proposed. The electric double layer capacitance (EDLC) of the
carbon cryogels was studied by cyclic voltammetry and impedance measurements.
The main focus was to understand the roles of the mesopores and micropores in the
charging process of the electric double layer.

EXPERIMENTAL
Preparation of RF cryogel

In the present work, RF gels were synthesized by polycondensation of resorcinol (C4H4(OH),),
(R), with formaldehyde (HCHO), (F), according to the method proposed by Pekala.! Sodium car-
bonate (Na,COs5), (C), was used as a basic catalyst. RF solutions were prepared from resorcinol, 99
% purity (E. Merck) and formaldehyde, 36 %, methanol stabilized (Fluka Chemie), sodium carbon-
ate, p.a. quality (E. Merck), and distilled and deionized water, (W). For all samples, the mass ratio,
RF/W was 0.2 (w/w), the R/F mole ratio was 0.5 and the R/C mole ratio was 100. The RF mixtures
were decanted into glass tubes (inner diametar = 10 mm), sealed and stood for 2 days at 25 °C, 1 day
at 50 °C and 4 days at 85 °C. The weight of the samples was varied between 12.5 and 50 pg.
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The RF cryogels were prepared by freeze drying according to procedure of Tamon et al.%° The
RF gels were immersed in a 10-times volume of #-butanol, p.a. quality (Centrohem-Beograd), for
more than one day and rinsed to displace the liquid contained in the gels with #-butanol. The rinsing
with #-butanol was repeated twice.

The samples were prepared by freeze drying using a Modulyo Freeze Dryer System Edwards,
England, consisting of a freeze dryer unit and a High Vacuum Pump E2M8 Edwards. All samples
were pre-frozen in deep-freezer at —30 °C for 24 h. Subsequently, they were freeze dried in acrylic
chambers with shelves mounted directly on the top of the condenser of the Freeze Dryer. The vac-
uum during twenty hours of freeze drying was around 4 mbar.

Carbon cryogels were prepared by carbonization of the cryogels in a conventional furnace, un-
der nitrogen flow, at 800 °C, and after pyrolysis, the furnace was cooled to room temperature.

Characterization of carbon cryogels

Adsorption and desorption isotherms of N, were measured on the carbon cryogels at —196 °C
using the gravimetric McBain method. From the isotherm, the specific surface area, Sgp, pore size
distribution, mesopore including external surface area, S, q5,, micropore volume, V,;., for the sam-
ples were calculated. The pore size distribution was estimated by applying the BJH method!? to the
desorption branch of the isotherms and the mesopore surface and micropore volume were estimated
using the high resolution ¢ plot method.'!!3 The micropore surface, Sy;., was calculated by sub-
tracting Sy ¢, from Sggrt.

Electrochemical measurements

A conventional three-compartment cell was used. The working electrode (WE) compartment
was separated by fritted glass discs from the other two compartments. All measurements were per-
formed in 0.5 mol dm™ HCIO, solution (Spectrograde, Merck), prepared in deionized water at
25.0 °C. The rotating disc electrode was prepared as follows: the ground carbon cryogel powder was
ultrasonically dispersed in a mixture of 5 wt. % Nafion in a methanol-water solution (v/v = 1/1) to
produce a suspension of 1.0 mg/ml. A small amount of the suspension (12.5 — 50.0 pul) was spread
onto a gold electrode (diameter 6 mm). After evaporation of the methanol/water droplet (Merck),
the stability of the coating was improved by heat treatment at 80 °C for 15 min.

For all experiments, the measured voltammetric charge was divided by the overall potential
range (1.0 V) to yield the capacitance. The capacitance was then divided by the sample weight to
give the specific capacitance.

The counter electrode was a platinum sheet of 5 cm? geometric area. The reference electrode
was a Pt/H, electrode in the same solution. All potentials are referred to the reversible hydrogen
electrode (RHE).

The cyclic voltammetry measurements were conducted using a PAR Model 273 Potentio-
stat/Galvanostat coupled with Model BM-EDI 101 Rotating Disc Electrode. Before each electro-
chemical measurement, the aqueous solution was saturated with purified N, for more than 10 min.
The carbon cryogel samples were cycled between the potential window of 0.0 to 1.0 V, for five cy-
cles to ensure that no bubbles were trapped in the samples, and only the fifth cycle of each scan rate
was recorded. Cyclic volatmmograms are given as current vs. E plots, instead of current density vs.
E, due to the uncertainty of the real surface area of the ink-type electrode.

Simultaneously with the cyclic voltammetry measurements, the electrochemical impedance
spectra of the carbon cryogel electrodes at open circuit potential were determined, using a PAR 273
potentiostat, together with a PAR 5301 lock-in-amplifier, controlled through a GPBI PC2A inter-
face. The impedance spectra in the complex plane were obtained in the frequency range from 30
mHz to 100 kHz. The fast Fourier transformation (FFT) technique was used to obtain the real (Z°)
and imaginary (Z") componenets of the impedance in the frequency range from 30 mHz to 3 Hz.
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RESULTS AND DISCUSSION

Adsorption isotherms — BET experiments

n (mmol/g)

3

AVp/Arp (cm’/g nm)

Nitrogen adsorption and desorption isotherms, as the amount of N, adsorbed
and desorbed on the carbon cryogel (RF/W =20, R/C =100) as function of relative
pressure at —196 °C are shown in Fig. 1. According to the IUPAC clasification,!4
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Fig. 1. Nitrogen adsorption and de-
sorption isotherms, as the amount of
N, adsorbed and desorbed as a func-
tion of the relative pressure for a RF
carbon cryogel sample. Solid sym-
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Fig. 2. Pore size distribution (PSD)
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16 of a carbon cryogel (RF/W = 0.2,
R/F =0.5 and R/C = 100).

the isotherms are of type-IV and with a hysteresis loop which is assosiated with
mesoporous materials. The specific surface areas calculated by the BET equation,
SBET, are listed in Table I.

TABLE I. Porous properties of the RF carbon cryogel

Sppr/m? g

1 Tpeak / nm

Smeso / m2 g-l

1

Smic / m2 g_l Vmic / Cm3 g

2.1 285

232 0.11
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The pore size distribution of the carbon cryogel sample is shown in Fig. 2.
Fpeak varies between 2 and 4.0 nm which means that the sample is mostly
mesoporous according to [IUPAC classification (micropores < 2 nm, mesopores 2 —
50 nm and macropores > 50 nm).

The a4 plot, obtained on the basis of the standard nitrogen adsorption iso-
therm, is shown in Fig. 3. The straight line in the medium o  region gives the
mesoporous surface area which includes the contribution of the external surface,
Smeso> determined by its slope, and the micropore volume, V,;c, is given by the in-
tercept. The calculated porosity parameters (Syeso» Smics Vmic) are given in Table I.

Cyclic voltammetry experiments

Cyclic voltammograms of the RF carbon cryogel sample (25 pg) at different
scan rates (2 — 200 mV s~1) are shown in Fig. 4. The cyclic voltammograms are re-
producible and very symmetric, ensuring that the electrochemical double layer
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(edl) charging process is reversible. The voltammograms do not show significant
peaks revealing the presence of oxidative—reductive processes and the contribution
from surface functional groups (pseudocapacitance) can be neglected.

The cyclic voltammograms as a function of sample weight (12.5 - 50 pug) ata
constant scan rate (100 mV s-1) are shown in Fig. 5.

Determination of micro and mesoporosity by cyclic voltammetry

It is interesting to note that the voltammetric charge decreases with increasing
scan rate (Fig. 6). A brief inspection of the voltammograms also shows that the cur-
rent is proportional to the square root of the scan rate, / oc v1/2. This behaviour is
characteristic of a Faradaic reaction under diffusion control. However, for a po-
rous, 3-dimensional electrode, such as is the case of a carbon cryogel, diffusional
limitations are eliminated or largely attenuated, since the path lengths for the trans-
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port of ions in the pores filled with electrolyte during the charging or discharging
process are very much diminshed relative to the situation at a plane electrode, be-
cause the pores behave like a thin layer cell.

It is well known that the characteristics of porous electrochemical capacitors
differ somewhat from those of planar electrode systems because the capacitance of
porous electrochemical capacitors is always frequency dependent!? since:

C=,0-Cqy/® as@w—>xwand C=Cqasw —> 0 )

where 0 is the electrolyte conductivity, Cy is the low frequency capacitance, which
is determined by the double layer capacitance times the total pore surface area, and
o is the angular velocity (2pf). Thus, only a fraction of the double-layer capaci-
tance is accesible at short times with porous matrices, while all the charge associ-
ated with the double layer is available as ¢ — o. Note that the capacitance at t — o
is inversely proportional to the square root of the frequency, 1.

A porous electrode is often described by the De Levie transmission line
modell® according to Fig. 7 and the corresponding equivalent circuit. The equiva-
lent circuit of a pore of a porous electrode is approximated by a line of R and C ele-
ments representing the elemental double layer capacitance and electrolyte resis-
tance. The RC circuit has a distribution of characteristic RC time constants and
therefore different charging or discharging relaxation times, depending on the val-
ues of R and C for each circuit element in the network. The overall frequency — re-
sponse behavior approximates that of a transmission line that exibits a 45° phase
angle over a wide range of frequencies, as the Wartburg impedance involved in a
diffusion-controlled Faradaic reaction.

% //// ) ////// ///2%/ N
| 8 B
i ? ’R4 ~C4 % : ) 7 /:

Fig. 7. The equivalent circuit represen-
v tation of the distributed resistance and
““capacitance within a pore. Five-ele-
- - ment transmission line, R — electrolyte
resistance within the pore; C — dou-
e 1 ble-layer capacitance.

As the charging behavior of the capacitance of a porous electrode have formal
mathematical similarity to the equations for a diffusion controlled reaction, it is not
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Fig. 8. a) Typical dependence of the voltammetric charge on the reciprocal of the square root of
the potential scan rate for carbon cryogel (RF/W = 0.2, R/F = 0.5 and R/C = 100) electrodes in
0.5 mol dm= HC1O, solution at 25.0 °C. b) Dependence of the reciprocal voltammetric charge on

the square root of the potential scan rate for RF carbon cryogel (RF/W = 0.2, R/F = 0.5 and
R/C = 100) electrodes in 0.5 mol dm= HCIOy solution at 25.0 °C.
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Fig. 9. a) Typical impedance plot for a carbon
1000 |- 1 cryogel electrode in 0.5 mol dm™ HCIO, solution
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supprising that the current on the cyclic voltammograms is proportional to the square
root of the scan rate (v). In this case, it is easy to show that the voltammetric charge
should be a linear function of v~1/2 and reciprocal voltammetric charge should be a
linear function of v1/2. Figures 8a and 8b show that linearity is indeed observed.

Extrapolation of the ¢ —v~1/2 line to v—1/2 — 0 gives the charge of the fraction of
the total surface which responds to an infinite scan rate. It is assumed in this case that
the charging or discharging process is able to reach equilibrium only inside mesopores
present in the RF carbon cryogel electrode (fast response) and that the specific
mesoporous capacitance can be determined. Therefore, the mesoporous capacitance is
independent of the scan rate. At the same time, extrapolation of the 1/g — v1/2 line to
v1/2 - 0 gives the charge at an infinity slow scan rate, i.e., under conditions of rever-
siblility. In this case, the charging process is able to reach equilibrium inside both the
mesopores and the micropores (slow response). Therefore, the specific capacitance in
this case must be the sum of the specific mesoporous and microporous capacitance, or
total capacitance. The corresponding values of the mesoporous and the microporous
specific capacitance of the investigated RF carbon cryogel samples obtained by ex-
trapolation methods and dividing the corresponding voltammetric charge by the over-
all potential range (1.0 V) and the sample weight are presented in Table II.

TABLE II. Mesoporous and microporous capacitances of the RF carbon cryogels based on the con-
ditions of the cyclic voltammetry experiments?

Sample weight/ug ~ Cio/F g! Cineso’F g! Chicro/F g! Sbmeso/m2 g! Sbmic/m2 g! Sbtot/m2 g!

12.5 139 56 83 224 332 556
25.0 138 54 84 216 336 552
37.5 145 50 95 200 380 580
50.0 148 58 90 232 360 592

aSpecific capacitances for mesopores and micropores were determined from the intercepts of the
corresponding 1/g —v1/2 curve (the total capacitance) and the specific mesoporous capacitance from
the intercept of the ¢ — v™2 curve. PSpecific surface areas were calculated by dividing the corre-
sponding value for the specific capacitance and the double-layer capacitance of a clean graphite sur-
face (i.e., 25 uF cm™).

The values for the total specific surface areas calculated by dividing the corre-
sponding value for the specific capacitance and the double-layer capacitance of a
clean graphite surface (i.e., 25 pF cm™2) (see Table II) are similar to the corre-
sponding values obtained by BET measurements (Table I).

It must be stated, however, that although the micropores contribute substan-
tially to the real area per gram (Table II), this fraction of real area is not necessarily
electrochemically accessible since it is accessed only through an appreciable cu-
mulative solution resistance (transmission-line model). Generally they will con-
tribute only to a small degree to the charge storage capacity under high-rate or
short-duration power-pulse discharge or recharge.
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Impedance measurements

A typical impedance plot in the complex plane for a RF carbon cryogel elec-
trode (25 pg) is shown in Fig. 9a. The non-vertical slope of the low frequency im-
pedance can be explained, as previously mentioned, by the De Levie trasmission
line model!® according to Fig. 7 and the corresponding equivalent circuit. Over a
wide frequency region, the capacitors behave like small impedance elements (Z=1
/ joC) and the current flows predominantly along R| and C; into the bulk material
and almost no charging current flows deep down the pore. Consequently, the resis-
tance and double layer capacitance are reduced.

The capacitance is calculated from the imaginary part of the complex imped-
ance according to: 13

C=-1/(wZ") 2

The capacitance versus frequency plot is shown in Fig. 9b. The capacitance
starts to decrease noticeably at high frequencies. The cut-off frequency is roughly
related to the RC time constant of a single electrode capacitor. At low frequencies
the impedance plot (Fig. 9a) approaches an almost vertical line. It is important to
emphasize that the impedance method does not give a definite (total) capacitance
even at the lowest measured frequency of 0.03 Hz.

However, from the slope of the imaginary part of the complex impedance ver-
sus reciprocal frequency in the low frequencies region (Fig. 9¢), a definite capaci-
tance can be calculated. The calculated value for the specific capacitance for the
sample with 12.5 ug of carbon cryogel is 141 F/g, which is in good agreement with
the values obtained from cyclic voltammetry experiments (see Table II).

CONCLUSIONS

a) Carbon cryogels were successfully prepared by the sol-gel polymerization
of resorcinol with formaldehyde, followed by freeze drying and pyrolysis in an in-
ert atmosphere.

b) Through characterization by nitrogen adsorption and desorption experi-
ments, it was shown that the carbon cryogel was a mesoporous materials with a
high surface area, 550 m2/g.

c¢) It was shown that cyclic voltammetry is a very useful tool for determining
the capacitance of a porous electrode in general. It was demonstrated that it is pos-
sible to sub-divide the total specific capacitance into the mesoporous and the
microporous specific capacitance by analyzing the linear dependence of the spe-
cific capacitance (C) on the reciprocal of the square root of the potential scan rate
(v~172), and by the linear dependence of the reciprocal specific charge (1/C) on the
square root of the potential scan rate (v1/2).

d) A very promising specific capacitance value of 150 F/g, was found for this
material operating in acidic 0.5 mol dm—3 HCIO4 solution at room temperature,
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which promotes the usage of carbon cryogels as electrode materials in advanced
energy storage devices and other electrochemical devices.
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KAPAKTEPU3ALIMJA KAPBOH KPUOT'EJIOBA CUHTETU30BAHNX
COJI-TENI ITOJIMKOHOEH3AIIMJOM

BUJbAHA BAEI/ITll. JIVUBHA BOKUE! u HEJJEJbLKO KPCTAJURZ

ZI/Ich7uu7yu7 3a nyKkaeapue Hayke “Bunua”, Q. tip. 522, 11001 Beozpao u 2TexuOAOLLtko—MeLEaﬂypmrcu cpakyaitiein,
Ynueepsuiteii y Beozpaoy, Kapnezujesa 4, 11120 Feozpao

Pesopumnon-popmamexny (RF) KpuoremnoBu ¢y CHHTETH30BaHU COJ-TEJ TIONNKOHICH-
3anujoM cMece pesopumonona (R) m dopmanaexuna (F) y3 HaKHaJHO CYIIEHe MOCTYIKOM
3aMp3aBama y t-0yranony. Kap6oH kprorenosu cy ooujern muponu3oM RF kpuoremnosa Ha
800 °C y unepTHO]j aTMochepu. AJCOpIiyja U AeCOpIIMja TEUHOT a30Ta je moKasala ja cy
KapOOH KPUOTeJI0BU MUKPO U ME30IIOPO3HU MaTePUjalld ca BEOMa Pa3BUjeHOM CelU(DUIHOM
NoBpIIMHOM (Sgpr ~ 550 m?/g). [IpuMeHOM IUKIMYHE BOJTAMETpPHje UCTUTUBAHA je KHHETUKA
NyHeHha U MPAKIbemha eNeKTPUYHOT ABOJHOT ClI0ja, NMPU Pa3IHMIUTUM Op3MHAMa IIPOMEHE
norenrujana (2 —200 mV s7!). TTokasano je ia je Moryhe ykynau crienucirann kanamureT (F/g)
Pa3ABOjUTH Ha crelu(pUYHHE KamaluTeT MUKPOIOpa M Me30Iopa NMPEeKO aHalu3e JIUHeapHe
3aBHCHOCTH BOJITAMETPH]jCKOT HaeJIeKTprcamba (¢) Off pELUIPOYHE BPEJHOCTH KOpeHa Op3HHE
npoMeHe noreHnujana (v/2) u nMuHEapHe 3aBHCHOCTM PELUNPOYHE BPEJHOCTH HAETEKTPH-
cama (1/¢) o kopena Gp3une npoMeHe norenmujana (v/2). EnexTpose of Kap6oH Kpuorena
nocetyjy Beoma BUCOK crienuchuyan KanauteT off 150 F/g y 0.5 mol dm™ HCIO, enexTponuty
Ha COOHOj TeMIiepaTypH KOji He 3aBUCHU OJf Mace NCNUTHBaHKX y3opaka (12.5 — 50 pg).

(IMpumbero 8. anpuina, peBuanpano 2. jyiaa 2004)
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